Home | History | Annotate | Line # | Download | only in make
hash.c revision 1.1
      1 /*
      2  * Copyright (c) 1988, 1989, 1990 The Regents of the University of California.
      3  * Copyright (c) 1988, 1989 by Adam de Boor
      4  * Copyright (c) 1989 by Berkeley Softworks
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to Berkeley by
      8  * Adam de Boor.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the University of
     21  *	California, Berkeley and its contributors.
     22  * 4. Neither the name of the University nor the names of its contributors
     23  *    may be used to endorse or promote products derived from this software
     24  *    without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     36  * SUCH DAMAGE.
     37  */
     38 
     39 #ifndef lint
     40 static char sccsid[] = "@(#)hash.c	5.5 (Berkeley) 12/28/90";
     41 #endif /* not lint */
     42 
     43 /* hash.c --
     44  *
     45  * 	This module contains routines to manipulate a hash table.
     46  * 	See hash.h for a definition of the structure of the hash
     47  * 	table.  Hash tables grow automatically as the amount of
     48  * 	information increases.
     49  */
     50 
     51 #include "sprite.h"
     52 #include "hash.h"
     53 
     54 /*
     55  * Forward references to local procedures that are used before they're
     56  * defined:
     57  */
     58 
     59 static void		RebuildTable();
     60 
     61 /*
     62  * The following defines the ratio of # entries to # buckets
     63  * at which we rebuild the table to make it larger.
     64  */
     65 
     66 #define rebuildLimit 8
     67 
     68 /*
     69  *---------------------------------------------------------
     70  *
     71  * Hash_InitTable --
     72  *
     73  *	This routine just sets up the hash table.
     74  *
     75  * Results:
     76  *	None.
     77  *
     78  * Side Effects:
     79  *	Memory is allocated for the initial bucket area.
     80  *
     81  *---------------------------------------------------------
     82  */
     83 
     84 void
     85 Hash_InitTable(t, numBuckets)
     86 	register Hash_Table *t;	/* Structure to use to hold table. */
     87 	int numBuckets;		/* How many buckets to create for starters.
     88 				 * This number is rounded up to a power of
     89 				 * two.   If <= 0, a reasonable default is
     90 				 * chosen. The table will grow in size later
     91 				 * as needed. */
     92 {
     93 	register int i;
     94 	register struct Hash_Entry **hp;
     95 
     96 	/*
     97 	 * Round up the size to a power of two.
     98 	 */
     99 	if (numBuckets <= 0)
    100 		i = 16;
    101 	else {
    102 		for (i = 2; i < numBuckets; i <<= 1)
    103 			 /* void */ ;
    104 	}
    105 	t->numEntries = 0;
    106 	t->size = i;
    107 	t->mask = i - 1;
    108 	t->bucketPtr = hp = (struct Hash_Entry **)emalloc(sizeof(*hp) * i);
    109 	while (--i >= 0)
    110 		*hp++ = NULL;
    111 }
    112 
    113 /*
    114  *---------------------------------------------------------
    115  *
    116  * Hash_DeleteTable --
    117  *
    118  *	This routine removes everything from a hash table
    119  *	and frees up the memory space it occupied (except for
    120  *	the space in the Hash_Table structure).
    121  *
    122  * Results:
    123  *	None.
    124  *
    125  * Side Effects:
    126  *	Lots of memory is freed up.
    127  *
    128  *---------------------------------------------------------
    129  */
    130 
    131 void
    132 Hash_DeleteTable(t)
    133 	Hash_Table *t;
    134 {
    135 	register struct Hash_Entry **hp, *h, *nexth;
    136 	register int i;
    137 
    138 	for (hp = t->bucketPtr, i = t->size; --i >= 0;) {
    139 		for (h = *hp++; h != NULL; h = nexth) {
    140 			nexth = h->next;
    141 			free((char *)h);
    142 		}
    143 	}
    144 	free((char *)t->bucketPtr);
    145 
    146 	/*
    147 	 * Set up the hash table to cause memory faults on any future access
    148 	 * attempts until re-initialization.
    149 	 */
    150 	t->bucketPtr = NULL;
    151 }
    152 
    153 /*
    154  *---------------------------------------------------------
    155  *
    156  * Hash_FindEntry --
    157  *
    158  * 	Searches a hash table for an entry corresponding to key.
    159  *
    160  * Results:
    161  *	The return value is a pointer to the entry for key,
    162  *	if key was present in the table.  If key was not
    163  *	present, NULL is returned.
