operator.c revision 1.3 1 /*-
2 * Copyright (c) 1990, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Cimarron D. Taylor of the University of California, Berkeley.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 */
36
37 #ifndef lint
38 /*static char sccsid[] = "from: @(#)operator.c 8.1 (Berkeley) 6/6/93";*/
39 static char rcsid[] = "$Id: operator.c,v 1.3 1993/12/30 21:15:31 jtc Exp $";
40 #endif /* not lint */
41
42 #include <sys/types.h>
43
44 #include <err.h>
45 #include <fts.h>
46 #include <stdio.h>
47
48 #include "find.h"
49
50 /*
51 * yanknode --
52 * destructively removes the top from the plan
53 */
54 static PLAN *
55 yanknode(planp)
56 PLAN **planp; /* pointer to top of plan (modified) */
57 {
58 PLAN *node; /* top node removed from the plan */
59
60 if ((node = (*planp)) == NULL)
61 return (NULL);
62 (*planp) = (*planp)->next;
63 node->next = NULL;
64 return (node);
65 }
66
67 /*
68 * yankexpr --
69 * Removes one expression from the plan. This is used mainly by
70 * paren_squish. In comments below, an expression is either a
71 * simple node or a N_EXPR node containing a list of simple nodes.
72 */
73 static PLAN *
74 yankexpr(planp)
75 PLAN **planp; /* pointer to top of plan (modified) */
76 {
77 register PLAN *next; /* temp node holding subexpression results */
78 PLAN *node; /* pointer to returned node or expression */
79 PLAN *tail; /* pointer to tail of subplan */
80 PLAN *subplan; /* pointer to head of ( ) expression */
81 int f_expr();
82
83 /* first pull the top node from the plan */
84 if ((node = yanknode(planp)) == NULL)
85 return (NULL);
86
87 /*
88 * If the node is an '(' then we recursively slurp up expressions
89 * until we find its associated ')'. If it's a closing paren we
90 * just return it and unwind our recursion; all other nodes are
91 * complete expressions, so just return them.
92 */
93 if (node->type == N_OPENPAREN)
94 for (tail = subplan = NULL;;) {
95 if ((next = yankexpr(planp)) == NULL)
96 err(1, "(: missing closing ')'");
97 /*
98 * If we find a closing ')' we store the collected
99 * subplan in our '(' node and convert the node to
100 * a N_EXPR. The ')' we found is ignored. Otherwise,
101 * we just continue to add whatever we get to our
102 * subplan.
103 */
104 if (next->type == N_CLOSEPAREN) {
105 if (subplan == NULL)
106 errx(1, "(): empty inner expression");
107 node->p_data[0] = subplan;
108 node->type = N_EXPR;
109 node->eval = f_expr;
110 break;
111 } else {
112 if (subplan == NULL)
113 tail = subplan = next;
114 else {
115 tail->next = next;
116 tail = next;
117 }
118 tail->next = NULL;
119 }
120 }
121 return (node);
122 }
123
124 /*
125 * paren_squish --
126 * replaces "parentheisized" plans in our search plan with "expr" nodes.
127 */
128 PLAN *
129 paren_squish(plan)
130 PLAN *plan; /* plan with ( ) nodes */
131 {
132 register PLAN *expr; /* pointer to next expression */
133 register PLAN *tail; /* pointer to tail of result plan */
134 PLAN *result; /* pointer to head of result plan */
135
136 result = tail = NULL;
137
138 /*
139 * the basic idea is to have yankexpr do all our work and just
140 * collect it's results together.
141 */
142 while ((expr = yankexpr(&plan)) != NULL) {
143 /*
144 * if we find an unclaimed ')' it means there is a missing
145 * '(' someplace.
146 */
147 if (expr->type == N_CLOSEPAREN)
148 errx(1, "): no beginning '('");
149
150 /* add the expression to our result plan */
151 if (result == NULL)
152 tail = result = expr;
153 else {
154 tail->next = expr;
155 tail = expr;
156 }
157 tail->next = NULL;
158 }
159 return (result);
160 }
161
162 /*
163 * not_squish --
164 * compresses "!" expressions in our search plan.
165 */
166 PLAN *
167 not_squish(plan)
168 PLAN *plan; /* plan to process */
169 {
170 register PLAN *next; /* next node being processed */
171 register PLAN *node; /* temporary node used in N_NOT processing */
172 register PLAN *tail; /* pointer to tail of result plan */
173 PLAN *result; /* pointer to head of result plan */
174
175 tail = result = next = NULL;
176
177 while ((next = yanknode(&plan)) != NULL) {
178 /*
179 * if we encounter a ( expression ) then look for nots in
180 * the expr subplan.
181 */
182 if (next->type == N_EXPR)
183 next->p_data[0] = not_squish(next->p_data[0]);
184
185 /*
186 * if we encounter a not, then snag the next node and place
187 * it in the not's subplan. As an optimization we compress
188 * several not's to zero or one not.
189 */
190 if (next->type == N_NOT) {
191 int notlevel = 1;
192
193 node = yanknode(&plan);
194 while (node->type == N_NOT) {
195 ++notlevel;
196 node = yanknode(&plan);
197 }
198 if (node == NULL)
199 errx(1, "!: no following expression");
200 if (node->type == N_OR)
201 errx(1, "!: nothing between ! and -o");
202 if (notlevel % 2 != 1)
203 next = node;
204 else
205 next->p_data[0] = node;
206 }
207
208 /* add the node to our result plan */
209 if (result == NULL)
210 tail = result = next;
211 else {
212 tail->next = next;
213 tail = next;
214 }
215 tail->next = NULL;
216 }
217 return (result);
218 }
219
220 /*
221 * or_squish --
222 * compresses -o expressions in our search plan.
223 */
224 PLAN *
225 or_squish(plan)
226 PLAN *plan; /* plan with ors to be squished */
227 {
228 register PLAN *next; /* next node being processed */
229 register PLAN *tail; /* pointer to tail of result plan */
230 PLAN *result; /* pointer to head of result plan */
231
232 tail = result = next = NULL;
233
234 while ((next = yanknode(&plan)) != NULL) {
235 /*
236 * if we encounter a ( expression ) then look for or's in
237 * the expr subplan.
238 */
239 if (next->type == N_EXPR)
240 next->p_data[0] = or_squish(next->p_data[0]);
241
242 /* if we encounter a not then look for not's in the subplan */
243 if (next->type == N_NOT)
244 next->p_data[0] = or_squish(next->p_data[0]);
245
246 /*
247 * if we encounter an or, then place our collected plan in the
248 * or's first subplan and then recursively collect the
249 * remaining stuff into the second subplan and return the or.
250 */
251 if (next->type == N_OR) {
252 if (result == NULL)
253 errx(1, "-o: no expression before -o");
254 next->p_data[0] = result;
255 next->p_data[1] = or_squish(plan);
256 if (next->p_data[1] == NULL)
257 errx(1, "-o: no expression after -o");
258 return (next);
259 }
260
261 /* add the node to our result plan */
262 if (result == NULL)
263 tail = result = next;
264 else {
265 tail->next = next;
266 tail = next;
267 }
268 tail->next = NULL;
269 }
270 return (result);
271 }
272