lst.c revision 1.14 1 1.14 rillig /* $NetBSD: lst.c,v 1.14 2020/08/21 06:28:38 rillig Exp $ */
2 1.1 rillig
3 1.1 rillig /*
4 1.1 rillig * Copyright (c) 1988, 1989, 1990, 1993
5 1.1 rillig * The Regents of the University of California. All rights reserved.
6 1.1 rillig *
7 1.1 rillig * This code is derived from software contributed to Berkeley by
8 1.1 rillig * Adam de Boor.
9 1.1 rillig *
10 1.1 rillig * Redistribution and use in source and binary forms, with or without
11 1.1 rillig * modification, are permitted provided that the following conditions
12 1.1 rillig * are met:
13 1.1 rillig * 1. Redistributions of source code must retain the above copyright
14 1.1 rillig * notice, this list of conditions and the following disclaimer.
15 1.1 rillig * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 rillig * notice, this list of conditions and the following disclaimer in the
17 1.1 rillig * documentation and/or other materials provided with the distribution.
18 1.1 rillig * 3. Neither the name of the University nor the names of its contributors
19 1.1 rillig * may be used to endorse or promote products derived from this software
20 1.1 rillig * without specific prior written permission.
21 1.1 rillig *
22 1.1 rillig * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 1.1 rillig * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 rillig * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 rillig * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 1.1 rillig * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 1.1 rillig * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 1.1 rillig * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 1.1 rillig * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 1.1 rillig * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 1.1 rillig * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 1.1 rillig * SUCH DAMAGE.
33 1.1 rillig */
34 1.1 rillig
35 1.8 rillig #include <assert.h>
36 1.8 rillig
37 1.1 rillig #include "lst.h"
38 1.1 rillig #include "make_malloc.h"
39 1.1 rillig
40 1.1 rillig #ifndef MAKE_NATIVE
41 1.14 rillig static char rcsid[] = "$NetBSD: lst.c,v 1.14 2020/08/21 06:28:38 rillig Exp $";
42 1.1 rillig #else
43 1.1 rillig #include <sys/cdefs.h>
44 1.1 rillig #ifndef lint
45 1.14 rillig __RCSID("$NetBSD: lst.c,v 1.14 2020/08/21 06:28:38 rillig Exp $");
46 1.1 rillig #endif /* not lint */
47 1.1 rillig #endif
48 1.1 rillig
49 1.13 rillig struct ListNode {
50 1.4 rillig struct ListNode *prevPtr; /* previous element in list */
51 1.4 rillig struct ListNode *nextPtr; /* next in list */
52 1.7 rillig uint8_t useCount; /* Count of functions using the node.
53 1.4 rillig * node may not be deleted until count
54 1.4 rillig * goes to 0 */
55 1.7 rillig Boolean deleted; /* List node should be removed when done */
56 1.4 rillig void *datum; /* datum associated with this element */
57 1.13 rillig };
58 1.1 rillig
59 1.1 rillig typedef enum {
60 1.1 rillig Head, Middle, Tail, Unknown
61 1.1 rillig } Where;
62 1.1 rillig
63 1.13 rillig struct List {
64 1.13 rillig LstNode firstPtr; /* first node in list */
65 1.13 rillig LstNode lastPtr; /* last node in list */
66 1.1 rillig /*
67 1.1 rillig * fields for sequential access
68 1.1 rillig */
69 1.4 rillig Where atEnd; /* Where in the list the last access was */
70 1.4 rillig Boolean isOpen; /* true if list has been Lst_Open'ed */
71 1.13 rillig LstNode curPtr; /* current node, if open. NULL if
72 1.4 rillig * *just* opened */
73 1.13 rillig LstNode prevPtr; /* Previous node, if open. Used by
74 1.4 rillig * Lst_Remove */
75 1.13 rillig };
76 1.1 rillig
77 1.14 rillig /* Return TRUE if the list is valid. */