    164  *
    165  * Side Effects:
    166  *	None.
    167  *
    168  *---------------------------------------------------------
    169  */
    170 
    171 Hash_Entry *
    172 Hash_FindEntry(t, key)
    173 	Hash_Table *t;		/* Hash table to search. */
    174 	char *key;		/* A hash key. */
    175 {
    176 	register Hash_Entry *e;
    177 	register unsigned h;
    178 	register char *p;
    179 
    180 	for (h = 0, p = key; *p;)
    181 		h = (h << 5) - h + *p++;
    182 	p = key;
    183 	for (e = t->bucketPtr[h & t->mask]; e != NULL; e = e->next)
    184 		if (e->namehash == h && strcmp(e->name, p) == 0)
    185 			return (e);
    186 	return (NULL);
    187 }
    188 
    189 /*
    190  *---------------------------------------------------------
    191  *
    192  * Hash_CreateEntry --
    193  *
    194  *	Searches a hash table for an entry corresponding to
    195  *	key.  If no entry is found, then one is created.
    196  *
    197  * Results:
    198  *	The return value is a pointer to the entry.  If *newPtr
    199  *	isn't NULL, then *newPtr is filled in with TRUE if a
    200  *	new entry was created, and FALSE if an entry already existed
    201  *	with the given key.
    202  *
    203  * Side Effects:
    204  *	Memory may be allocated, and the hash buckets may be modified.
    205  *---------------------------------------------------------
    206  */
    207 
    208 Hash_Entry *
    209 Hash_CreateEntry(t, key, newPtr)
    210 	register Hash_Table *t;	/* Hash table to search. */
    211 	char *key;		/* A hash key. */
    212 	Boolean *newPtr;	/* Filled in with TRUE if new entry created,
    213 				 * FALSE otherwise. */
    214 {
    215 	register Hash_Entry *e;
    216 	register unsigned h;
    217 	register char *p;
    218 	int keylen;
    219 	struct Hash_Entry **hp;
    220 
    221 	/*
    222 	 * Hash the key.  As a side effect, save the length (strlen) of the
    223 	 * key in case we need to create the entry.
    224 	 */
    225 	for (h = 0, p = key; *p;)
    226 		h = (h << 5) - h + *p++;
    227 	keylen = p - key;
    228 	p = key;
    229 	for (e = t->bucketPtr[h & t->mask]; e != NULL; e = e->next) {
    230 		if (e->namehash == h && strcmp(e->name, p) == 0) {
    231 			if (newPtr != NULL)
    232 				*newPtr = FALSE;
    233 			return (e);
    234 		}
    235 	}
    236 
    237 	/*
    238 	 * The desired entry isn't there.  Before allocating a new entry,
    239 	 * expand the table if necessary (and this changes the resulting
    240 	 * bucket chain).
    241 	 */
    242 	if (t->numEntries >= rebuildLimit * t->size)
    243 		RebuildTable(t);
    244 	e = (Hash_Entry *) emalloc(sizeof(*e) + keylen);
    245 	hp = &t->bucketPtr[h & t->mask];
    246 	e->next = *hp;
    247 	*hp = e;
    248 	e->clientData = NULL;
    249 	e->namehash = h;
    250 	(void) strcpy(e->name, p);
    251 	t->numEntries++;
    252 
    253 	if (newPtr != NULL)
    254 		*newPtr = TRUE;
    255 	return (e);
    256 }
    257 
    258 /*
    259  *---------------------------------------------------------
    260  *
    261  * Hash_DeleteEntry --
    262  *
    263  * 	Delete the given hash table entry and free memory associated with
    264  *	it.
    265  *
    266  * Results:
    267  *	None.
    268  *
    269  * Side Effects:
    270  *	Hash chain that entry lives in is modified and memory is freed.
    271  *
    272  *---------------------------------------------------------
    273  */
    274 
    275 void
    276 Hash_DeleteEntry(t, e)
    277 	Hash_Table *t;
    278 	Hash_Entry *e;
    279 {
    280 	register Hash_Entry **hp, *p;
    281 
    282 	if (e == NULL)
    283 		return;
    284 	for (hp = &t->bucketPtr[e->namehash & t->mask];
    285 	     (p = *hp) != NULL; hp = &p->next) {
    286 		if (p == e) {
    287 			*hp = p->next;
    288 			free((char *)p);
    289 			t->numEntries--;
    290 			return;
    291 		}
    292 	}
    293 	(void) write(2, "bad call to Hash_DeleteEntry\n", 29);
    294 	abort();
    295 }
    296 
    297 /*
    298  *---------------------------------------------------------
    299  *
    300  * Hash_EnumFirst --
    301  *	This procedure sets things up for a complete search
    302  *	of all entries recorded in the hash table.
