operator.c revision 1.4 1 /* $NetBSD: operator.c,v 1.4 1997/01/09 20:19:15 tls Exp $ */
2
3 /*-
4 * Copyright (c) 1990, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Cimarron D. Taylor of the University of California, Berkeley.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 */
38
39 #ifndef lint
40 /*static char sccsid[] = "from: @(#)operator.c 8.1 (Berkeley) 6/6/93";*/
41 static char rcsid[] = "$NetBSD: operator.c,v 1.4 1997/01/09 20:19:15 tls Exp $";
42 #endif /* not lint */
43
44 #include <sys/types.h>
45
46 #include <err.h>
47 #include <fts.h>
48 #include <stdio.h>
49
50 #include "find.h"
51
52 /*
53 * yanknode --
54 * destructively removes the top from the plan
55 */
56 static PLAN *
57 yanknode(planp)
58 PLAN **planp; /* pointer to top of plan (modified) */
59 {
60 PLAN *node; /* top node removed from the plan */
61
62 if ((node = (*planp)) == NULL)
63 return (NULL);
64 (*planp) = (*planp)->next;
65 node->next = NULL;
66 return (node);
67 }
68
69 /*
70 * yankexpr --
71 * Removes one expression from the plan. This is used mainly by
72 * paren_squish. In comments below, an expression is either a
73 * simple node or a N_EXPR node containing a list of simple nodes.
74 */
75 static PLAN *
76 yankexpr(planp)
77 PLAN **planp; /* pointer to top of plan (modified) */
78 {
79 register PLAN *next; /* temp node holding subexpression results */
80 PLAN *node; /* pointer to returned node or expression */
81 PLAN *tail; /* pointer to tail of subplan */
82 PLAN *subplan; /* pointer to head of ( ) expression */
83 int f_expr();
84
85 /* first pull the top node from the plan */
86 if ((node = yanknode(planp)) == NULL)
87 return (NULL);
88
89 /*
90 * If the node is an '(' then we recursively slurp up expressions
91 * until we find its associated ')'. If it's a closing paren we
92 * just return it and unwind our recursion; all other nodes are
93 * complete expressions, so just return them.
94 */
95 if (node->type == N_OPENPAREN)
96 for (tail = subplan = NULL;;) {
97 if ((next = yankexpr(planp)) == NULL)
98 err(1, "(: missing closing ')'");
99 /*
100 * If we find a closing ')' we store the collected
101 * subplan in our '(' node and convert the node to
102 * a N_EXPR. The ')' we found is ignored. Otherwise,
103 * we just continue to add whatever we get to our
104 * subplan.
105 */
106 if (next->type == N_CLOSEPAREN) {
107 if (subplan == NULL)
108 errx(1, "(): empty inner expression");
109 node->p_data[0] = subplan;
110 node->type = N_EXPR;
111 node->eval = f_expr;
112 break;
113 } else {
114 if (subplan == NULL)
115 tail = subplan = next;
116 else {
117 tail->next = next;
118 tail = next;
119 }
120 tail->next = NULL;
121 }
122 }
123 return (node);
124 }
125
126 /*
127 * paren_squish --
128 * replaces "parentheisized" plans in our search plan with "expr" nodes.
129 */
130 PLAN *
131 paren_squish(plan)
132 PLAN *plan; /* plan with ( ) nodes */
133 {
134 register PLAN *expr; /* pointer to next expression */
135 register PLAN *tail; /* pointer to tail of result plan */
136 PLAN *result; /* pointer to head of result plan */
137
138 result = tail = NULL;
139
140 /*
141 * the basic idea is to have yankexpr do all our work and just
142 * collect it's results together.
143 */
144 while ((expr = yankexpr(&plan)) != NULL) {
145 /*
146 * if we find an unclaimed ')' it means there is a missing
147 * '(' someplace.
148 */
149 if (expr->type == N_CLOSEPAREN)
150 errx(1, "): no beginning '('");
151
152 /* add the expression to our result plan */
153 if (result == NULL)
154 tail = result = expr;
155 else {
156 tail->next = expr;
157 tail = expr;
158 }
159 tail->next = NULL;
160 }
161 return (result);
162 }
163
164 /*
165 * not_squish --
166 * compresses "!" expressions in our search plan.
167 */
168 PLAN *
169 not_squish(plan)
170 PLAN *plan; /* plan to process */
171 {
172 register PLAN *next; /* next node being processed */
173 register PLAN *node; /* temporary node used in N_NOT processing */
174 register PLAN *tail; /* pointer to tail of result plan */
175 PLAN *result; /* pointer to head of result plan */
176
177 tail = result = next = NULL;
178
179 while ((next = yanknode(&plan)) != NULL) {
180 /*
181 * if we encounter a ( expression ) then look for nots in
182 * the expr subplan.
183 */
184 if (next->type == N_EXPR)
185 next->p_data[0] = not_squish(next->p_data[0]);
186
187 /*
188 * if we encounter a not, then snag the next node and place
189 * it in the not's subplan. As an optimization we compress
190 * several not's to zero or one not.
191 */
192 if (next->type == N_NOT) {
193 int notlevel = 1;
194
195 node = yanknode(&plan);
196 while (node->type == N_NOT) {
197 ++notlevel;
198 node = yanknode(&plan);
199 }
200 if (node == NULL)
201 errx(1, "!: no following expression");
202 if (node->type == N_OR)
203 errx(1, "!: nothing between ! and -o");
204 if (notlevel % 2 != 1)
205 next = node;
206 else
207 next->p_data[0] = node;
208 }
209
210 /* add the node to our result plan */
211 if (result == NULL)
212 tail = result = next;
213 else {
214 tail->next = next;
215 tail = next;
216 }
217 tail->next = NULL;
218 }
219 return (result);
220 }
221
222 /*
223 * or_squish --
224 * compresses -o expressions in our search plan.
225 */
226 PLAN *
227 or_squish(plan)
228 PLAN *plan; /* plan with ors to be squished */
229 {
230 register PLAN *next; /* next node being processed */
231 register PLAN *tail; /* pointer to tail of result plan */
232 PLAN *result; /* pointer to head of result plan */
233
234 tail = result = next = NULL;
235
236 while ((next = yanknode(&plan)) != NULL) {
237 /*
238 * if we encounter a ( expression ) then look for or's in
239 * the expr subplan.
240 */
241 if (next->type == N_EXPR)
242 next->p_data[0] = or_squish(next->p_data[0]);
243
244 /* if we encounter a not then look for not's in the subplan */
245 if (next->type == N_NOT)
246 next->p_data[0] = or_squish(next->p_data[0]);
247
248 /*
249 * if we encounter an or, then place our collected plan in the
250 * or's first subplan and then recursively collect the
251 * remaining stuff into the second subplan and return the or.
252 */
253 if (next->type == N_OR) {
254 if (result == NULL)
255 errx(1, "-o: no expression before -o");
256 next->p_data[0] = result;
257 next->p_data[1] = or_squish(plan);
258 if (next->p_data[1] == NULL)
259 errx(1, "-o: no expression after -o");
260 return (next);
261 }
262
263 /* add the node to our result plan */
264 if (result == NULL)
265 tail = result = next;
266 else {
267 tail->next = next;
268 tail = next;
269 }
270 tail->next = NULL;
271 }
272 return (result);
273 }
274