operator.c revision 1.8 1 /* $NetBSD: operator.c,v 1.8 2003/08/07 11:13:43 agc Exp $ */
2
3 /*-
4 * Copyright (c) 1990, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Cimarron D. Taylor of the University of California, Berkeley.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 #ifndef lint
37 #if 0
38 static char sccsid[] = "from: @(#)operator.c 8.1 (Berkeley) 6/6/93";
39 #else
40 __RCSID("$NetBSD: operator.c,v 1.8 2003/08/07 11:13:43 agc Exp $");
41 #endif
42 #endif /* not lint */
43
44 #include <sys/types.h>
45
46 #include <err.h>
47 #include <fts.h>
48 #include <stdio.h>
49
50 #include "find.h"
51
52 static PLAN *yanknode __P((PLAN **));
53 static PLAN *yankexpr __P((PLAN **));
54
55 /*
56 * yanknode --
57 * destructively removes the top from the plan
58 */
59 static PLAN *
60 yanknode(planp)
61 PLAN **planp; /* pointer to top of plan (modified) */
62 {
63 PLAN *node; /* top node removed from the plan */
64
65 if ((node = (*planp)) == NULL)
66 return (NULL);
67 (*planp) = (*planp)->next;
68 node->next = NULL;
69 return (node);
70 }
71
72 /*
73 * yankexpr --
74 * Removes one expression from the plan. This is used mainly by
75 * paren_squish. In comments below, an expression is either a
76 * simple node or a N_EXPR node containing a list of simple nodes.
77 */
78 static PLAN *
79 yankexpr(planp)
80 PLAN **planp; /* pointer to top of plan (modified) */
81 {
82 PLAN *next; /* temp node holding subexpression results */
83 PLAN *node; /* pointer to returned node or expression */
84 PLAN *tail; /* pointer to tail of subplan */
85 PLAN *subplan; /* pointer to head of ( ) expression */
86
87 /* first pull the top node from the plan */
88 if ((node = yanknode(planp)) == NULL)
89 return (NULL);
90
91 /*
92 * If the node is an '(' then we recursively slurp up expressions
93 * until we find its associated ')'. If it's a closing paren we
94 * just return it and unwind our recursion; all other nodes are
95 * complete expressions, so just return them.
96 */
97 if (node->type == N_OPENPAREN)
98 for (tail = subplan = NULL;;) {
99 if ((next = yankexpr(planp)) == NULL)
100 err(1, "(: missing closing ')'");
101 /*
102 * If we find a closing ')' we store the collected
103 * subplan in our '(' node and convert the node to
104 * a N_EXPR. The ')' we found is ignored. Otherwise,
105 * we just continue to add whatever we get to our
106 * subplan.
107 */
108 if (next->type == N_CLOSEPAREN) {
109 if (subplan == NULL)
110 errx(1, "(): empty inner expression");
111 node->p_data[0] = subplan;
112 node->type = N_EXPR;
113 node->eval = f_expr;
114 break;
115 } else {
116 if (subplan == NULL)
117 tail = subplan = next;
118 else {
119 tail->next = next;
120 tail = next;
121 }
122 tail->next = NULL;
123 }
124 }
125 return (node);
126 }
127
128 /*
129 * paren_squish --
130 * replaces "parentheisized" plans in our search plan with "expr" nodes.
131 */
132 PLAN *
133 paren_squish(plan)
134 PLAN *plan; /* plan with ( ) nodes */
135 {
136 PLAN *expr; /* pointer to next expression */
137 PLAN *tail; /* pointer to tail of result plan */
138 PLAN *result; /* pointer to head of result plan */
139
140 result = tail = NULL;
141
142 /*
143 * the basic idea is to have yankexpr do all our work and just
144 * collect it's results together.
145 */
146 while ((expr = yankexpr(&plan)) != NULL) {
147 /*
148 * if we find an unclaimed ')' it means there is a missing
149 * '(' someplace.
150 */
151 if (expr->type == N_CLOSEPAREN)
152 errx(1, "): no beginning '('");
153
154 /* add the expression to our result plan */
155 if (result == NULL)
156 tail = result = expr;
157 else {
158 tail->next = expr;
159 tail = expr;
160 }
161 tail->next = NULL;
162 }
163 return (result);
164 }
165
166 /*
167 * not_squish --
168 * compresses "!" expressions in our search plan.
169 */
170 PLAN *
171 not_squish(plan)
172 PLAN *plan; /* plan to process */
173 {
174 PLAN *next; /* next node being processed */
175 PLAN *node; /* temporary node used in N_NOT processing */
176 PLAN *tail; /* pointer to tail of result plan */
177 PLAN *result; /* pointer to head of result plan */
178
179 tail = result = next = NULL;
180
181 while ((next = yanknode(&plan)) != NULL) {
182 /*
183 * if we encounter a ( expression ) then look for nots in
184 * the expr subplan.
185 */
186 if (next->type == N_EXPR)
187 next->p_data[0] = not_squish(next->p_data[0]);
188
189 /*
190 * if we encounter a not, then snag the next node and place
191 * it in the not's subplan. As an optimization we compress
192 * several not's to zero or one not.
193 */
194 if (next->type == N_NOT) {
195 int notlevel = 1;
196
197 node = yanknode(&plan);
198 while (node != NULL && node->type == N_NOT) {
199 ++notlevel;
200 node = yanknode(&plan);
201 }
202 if (node == NULL)
203 errx(1, "!: no following expression");
204 if (node->type == N_OR)
205 errx(1, "!: nothing between ! and -o");
206 if (node->type == N_EXPR)
207 node = not_squish(node);
208 if (notlevel % 2 != 1)
209 next = node;
210 else
211 next->p_data[0] = node;
212 }
213
214 /* add the node to our result plan */
215 if (result == NULL)
216 tail = result = next;
217 else {
218 tail->next = next;
219 tail = next;
220 }
221 tail->next = NULL;
222 }
223 return (result);
224 }
225
226 /*
227 * or_squish --
228 * compresses -o expressions in our search plan.
229 */
230 PLAN *
231 or_squish(plan)
232 PLAN *plan; /* plan with ors to be squished */
233 {
234 PLAN *next; /* next node being processed */
235 PLAN *tail; /* pointer to tail of result plan */
236 PLAN *result; /* pointer to head of result plan */
237
238 tail = result = next = NULL;
239
240 while ((next = yanknode(&plan)) != NULL) {
241 /*
242 * if we encounter a ( expression ) then look for or's in
243 * the expr subplan.
244 */
245 if (next->type == N_EXPR)
246 next->p_data[0] = or_squish(next->p_data[0]);
247
248 /* if we encounter a not then look for not's in the subplan */
249 if (next->type == N_NOT)
250 next->p_data[0] = or_squish(next->p_data[0]);
251
252 /*
253 * if we encounter an or, then place our collected plan in the
254 * or's first subplan and then recursively collect the
255 * remaining stuff into the second subplan and return the or.
256 */
257 if (next->type == N_OR) {
258 if (result == NULL)
259 errx(1, "-o: no expression before -o");
260 next->p_data[0] = result;
261 next->p_data[1] = or_squish(plan);
262 if (next->p_data[1] == NULL)
263 errx(1, "-o: no expression after -o");
264 return (next);
265 }
266
267 /* add the node to our result plan */
268 if (result == NULL)
269 tail = result = next;
270 else {
271 tail->next = next;
272 tail = next;
273 }
274 tail->next = NULL;
275 }
276 return (result);
277 }
278