operator.c revision 1.5 1 /* $NetBSD: operator.c,v 1.5 1997/10/19 11:52:55 lukem Exp $ */
2
3 /*-
4 * Copyright (c) 1990, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Cimarron D. Taylor of the University of California, Berkeley.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 #ifndef lint
41 #if 0
42 static char sccsid[] = "from: @(#)operator.c 8.1 (Berkeley) 6/6/93";
43 #else
44 __RCSID("$NetBSD: operator.c,v 1.5 1997/10/19 11:52:55 lukem Exp $");
45 #endif
46 #endif /* not lint */
47
48 #include <sys/types.h>
49
50 #include <err.h>
51 #include <fts.h>
52 #include <stdio.h>
53
54 #include "find.h"
55
56 /*
57 * yanknode --
58 * destructively removes the top from the plan
59 */
60 static PLAN *
61 yanknode(planp)
62 PLAN **planp; /* pointer to top of plan (modified) */
63 {
64 PLAN *node; /* top node removed from the plan */
65
66 if ((node = (*planp)) == NULL)
67 return (NULL);
68 (*planp) = (*planp)->next;
69 node->next = NULL;
70 return (node);
71 }
72
73 /*
74 * yankexpr --
75 * Removes one expression from the plan. This is used mainly by
76 * paren_squish. In comments below, an expression is either a
77 * simple node or a N_EXPR node containing a list of simple nodes.
78 */
79 static PLAN *
80 yankexpr(planp)
81 PLAN **planp; /* pointer to top of plan (modified) */
82 {
83 PLAN *next; /* temp node holding subexpression results */
84 PLAN *node; /* pointer to returned node or expression */
85 PLAN *tail; /* pointer to tail of subplan */
86 PLAN *subplan; /* pointer to head of ( ) expression */
87
88 /* first pull the top node from the plan */
89 if ((node = yanknode(planp)) == NULL)
90 return (NULL);
91
92 /*
93 * If the node is an '(' then we recursively slurp up expressions
94 * until we find its associated ')'. If it's a closing paren we
95 * just return it and unwind our recursion; all other nodes are
96 * complete expressions, so just return them.
97 */
98 if (node->type == N_OPENPAREN)
99 for (tail = subplan = NULL;;) {
100 if ((next = yankexpr(planp)) == NULL)
101 err(1, "(: missing closing ')'");
102 /*
103 * If we find a closing ')' we store the collected
104 * subplan in our '(' node and convert the node to
105 * a N_EXPR. The ')' we found is ignored. Otherwise,
106 * we just continue to add whatever we get to our
107 * subplan.
108 */
109 if (next->type == N_CLOSEPAREN) {
110 if (subplan == NULL)
111 errx(1, "(): empty inner expression");
112 node->p_data[0] = subplan;
113 node->type = N_EXPR;
114 node->eval = f_expr;
115 break;
116 } else {
117 if (subplan == NULL)
118 tail = subplan = next;
119 else {
120 tail->next = next;
121 tail = next;
122 }
123 tail->next = NULL;
124 }
125 }
126 return (node);
127 }
128
129 /*
130 * paren_squish --
131 * replaces "parentheisized" plans in our search plan with "expr" nodes.
132 */
133 PLAN *
134 paren_squish(plan)
135 PLAN *plan; /* plan with ( ) nodes */
136 {
137 PLAN *expr; /* pointer to next expression */
138 PLAN *tail; /* pointer to tail of result plan */
139 PLAN *result; /* pointer to head of result plan */
140
141 result = tail = NULL;
142
143 /*
144 * the basic idea is to have yankexpr do all our work and just
145 * collect it's results together.
146 */
147 while ((expr = yankexpr(&plan)) != NULL) {
148 /*
149 * if we find an unclaimed ')' it means there is a missing
150 * '(' someplace.
151 */
152 if (expr->type == N_CLOSEPAREN)
153 errx(1, "): no beginning '('");
154
155 /* add the expression to our result plan */
156 if (result == NULL)
157 tail = result = expr;
158 else {
159 tail->next = expr;
160 tail = expr;
161 }
162 tail->next = NULL;
163 }
164 return (result);
165 }
166
167 /*
168 * not_squish --
169 * compresses "!" expressions in our search plan.
170 */
171 PLAN *
172 not_squish(plan)
173 PLAN *plan; /* plan to process */
174 {
175 PLAN *next; /* next node being processed */
176 PLAN *node; /* temporary node used in N_NOT processing */
177 PLAN *tail; /* pointer to tail of result plan */
178 PLAN *result; /* pointer to head of result plan */
179
180 tail = result = next = NULL;
181
182 while ((next = yanknode(&plan)) != NULL) {
183 /*
184 * if we encounter a ( expression ) then look for nots in
185 * the expr subplan.
186 */
187 if (next->type == N_EXPR)
188 next->p_data[0] = not_squish(next->p_data[0]);
189
190 /*
191 * if we encounter a not, then snag the next node and place
192 * it in the not's subplan. As an optimization we compress
193 * several not's to zero or one not.
194 */
195 if (next->type == N_NOT) {
196 int notlevel = 1;
197
198 node = yanknode(&plan);
199 while (node->type == N_NOT) {
200 ++notlevel;
201 node = yanknode(&plan);
202 }
203 if (node == NULL)
204 errx(1, "!: no following expression");
205 if (node->type == N_OR)
206 errx(1, "!: nothing between ! and -o");
207 if (notlevel % 2 != 1)
208 next = node;
209 else
210 next->p_data[0] = node;
211 }
212
213 /* add the node to our result plan */
214 if (result == NULL)
215 tail = result = next;
216 else {
217 tail->next = next;
218 tail = next;
219 }
220 tail->next = NULL;
221 }
222 return (result);
223 }
224
225 /*
226 * or_squish --
227 * compresses -o expressions in our search plan.
228 */
229 PLAN *
230 or_squish(plan)
231 PLAN *plan; /* plan with ors to be squished */
232 {
233 PLAN *next; /* next node being processed */
234 PLAN *tail; /* pointer to tail of result plan */
235 PLAN *result; /* pointer to head of result plan */
236
237 tail = result = next = NULL;
238
239 while ((next = yanknode(&plan)) != NULL) {
240 /*
241 * if we encounter a ( expression ) then look for or's in
242 * the expr subplan.
243 */
244 if (next->type == N_EXPR)
245 next->p_data[0] = or_squish(next->p_data[0]);
246
247 /* if we encounter a not then look for not's in the subplan */
248 if (next->type == N_NOT)
249 next->p_data[0] = or_squish(next->p_data[0]);
250
251 /*
252 * if we encounter an or, then place our collected plan in the
253 * or's first subplan and then recursively collect the
254 * remaining stuff into the second subplan and return the or.
255 */
256 if (next->type == N_OR) {
257 if (result == NULL)
258 errx(1, "-o: no expression before -o");
259 next->p_data[0] = result;
260 next->p_data[1] = or_squish(plan);
261 if (next->p_data[1] == NULL)
262 errx(1, "-o: no expression after -o");
263 return (next);
264 }
265
266 /* add the node to our result plan */
267 if (result == NULL)
268 tail = result = next;
269 else {
270 tail->next = next;
271 tail = next;
272 }
273 tail->next = NULL;
274 }
275 return (result);
276 }
277