78 1.2 rillig static Boolean
79 1.2 rillig LstValid(Lst l)
80 1.2 rillig {
81 1.2 rillig return l != NULL;
82 1.2 rillig }
83 1.1 rillig
84 1.14 rillig /* Return TRUE if the list node is valid. */
85 1.2 rillig static Boolean
86 1.2 rillig LstNodeValid(LstNode ln)
87 1.2 rillig {
88 1.2 rillig return ln != NULL;
89 1.2 rillig }
90 1.1 rillig
91 1.12 rillig static LstNode
92 1.12 rillig LstNodeNew(void *datum)
93 1.12 rillig {
94 1.13 rillig LstNode ln = bmake_malloc(sizeof *ln);
95 1.12 rillig /* prevPtr will be initialized by the calling code. */
96 1.12 rillig /* nextPtr will be initialized by the calling code. */
97 1.12 rillig ln->useCount = 0;
98 1.12 rillig ln->deleted = FALSE;
99 1.12 rillig ln->datum = datum;
100 1.12 rillig return ln;
101 1.12 rillig }
102 1.12 rillig
103 1.14 rillig /* Return TRUE if the list is empty. */
104 1.2 rillig static Boolean
105 1.2 rillig LstIsEmpty(Lst l)
106 1.2 rillig {
107 1.2 rillig return l->firstPtr == NULL;
108 1.2 rillig }
109 1.1 rillig
110 1.5 rillig /* Create and initialize a new, empty list. */
111 1.1 rillig Lst
112 1.5 rillig Lst_Init(void)
113 1.1 rillig {
114 1.13 rillig Lst nList = bmake_malloc(sizeof *nList);
115 1.1 rillig
116 1.1 rillig nList->firstPtr = NULL;
117 1.1 rillig nList->lastPtr = NULL;
118 1.1 rillig nList->isOpen = FALSE;
119 1.1 rillig nList->atEnd = Unknown;
120 1.1 rillig
121 1.1 rillig return nList;
122 1.1 rillig }
123 1.1 rillig
124 1.14 rillig /* Duplicate an entire list, usually by copying the datum pointers.
125 1.14 rillig * If copyProc is given, that function is used to create the new datum from the
126 1.14 rillig * old datum, usually by creating a copy of it.
127 1.14 rillig * Return the new list, or NULL on failure. */
128 1.1 rillig Lst
129 1.1 rillig Lst_Duplicate(Lst l, DuplicateProc *copyProc)
130 1.1 rillig {
131 1.4 rillig Lst nl;
132 1.13 rillig LstNode ln;
133 1.13 rillig Lst list = l;
134 1.1 rillig
135 1.4 rillig if (!LstValid(l)) {
136 1.1 rillig return NULL;
137 1.1 rillig }
138 1.1 rillig
139 1.5 rillig nl = Lst_Init();
140 1.1 rillig if (nl == NULL) {
141 1.1 rillig return NULL;
142 1.1 rillig }
143 1.1 rillig
144 1.1 rillig ln = list->firstPtr;
145 1.1 rillig while (ln != NULL) {
146 1.1 rillig if (copyProc != NULL) {
147 1.1 rillig if (Lst_AtEnd(nl, copyProc(ln->datum)) == FAILURE) {
148 1.1 rillig return NULL;
149 1.1 rillig }
150 1.1 rillig } else if (Lst_AtEnd(nl, ln->datum) == FAILURE) {
151 1.1 rillig return NULL;
152 1.1 rillig }
153 1.1 rillig
154 1.5 rillig ln = ln->nextPtr;
155 1.1 rillig }
156 1.1 rillig
157 1.1 rillig return nl;
158 1.1 rillig }
159 1.1 rillig
160 1.14 rillig /* Destroy a list and free all its resources. If the freeProc is given, it is
161 1.14 rillig * called with the datum from each node in turn before the node is freed. */
162 1.1 rillig void
163 1.1 rillig Lst_Destroy(Lst list, FreeProc *freeProc)
164 1.1 rillig {
165 1.13 rillig LstNode ln;
166 1.13 rillig LstNode tln = NULL;
167 1.1 rillig
168 1.1 rillig if (list == NULL)
169 1.1 rillig return;
170 1.1 rillig
171 1.1 rillig /* To ease scanning */
172 1.1 rillig if (list->lastPtr != NULL)
173 1.1 rillig list->lastPtr->nextPtr = NULL;
174 1.1 rillig else {
175 1.1 rillig free(list);
176 1.1 rillig return;
177 1.1 rillig }
178 1.1 rillig
179 1.1 rillig if (freeProc) {
180 1.1 rillig for (ln = list->firstPtr; ln != NULL; ln = tln) {
181 1.4 rillig tln = ln->nextPtr;
182 1.4 rillig freeProc(ln->datum);
183 1.4 rillig free(ln);
184 1.1 rillig }
185 1.1 rillig } else {
186 1.1 rillig for (ln = list->firstPtr; ln != NULL; ln = tln) {
187 1.4 rillig tln = ln->nextPtr;
188 1.4 rillig free(ln);
189 1.1 rillig }
190 1.1 rillig }
