operator.c revision 1.2 1 /*-
2 * Copyright (c) 1990 The Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Cimarron D. Taylor of the University of California, Berkeley.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 */
36
37 #ifndef lint
38 /*static char sccsid[] = "from: @(#)operator.c 5.4 (Berkeley) 5/24/91";*/
39 static char rcsid[] = "$Id: operator.c,v 1.2 1993/08/01 18:16:10 mycroft Exp $";
40 #endif /* not lint */
41
42 #include <sys/types.h>
43 #include <stdio.h>
44 #include "find.h"
45
46 /*
47 * yanknode --
48 * destructively removes the top from the plan
49 */
50 static PLAN *
51 yanknode(planp)
52 PLAN **planp; /* pointer to top of plan (modified) */
53 {
54 PLAN *node; /* top node removed from the plan */
55
56 if ((node = (*planp)) == NULL)
57 return(NULL);
58 (*planp) = (*planp)->next;
59 node->next = NULL;
60 return(node);
61 }
62
63 /*
64 * yankexpr --
65 * Removes one expression from the plan. This is used mainly by
66 * paren_squish. In comments below, an expression is either a
67 * simple node or a N_EXPR node containing a list of simple nodes.
68 */
69 static PLAN *
70 yankexpr(planp)
71 PLAN **planp; /* pointer to top of plan (modified) */
72 {
73 register PLAN *next; /* temp node holding subexpression results */
74 PLAN *node; /* pointer to returned node or expression */
75 PLAN *tail; /* pointer to tail of subplan */
76 PLAN *subplan; /* pointer to head of ( ) expression */
77 int f_expr();
78
79 /* first pull the top node from the plan */
80 if ((node = yanknode(planp)) == NULL)
81 return(NULL);
82
83 /*
84 * If the node is an '(' then we recursively slurp up expressions
85 * until we find its associated ')'. If it's a closing paren we
86 * just return it and unwind our recursion; all other nodes are
87 * complete expressions, so just return them.
88 */
89 if (node->type == N_OPENPAREN)
90 for (tail = subplan = NULL;;) {
91 if ((next = yankexpr(planp)) == NULL)
92 err("%s: %s", "(", "missing closing ')'");
93 /*
94 * If we find a closing ')' we store the collected
95 * subplan in our '(' node and convert the node to
96 * a N_EXPR. The ')' we found is ignored. Otherwise,
97 * we just continue to add whatever we get to our
98 * subplan.
99 */
100 if (next->type == N_CLOSEPAREN) {
101 if (subplan == NULL)
102 err("%s: %s",
103 "()", "empty inner expression");
104 node->p_data[0] = subplan;
105 node->type = N_EXPR;
106 node->eval = f_expr;
107 break;
108 } else {
109 if (subplan == NULL)
110 tail = subplan = next;
111 else {
112 tail->next = next;
113 tail = next;
114 }
115 tail->next = NULL;
116 }
117 }
118 return(node);
119 }
120
121 /*
122 * paren_squish --
123 * replaces "parentheisized" plans in our search plan with "expr" nodes.
124 */
125 PLAN *
126 paren_squish(plan)
127 PLAN *plan; /* plan with ( ) nodes */
128 {
129 register PLAN *expr; /* pointer to next expression */
130 register PLAN *tail; /* pointer to tail of result plan */
131 PLAN *result; /* pointer to head of result plan */
132
133 result = tail = NULL;
134
135 /*
136 * the basic idea is to have yankexpr do all our work and just
137 * collect it's results together.
138 */
139 while ((expr = yankexpr(&plan)) != NULL) {
140 /*
141 * if we find an unclaimed ')' it means there is a missing
142 * '(' someplace.
143 */
144 if (expr->type == N_CLOSEPAREN)
145 err("%s: %s", ")", "no beginning '('");
146
147 /* add the expression to our result plan */
148 if (result == NULL)
149 tail = result = expr;
150 else {
151 tail->next = expr;
152 tail = expr;
153 }
154 tail->next = NULL;
155 }
156 return(result);
157 }
158
159 /*
160 * not_squish --
161 * compresses "!" expressions in our search plan.
162 */
163 PLAN *
164 not_squish(plan)
165 PLAN *plan; /* plan to process */
166 {
167 register PLAN *next; /* next node being processed */
168 register PLAN *node; /* temporary node used in N_NOT processing */
169 register PLAN *tail; /* pointer to tail of result plan */
170 PLAN *result; /* pointer to head of result plan */
171
172 tail = result = next = NULL;
173
174 while ((next = yanknode(&plan)) != NULL) {
175 /*
176 * if we encounter a ( expression ) then look for nots in
177 * the expr subplan.
178 */
179 if (next->type == N_EXPR)
180 next->p_data[0] = not_squish(next->p_data[0]);
181
182 /*
183 * if we encounter a not, then snag the next node and place
184 * it in the not's subplan. As an optimization we compress
185 * several not's to zero or one not.
186 */
187 if (next->type == N_NOT) {
188 int notlevel = 1;
189
190 node = yanknode(&plan);
191 while (node->type == N_NOT) {
192 ++notlevel;
193 node = yanknode(&plan);
194 }
195 if (node == NULL)
196 err("%s: %s", "!", "no following expression");
197 if (node->type == N_OR)
198 err("%s: %s", "!", "nothing between ! and -o");
199 if (notlevel % 2 != 1)
200 next = node;
201 else
202 next->p_data[0] = node;
203 }
204
205 /* add the node to our result plan */
206 if (result == NULL)
207 tail = result = next;
208 else {
209 tail->next = next;
210 tail = next;
211 }
212 tail->next = NULL;
213 }
214 return(result);
215 }
216
217 /*
218 * or_squish --
219 * compresses -o expressions in our search plan.
220 */
221 PLAN *
222 or_squish(plan)
223 PLAN *plan; /* plan with ors to be squished */
224 {
225 register PLAN *next; /* next node being processed */
226 register PLAN *tail; /* pointer to tail of result plan */
227 PLAN *result; /* pointer to head of result plan */
228
229 tail = result = next = NULL;
230
231 while ((next = yanknode(&plan)) != NULL) {
232 /*
233 * if we encounter a ( expression ) then look for or's in
234 * the expr subplan.
235 */
236 if (next->type == N_EXPR)
237 next->p_data[0] = or_squish(next->p_data[0]);
238
239 /* if we encounter a not then look for not's in the subplan */
240 if (next->type == N_NOT)
241 next->p_data[0] = or_squish(next->p_data[0]);
242
243 /*
244 * if we encounter an or, then place our collected plan in the
245 * or's first subplan and then recursively collect the
246 * remaining stuff into the second subplan and return the or.
247 */
248 if (next->type == N_OR) {
249 if (result == NULL)
250 err("%s: %s", "-o", "no expression before -o");
251 next->p_data[0] = result;
252 next->p_data[1] = or_squish(plan);
253 if (next->p_data[1] == NULL)
254 err("%s: %s", "-o", "no expression after -o");
255 return(next);
256 }
257
258 /* add the node to our result plan */
259 if (result == NULL)
260 tail = result = next;
261 else {
262 tail->next = next;
263 tail = next;
264 }
265 tail->next = NULL;
266 }
267 return(result);
268 }
269