    303  *
    304  * Results:
    305  *	The return value is the address of the first entry in
    306  *	the hash table, or NULL if the table is empty.
    307  *
    308  * Side Effects:
    309  *	The information in searchPtr is initialized so that successive
    310  *	calls to Hash_Next will return successive HashEntry's
    311  *	from the table.
    312  *
    313  *---------------------------------------------------------
    314  */
    315 
    316 Hash_Entry *
    317 Hash_EnumFirst(t, searchPtr)
    318 	Hash_Table *t;			/* Table to be searched. */
    319 	register Hash_Search *searchPtr;/* Area in which to keep state
    320 					 * about search.*/
    321 {
    322 	searchPtr->tablePtr = t;
    323 	searchPtr->nextIndex = 0;
    324 	searchPtr->hashEntryPtr = NULL;
    325 	return Hash_EnumNext(searchPtr);
    326 }
    327 
    328 /*
    329  *---------------------------------------------------------
    330  *
    331  * Hash_EnumNext --
    332  *    This procedure returns successive entries in the hash table.
    333  *
    334  * Results:
    335  *    The return value is a pointer to the next HashEntry
    336  *    in the table, or NULL when the end of the table is
    337  *    reached.
    338  *
    339  * Side Effects:
    340  *    The information in searchPtr is modified to advance to the
    341  *    next entry.
    342  *
    343  *---------------------------------------------------------
    344  */
    345 
    346 Hash_Entry *
    347 Hash_EnumNext(searchPtr)
    348 	register Hash_Search *searchPtr; /* Area used to keep state about
    349 					    search. */
    350 {
    351 	register Hash_Entry *e;
    352 	Hash_Table *t = searchPtr->tablePtr;
    353 
    354 	/*
    355 	 * The hashEntryPtr field points to the most recently returned
    356 	 * entry, or is nil if we are starting up.  If not nil, we have
    357 	 * to start at the next one in the chain.
    358 	 */
    359 	e = searchPtr->hashEntryPtr;
    360 	if (e != NULL)
    361 		e = e->next;
    362 	/*
    363 	 * If the chain ran out, or if we are starting up, we need to
    364 	 * find the next nonempty chain.
    365 	 */
    366 	while (e == NULL) {
    367 		if (searchPtr->nextIndex >= t->size)
    368 			return (NULL);
    369 		e = t->bucketPtr[searchPtr->nextIndex++];
    370 	}
    371 	searchPtr->hashEntryPtr = e;
    372 	return (e);
    373 }
    374 
    375 /*
    376  *---------------------------------------------------------
    377  *
    378  * RebuildTable --
    379  *	This local routine makes a new hash table that
    380  *	is larger than the old one.
    381  *
    382  * Results:
    383  * 	None.
    384  *
    385  * Side Effects:
    386  *	The entire hash table is moved, so any bucket numbers
    387  *	from the old table are invalid.
    388  *
    389  *---------------------------------------------------------
    390  */
    391 
    392 static void
    393 RebuildTable(t)
    394 	register Hash_Table *t;
    395 {
    396 	register Hash_Entry *e, *next, **hp, **xp;
    397 	register int i, mask;
    398         register Hash_Entry **oldhp;
    399 	int oldsize;
    400 
    401 	oldhp = t->bucketPtr;
    402 	oldsize = i = t->size;
    403 	i <<= 1;
    404 	t->size = i;
    405 	t->mask = mask = i - 1;
    406 	t->bucketPtr = hp = (struct Hash_Entry **) emalloc(sizeof(*hp) * i);
    407 	while (--i >= 0)
    408 		*hp++ = NULL;
    409 	for (hp = oldhp, i = oldsize; --i >= 0;) {
    410 		for (e = *hp++; e != NULL; e = next) {
    411 			next = e->next;
    412 			xp = &t->bucketPtr[e->namehash & mask];
    413 			e->next = *xp;
    414 			*xp = e;
    415 		}
    416 	}
    417 	free((char *)oldhp);
    418 }
    419