191 1.1 rillig
192 1.1 rillig free(list);
193 1.1 rillig }
194 1.1 rillig
195 1.1 rillig /*
196 1.1 rillig * Functions to modify a list
197 1.1 rillig */
198 1.1 rillig
199 1.14 rillig /* Insert a new node with the given piece of data before the given node in the
200 1.14 rillig * given list. */
201 1.1 rillig ReturnStatus
202 1.1 rillig Lst_InsertBefore(Lst l, LstNode ln, void *d)
203 1.1 rillig {
204 1.13 rillig LstNode nLNode; /* new lnode for d */
205 1.13 rillig LstNode lNode = ln;
206 1.13 rillig Lst list = l;
207 1.1 rillig
208 1.1 rillig
209 1.1 rillig /*
210 1.1 rillig * check validity of arguments
211 1.1 rillig */
212 1.4 rillig if (LstValid(l) && (LstIsEmpty(l) && ln == NULL))
213 1.1 rillig goto ok;
214 1.1 rillig
215 1.4 rillig if (!LstValid(l) || LstIsEmpty(l) || !LstNodeValid(ln)) {
216 1.1 rillig return FAILURE;
217 1.1 rillig }
218 1.1 rillig
219 1.1 rillig ok:
220 1.12 rillig nLNode = LstNodeNew(d);
221 1.1 rillig
222 1.1 rillig if (ln == NULL) {
223 1.5 rillig nLNode->prevPtr = nLNode->nextPtr = NULL;
224 1.1 rillig list->firstPtr = list->lastPtr = nLNode;
225 1.1 rillig } else {
226 1.1 rillig nLNode->prevPtr = lNode->prevPtr;
227 1.1 rillig nLNode->nextPtr = lNode;
228 1.1 rillig
229 1.1 rillig if (nLNode->prevPtr != NULL) {
230 1.1 rillig nLNode->prevPtr->nextPtr = nLNode;
231 1.1 rillig }
232 1.1 rillig lNode->prevPtr = nLNode;
233 1.1 rillig
234 1.1 rillig if (lNode == list->firstPtr) {
235 1.1 rillig list->firstPtr = nLNode;
236 1.1 rillig }
237 1.1 rillig }
238 1.1 rillig
239 1.1 rillig return SUCCESS;
240 1.1 rillig }
241 1.1 rillig
242 1.14 rillig /* Insert a new node with the given piece of data after the given node in the
243 1.14 rillig * given list. */
244 1.1 rillig ReturnStatus
245 1.1 rillig Lst_InsertAfter(Lst l, LstNode ln, void *d)
246 1.1 rillig {
247 1.13 rillig Lst list;
248 1.13 rillig LstNode lNode;
249 1.13 rillig LstNode nLNode;
250 1.1 rillig
251 1.4 rillig if (LstValid(l) && (ln == NULL && LstIsEmpty(l))) {
252 1.1 rillig goto ok;
253 1.1 rillig }
254 1.1 rillig
255 1.4 rillig if (!LstValid(l) || LstIsEmpty(l) || !LstNodeValid(ln)) {
256 1.1 rillig return FAILURE;
257 1.1 rillig }
258 1.1 rillig ok:
259 1.1 rillig
260 1.1 rillig list = l;
261 1.1 rillig lNode = ln;
262 1.1 rillig
263 1.12 rillig nLNode = LstNodeNew(d);
264 1.1 rillig
265 1.1 rillig if (lNode == NULL) {
266 1.5 rillig nLNode->nextPtr = nLNode->prevPtr = NULL;
267 1.1 rillig list->firstPtr = list->lastPtr = nLNode;
268 1.1 rillig } else {
269 1.1 rillig nLNode->prevPtr = lNode;
270 1.1 rillig nLNode->nextPtr = lNode->nextPtr;
271 1.1 rillig
272 1.1 rillig lNode->nextPtr = nLNode;
273 1.1 rillig if (nLNode->nextPtr != NULL) {
274 1.1 rillig nLNode->nextPtr->prevPtr = nLNode;
275 1.1 rillig }
276 1.1 rillig
277 1.1 rillig if (lNode == list->lastPtr) {
278 1.1 rillig list->lastPtr = nLNode;
279 1.1 rillig }
280 1.1 rillig }
281 1.1 rillig
282 1.1 rillig return SUCCESS;
283 1.1 rillig }
284 1.1 rillig
285 1.14 rillig /* Add a piece of data at the front of the given list. */
286 1.1 rillig ReturnStatus
287 1.1 rillig Lst_AtFront(Lst l, void *d)
288 1.1 rillig {
289 1.4 rillig LstNode front;
290 1.1 rillig
291 1.1 rillig front = Lst_First(l);
292 1.1 rillig return Lst_InsertBefore(l, front, d);
293 1.1 rillig }
294 1.1 rillig
295 1.14 rillig /* Add a piece of data at the end of the given list. */
296 1.1 rillig ReturnStatus
297 1.1 rillig Lst_AtEnd(Lst l, void *d)
298 1.1 rillig {
299 1.4 rillig LstNode end;
300 1.1 rillig
301 1.1 rillig end = Lst_Last(l);
302 1.1 rillig return Lst_InsertAfter(l, end, d);
303 1.1 rillig }
304 1.1 rillig
305 1.8 rillig /* Remove the given node from the given list.
306 1.8 rillig * The datum stored in the node must be freed by the caller, if necessary. */
307 1.8 rillig void
308 1.8 rillig Lst_RemoveS(Lst l, LstNode ln)
309 1.1 rillig {
310 1.13 rillig Lst list = l;
311 1.13 rillig LstNode lNode = ln;
312 1.1 rillig
313 1.8 rillig assert(LstValid(l));
314 1.8 rillig assert(LstNodeValid(ln));
315 1.1 rillig
316 1.1 rillig /*
317 1.1 rillig * unlink it from the list
318 1.1 rillig */
319 1.1 rillig if (lNode->nextPtr != NULL) {
320 1.1 rillig lNode->nextPtr->prevPtr = lNode->prevPtr;
321 1.1 rillig }
322 1.1 rillig if (lNode->prevPtr != NULL) {
323 1.1 rillig lNode->prevPtr->nextPtr = lNode->nextPtr;
324 1.1 rillig }
325 1.1 rillig
326 1.1 rillig /*
327 1.1 rillig * if either the firstPtr or lastPtr of the list point to this node,
328 1.1 rillig * adjust them accordingly
329 1.1 rillig */
330 1.1 rillig if (list->firstPtr == lNode) {
331 1.1 rillig list->firstPtr = lNode->nextPtr;
332 1.1 rillig }
333 1.1 rillig if (list->lastPtr == lNode) {
334 1.1 rillig list->lastPtr = lNode->prevPtr;
335 1.1 rillig }
336 1.1 rillig
337 1.1 rillig /*
338 1.1 rillig * Sequential access stuff. If the node we're removing is the current
339 1.1 rillig * node in the list, reset the current node to the previous one. If the
340 1.1 rillig * previous one was non-existent (prevPtr == NULL), we set the
341 1.1 rillig * end to be Unknown, since it is.
342 1.1 rillig */
343 1.1 rillig if (list->isOpen && (list->curPtr == lNode)) {
344 1.1 rillig list->curPtr = list->prevPtr;
345 1.1 rillig if (list->curPtr == NULL) {
346 1.1 rillig list->atEnd = Unknown;
347 1.1 rillig }
348 1.1 rillig }
349 1.1 rillig
350 1.1 rillig /*
351 1.1 rillig * note that the datum is unmolested. The caller must free it as
352 1.1 rillig * necessary and as expected.
353 1.1 rillig */
354 1.1 rillig if (lNode->useCount == 0) {
355 1.1 rillig free(ln);
356 1.1 rillig } else {
357 1.7 rillig lNode->deleted = TRUE;
358 1.1 rillig }
359 1.1 rillig }
360 1.1 rillig
361 1.8 rillig /* Replace the datum in the given node with the new datum. */
362 1.8 rillig void
363 1.8 rillig Lst_ReplaceS(LstNode ln, void *d)
364 1.1 rillig {
365 1.8 rillig ln->datum = d;
366 1.1 rillig }
367 1.1 rillig
368 1.1 rillig
369 1.1 rillig /*
370 1.1 rillig * Node-specific functions
371 1.1 rillig */
372 1.1 rillig
373 1.14 rillig /* Return the first node from the given list, or NULL if the list is empty or
374 1.14 rillig * invalid. */
375 1.1 rillig LstNode
376 1.1 rillig Lst_First(Lst l)
377 1.1 rillig {
378 1.4 rillig if (!LstValid(l) || LstIsEmpty(l)) {
379 1.1 rillig return NULL;
380 1.1 rillig } else {
381 1.1 rillig return l->firstPtr;
382 1.1 rillig }
383 1.1 rillig }
384 1.1 rillig
385 1.14 rillig /* Return the last node from the given list, or NULL if the list is empty or
386 1.14 rillig * invalid. */
387 1.1 rillig LstNode
388 1.1 rillig Lst_Last(Lst l)
389 1.1 rillig {
390 1.4 rillig if (!LstValid(l) || LstIsEmpty(l)) {
391 1.1 rillig return NULL;
392 1.1 rillig } else {
393 1.1 rillig return l->lastPtr;
394 1.1 rillig }
395 1.1 rillig }
396 1.1 rillig
397 1.6 rillig /* Return the successor to the given node on its list, or NULL. */
398 1.1 rillig LstNode
399 1.1 rillig Lst_Succ(LstNode ln)
400 1.1 rillig {
401 1.1 rillig if (ln == NULL) {
402 1.1 rillig return NULL;
403 1.1 rillig } else {
404 1.1 rillig return ln->nextPtr;
405 1.1 rillig }
406 1.1 rillig }
407 1.1 rillig
408 1.6 rillig /* Return the predecessor to the given node on its list, or NULL. */
409 1.1 rillig LstNode
410 1.1 rillig Lst_Prev(LstNode ln)
411 1.1 rillig {
412 1.1 rillig if (ln == NULL) {
413 1.1 rillig return NULL;
414 1.1 rillig } else {
415 1.1 rillig return ln->prevPtr;
416 1.1 rillig }
417 1.1 rillig }
418 1.1 rillig
419 1.14 rillig /* Return the datum stored in the given node, or NULL if the node is invalid. */
420 1.1 rillig void *
421 1.1 rillig Lst_Datum(LstNode ln)
422 1.1 rillig {
423 1.1 rillig if (ln != NULL) {
424 1.1 rillig return ln->datum;
425 1.1 rillig } else {
426 1.1 rillig return NULL;
427 1.1 rillig }
428 1.1 rillig }
429 1.1 rillig
430 1.1 rillig
431 1.1 rillig /*
432 1.1 rillig * Functions for entire lists
433 1.1 rillig */
434 1.1 rillig
435 1.14 rillig /* Return TRUE if the given list is empty or invalid. */
436 1.1 rillig Boolean
437 1.1 rillig Lst_IsEmpty(Lst l)
438 1.1 rillig {
439 1.1 rillig return !LstValid(l) || LstIsEmpty(l);
440 1.1 rillig }
441 1.1 rillig
442 1.14 rillig /* Return the first node from the given list for which the given comparison
443 1.14 rillig * function returns 0, or NULL if none of the nodes matches. */
444 1.1 rillig LstNode
445 1.1 rillig Lst_Find(Lst l, const void *d, int (*cProc)(const void *, const void *))
446 1.1 rillig {
447 1.1 rillig return Lst_FindFrom(l, Lst_First(l), d, cProc);
448 1.1 rillig }
449 1.1 rillig
450 1.14 rillig /* Return the first node from the given list, starting at the given node, for
451 1.14 rillig * which the given comparison function returns 0, or NULL if none of the nodes
452 1.14 rillig * matches. */
453 1.1 rillig LstNode
454 1.1 rillig Lst_FindFrom(Lst l, LstNode ln, const void *d,
455 1.1 rillig int (*cProc)(const void *, const void *))
456 1.1 rillig {
457 1.13 rillig LstNode tln;
458 1.1 rillig
459 1.4 rillig if (!LstValid(l) || LstIsEmpty(l) || !LstNodeValid(ln)) {
460 1.1 rillig return NULL;
461 1.1 rillig }
462 1.1 rillig
463 1.1 rillig tln = ln;
464 1.1 rillig
465 1.1 rillig do {
466 1.1 rillig if ((*cProc)(tln->datum, d) == 0)
467 1.1 rillig return tln;
468 1.1 rillig tln = tln->nextPtr;
469 1.1 rillig } while (tln != ln && tln != NULL);
470 1.1 rillig
471 1.1 rillig return NULL;
472 1.1 rillig }
473 1.1 rillig
474 1.14 rillig /* Return the first node that contains the given datum, or NULL. */
475 1.1 rillig LstNode
476 1.1 rillig Lst_Member(Lst l, void *d)
477 1.1 rillig {
478 1.13 rillig Lst list = l;
479 1.13 rillig LstNode lNode;
480 1.1 rillig
481 1.1 rillig if (list == NULL) {
482 1.1 rillig return NULL;
483 1.1 rillig }
484 1.1 rillig lNode = list->firstPtr;
485 1.1 rillig if (lNode == NULL) {
486 1.1 rillig return NULL;
487 1.1 rillig }
488 1.1 rillig
489 1.1 rillig do {
490 1.1 rillig if (lNode->datum == d) {
491 1.1 rillig return lNode;
492 1.1 rillig }
493 1.1 rillig lNode = lNode->nextPtr;
494 1.1 rillig } while (lNode != NULL && lNode != list->firstPtr);
495 1.1 rillig
496 1.1 rillig return NULL;
497 1.1 rillig }
498 1.1 rillig
499 1.14 rillig /* Apply the given function to each element of the given list. The function
500 1.14 rillig * should return 0 if traversal should continue and non-zero if it should
501 1.14 rillig * abort. */
502 1.1 rillig int
503 1.1 rillig Lst_ForEach(Lst l, int (*proc)(void *, void *), void *d)
504 1.1 rillig {
505 1.1 rillig return Lst_ForEachFrom(l, Lst_First(l), proc, d);
506 1.1 rillig }
507 1.1 rillig
508 1.14 rillig /* Apply the given function to each element of the given list, starting from
509 1.14 rillig * the given node. The function should return 0 if traversal should continue,
510 1.14 rillig * and non-zero if it should abort. */
511 1.1 rillig int
512 1.1 rillig Lst_ForEachFrom(Lst l, LstNode ln, int (*proc)(void *, void *),
513 1.1 rillig void *d)
514 1.1 rillig {
515 1.13 rillig LstNode tln = ln;
516 1.13 rillig Lst list = l;
517 1.13 rillig LstNode next;
518 1.4 rillig Boolean done;
519 1.4 rillig int result;
520 1.1 rillig
521 1.4 rillig if (!LstValid(list) || LstIsEmpty(list)) {
522 1.1 rillig return 0;
523 1.1 rillig }
524 1.1 rillig
525 1.1 rillig do {
526 1.1 rillig /*
527 1.1 rillig * Take care of having the current element deleted out from under
528 1.1 rillig * us.
529 1.1 rillig */
530 1.1 rillig
531 1.1 rillig next = tln->nextPtr;
532 1.1 rillig
533 1.1 rillig /*
534 1.1 rillig * We're done with the traversal if
535 1.1 rillig * - the next node to examine is the first in the queue or
536 1.1 rillig * doesn't exist and
537 1.1 rillig * - nothing's been added after the current node (check this
538 1.1 rillig * after proc() has been called).
539 1.1 rillig */
540 1.1 rillig done = (next == NULL || next == list->firstPtr);
541 1.1 rillig
542 1.4 rillig (void)tln->useCount++;
543 1.4 rillig result = (*proc)(tln->datum, d);
544 1.4 rillig (void)tln->useCount--;
545 1.1 rillig
546 1.1 rillig /*
547 1.1 rillig * Now check whether a node has been added.
548 1.1 rillig * Note: this doesn't work if this node was deleted before
549 1.1 rillig * the new node was added.
550 1.1 rillig */
551 1.1 rillig if (next != tln->nextPtr) {
552 1.4 rillig next = tln->nextPtr;
553 1.4 rillig done = 0;
554 1.1 rillig }
555 1.1 rillig
556 1.7 rillig if (tln->deleted) {
557 1.1 rillig free((char *)tln);
558 1.1 rillig }
559 1.1 rillig tln = next;
560 1.1 rillig } while (!result && !LstIsEmpty(list) && !done);
561 1.1 rillig
562 1.1 rillig return result;
563 1.1 rillig }
564 1.1 rillig
565 1.14 rillig /* Concatenate two lists. New nodes are created to hold the data elements,
566 1.14 rillig * if specified, but the data themselves are not copied. If the data
567 1.14 rillig * should be duplicated to avoid confusion with another list, the Lst_Duplicate
568 1.14 rillig * function should be called first. If LST_CONCLINK is specified, the second
569 1.14 rillig * list is destroyed since its pointers have been corrupted and the list is no
570 1.14 rillig * longer usable.
571 1.1 rillig *
572 1.1 rillig * Input:
573 1.1 rillig * l1 The list to which l2 is to be appended
574 1.1 rillig * l2 The list to append to l1
575 1.14 rillig * flags LST_CONCNEW if the list nodes should be duplicated
576 1.14 rillig * LST_CONCLINK if the list nodes should just be relinked
577 1.1 rillig */
578 1.1 rillig ReturnStatus
579 1.1 rillig Lst_Concat(Lst l1, Lst l2, int flags)
580 1.1 rillig {
581 1.13 rillig LstNode ln; /* original LstNode */
582 1.13 rillig LstNode nln; /* new LstNode */
583 1.13 rillig LstNode last; /* the last element in the list. Keeps
584 1.1 rillig * bookkeeping until the end */
585 1.13 rillig Lst list1 = l1;
586 1.13 rillig Lst list2 = l2;
587 1.1 rillig
588 1.4 rillig if (!LstValid(l1) || !LstValid(l2)) {
589 1.1 rillig return FAILURE;
590 1.1 rillig }
591 1.1 rillig
592 1.1 rillig if (flags == LST_CONCLINK) {
593 1.1 rillig if (list2->firstPtr != NULL) {
594 1.1 rillig /*
595 1.1 rillig * So long as the second list isn't empty, we just link the
596 1.1 rillig * first element of the second list to the last element of the
597 1.1 rillig * first list. If the first list isn't empty, we then link the
598 1.1 rillig * last element of the list to the first element of the second list
599 1.1 rillig * The last element of the second list, if it exists, then becomes
600 1.1 rillig * the last element of the first list.
601 1.1 rillig */
602 1.1 rillig list2->firstPtr->prevPtr = list1->lastPtr;
603 1.1 rillig if (list1->lastPtr != NULL) {
604 1.3 rillig list1->lastPtr->nextPtr = list2->firstPtr;
605 1.1 rillig } else {
606 1.1 rillig list1->firstPtr = list2->firstPtr;
607 1.1 rillig }
608 1.1 rillig list1->lastPtr = list2->lastPtr;
609 1.1 rillig }
610 1.1 rillig free(l2);
611 1.1 rillig } else if (list2->firstPtr != NULL) {
612 1.1 rillig /*
613 1.1 rillig * We set the nextPtr of the last element of list 2 to be nil to make
614 1.1 rillig * the loop less difficult. The loop simply goes through the entire
615 1.1 rillig * second list creating new LstNodes and filling in the nextPtr, and
616 1.1 rillig * prevPtr to fit into l1 and its datum field from the
617 1.1 rillig * datum field of the corresponding element in l2. The 'last' node
618 1.1 rillig * follows the last of the new nodes along until the entire l2 has
619 1.1 rillig * been appended. Only then does the bookkeeping catch up with the
620 1.1 rillig * changes. During the first iteration of the loop, if 'last' is nil,
621 1.1 rillig * the first list must have been empty so the newly-created node is
622 1.1 rillig * made the first node of the list.
623 1.1 rillig */
624 1.1 rillig list2->lastPtr->nextPtr = NULL;
625 1.1 rillig for (last = list1->lastPtr, ln = list2->firstPtr;
626 1.1 rillig ln != NULL;
627 1.1 rillig ln = ln->nextPtr)
628 1.1 rillig {
629 1.12 rillig nln = LstNodeNew(ln->datum);
630 1.1 rillig if (last != NULL) {
631 1.1 rillig last->nextPtr = nln;
632 1.1 rillig } else {
633 1.1 rillig list1->firstPtr = nln;
634 1.1 rillig }
635 1.1 rillig nln->prevPtr = last;
636 1.1 rillig last = nln;
637 1.1 rillig }
638 1.1 rillig
639 1.1 rillig /*
640 1.1 rillig * Finish bookkeeping. The last new element becomes the last element
641 1.1 rillig * of list one.
642 1.1 rillig */
643 1.1 rillig list1->lastPtr = last;
644 1.5 rillig last->nextPtr = NULL;
645 1.1 rillig }
646 1.1 rillig
647 1.1 rillig return SUCCESS;
648 1.1 rillig }
649 1.1 rillig
650 1.1 rillig
651 1.1 rillig /*
652 1.1 rillig * these functions are for dealing with a list as a table, of sorts.
653 1.1 rillig * An idea of the "current element" is kept and used by all the functions
654 1.1 rillig * between Lst_Open() and Lst_Close().
655 1.1 rillig *
656 1.1 rillig * The sequential functions access the list in a slightly different way.
657 1.1 rillig * CurPtr points to their idea of the current node in the list and they
658 1.1 rillig * access the list based on it.
659 1.1 rillig */
660 1.1 rillig
661 1.14 rillig /* Open a list for sequential access. A list can still be searched, etc.,
662 1.14 rillig * without confusing these functions. */
663 1.1 rillig ReturnStatus
664 1.1 rillig Lst_Open(Lst l)
665 1.1 rillig {
666 1.4 rillig if (LstValid(l) == FALSE) {
667 1.4 rillig return FAILURE;
668 1.4 rillig }
669 1.4 rillig l->isOpen = TRUE;
670 1.4 rillig l->atEnd = LstIsEmpty(l) ? Head : Unknown;
671 1.4 rillig l->curPtr = NULL;
672 1.1 rillig
673 1.4 rillig return SUCCESS;
674 1.1 rillig }
675 1.1 rillig
676 1.10 rillig /* Open a list for sequential access. A list can still be searched, etc.,
677 1.10 rillig * without confusing these functions. */
678 1.10 rillig void
679 1.10 rillig Lst_OpenS(Lst l)
680 1.10 rillig {
681 1.10 rillig assert(LstValid(l));
682 1.10 rillig assert(!l->isOpen);
683 1.10 rillig
684 1.10 rillig l->isOpen = TRUE;
685 1.10 rillig l->atEnd = LstIsEmpty(l) ? Head : Unknown;
686 1.10 rillig l->curPtr = NULL;
687 1.10 rillig }
688 1.10 rillig
689 1.10 rillig /* Return the next node for the given list, or NULL if the end has been
690 1.10 rillig * reached. */
691 1.1 rillig LstNode
692 1.9 rillig Lst_NextS(Lst l)
693 1.1 rillig {
694 1.13 rillig LstNode tln;
695 1.13 rillig Lst list = l;
696 1.1 rillig
697 1.9 rillig assert(LstValid(l));
698 1.9 rillig assert(list->isOpen);
699 1.1 rillig
700 1.1 rillig list->prevPtr = list->curPtr;
701 1.1 rillig
702 1.1 rillig if (list->curPtr == NULL) {
703 1.1 rillig if (list->atEnd == Unknown) {
704 1.1 rillig /*
705 1.1 rillig * If we're just starting out, atEnd will be Unknown.
706 1.1 rillig * Then we want to start this thing off in the right
707 1.1 rillig * direction -- at the start with atEnd being Middle.
708 1.1 rillig */
709 1.1 rillig list->curPtr = tln = list->firstPtr;
710 1.1 rillig list->atEnd = Middle;
711 1.1 rillig } else {
712 1.1 rillig tln = NULL;
713 1.1 rillig list->atEnd = Tail;
714 1.1 rillig }
715 1.1 rillig } else {
716 1.1 rillig tln = list->curPtr->nextPtr;
717 1.1 rillig list->curPtr = tln;
718 1.1 rillig
719 1.1 rillig if (tln == list->firstPtr || tln == NULL) {
720 1.1 rillig /*
721 1.1 rillig * If back at the front, then we've hit the end...
722 1.1 rillig */
723 1.1 rillig list->atEnd = Tail;
724 1.1 rillig } else {
725 1.1 rillig /*
726 1.1 rillig * Reset to Middle if gone past first.
727 1.1 rillig */
728 1.1 rillig list->atEnd = Middle;
729 1.1 rillig }
730 1.1 rillig }
731 1.1 rillig
732 1.1 rillig return tln;
733 1.1 rillig }
734 1.1 rillig
735 1.10 rillig /* Close a list which was opened for sequential access. */
736 1.1 rillig void
737 1.10 rillig Lst_CloseS(Lst l)
738 1.1 rillig {
739 1.13 rillig Lst list = l;
740 1.1 rillig
741 1.10 rillig assert(LstValid(l));
742 1.10 rillig assert(list->isOpen);
743 1.10 rillig list->isOpen = FALSE;
744 1.10 rillig list->atEnd = Unknown;
745 1.1 rillig }
746 1.1 rillig
747 1.1 rillig
748 1.1 rillig /*
749 1.1 rillig * for using the list as a queue
750 1.1 rillig */
751 1.1 rillig
752 1.14 rillig /* Add the datum to the tail of the given list. */
753 1.1 rillig ReturnStatus
754 1.1 rillig Lst_EnQueue(Lst l, void *d)
755 1.1 rillig {
756 1.4 rillig if (LstValid(l) == FALSE) {
757 1.1 rillig return FAILURE;
758 1.1 rillig }
759 1.1 rillig
760 1.1 rillig return Lst_InsertAfter(l, Lst_Last(l), d);
761 1.1 rillig }
762 1.1 rillig
763 1.14 rillig /* Remove and return the datum at the head of the given list, or NULL if the
764 1.14 rillig * list is empty. */
765 1.1 rillig void *
766 1.1 rillig Lst_DeQueue(Lst l)
767 1.1 rillig {
768 1.1 rillig void *rd;
769 1.13 rillig LstNode tln;
770 1.1 rillig
771 1.1 rillig tln = Lst_First(l);
772 1.1 rillig if (tln == NULL) {
773 1.1 rillig return NULL;
774 1.1 rillig }
775 1.1 rillig
776 1.1 rillig rd = tln->datum;
777 1.8 rillig Lst_RemoveS(l, tln);
778 1.8 rillig return rd;
779 1.1 rillig }
780