lst.c revision 1.17 1 1.17 rillig /* $NetBSD: lst.c,v 1.17 2020/08/21 07:04:31 rillig Exp $ */
2 1.1 rillig
3 1.1 rillig /*
4 1.1 rillig * Copyright (c) 1988, 1989, 1990, 1993
5 1.1 rillig * The Regents of the University of California. All rights reserved.
6 1.1 rillig *
7 1.1 rillig * This code is derived from software contributed to Berkeley by
8 1.1 rillig * Adam de Boor.
9 1.1 rillig *
10 1.1 rillig * Redistribution and use in source and binary forms, with or without
11 1.1 rillig * modification, are permitted provided that the following conditions
12 1.1 rillig * are met:
13 1.1 rillig * 1. Redistributions of source code must retain the above copyright
14 1.1 rillig * notice, this list of conditions and the following disclaimer.
15 1.1 rillig * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 rillig * notice, this list of conditions and the following disclaimer in the
17 1.1 rillig * documentation and/or other materials provided with the distribution.
18 1.1 rillig * 3. Neither the name of the University nor the names of its contributors
19 1.1 rillig * may be used to endorse or promote products derived from this software
20 1.1 rillig * without specific prior written permission.
21 1.1 rillig *
22 1.1 rillig * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 1.1 rillig * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 rillig * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 rillig * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 1.1 rillig * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 1.1 rillig * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 1.1 rillig * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 1.1 rillig * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 1.1 rillig * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 1.1 rillig * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 1.1 rillig * SUCH DAMAGE.
33 1.1 rillig */
34 1.1 rillig
35 1.8 rillig #include <assert.h>
36 1.8 rillig
37 1.1 rillig #include "lst.h"
38 1.1 rillig #include "make_malloc.h"
39 1.1 rillig
40 1.1 rillig #ifndef MAKE_NATIVE
41 1.17 rillig static char rcsid[] = "$NetBSD: lst.c,v 1.17 2020/08/21 07:04:31 rillig Exp $";
42 1.1 rillig #else
43 1.1 rillig #include <sys/cdefs.h>
44 1.1 rillig #ifndef lint
45 1.17 rillig __RCSID("$NetBSD: lst.c,v 1.17 2020/08/21 07:04:31 rillig Exp $");
46 1.1 rillig #endif /* not lint */
47 1.1 rillig #endif
48 1.1 rillig
49 1.13 rillig struct ListNode {
50 1.15 rillig struct ListNode *prev; /* previous element in list */
51 1.15 rillig struct ListNode *next; /* next in list */
52 1.7 rillig uint8_t useCount; /* Count of functions using the node.
53 1.4 rillig * node may not be deleted until count
54 1.4 rillig * goes to 0 */
55 1.7 rillig Boolean deleted; /* List node should be removed when done */
56 1.4 rillig void *datum; /* datum associated with this element */
57 1.13 rillig };
58 1.1 rillig
59 1.1 rillig typedef enum {
60 1.1 rillig Head, Middle, Tail, Unknown
61 1.1 rillig } Where;
62 1.1 rillig
63 1.13 rillig struct List {
64 1.15 rillig LstNode first; /* first node in list */
65 1.15 rillig LstNode last; /* last node in list */
66 1.1 rillig /*
67 1.1 rillig * fields for sequential access
68 1.1 rillig */
69 1.15 rillig Where lastAccess; /* Where in the list the last access was */
70 1.4 rillig Boolean isOpen; /* true if list has been Lst_Open'ed */
71 1.15 rillig LstNode curr; /* current node, if open. NULL if
72 1.4 rillig * *just* opened */
73 1.15 rillig LstNode prev; /* Previous node, if open. Used by
74 1.4 rillig * Lst_Remove */
75 1.13 rillig };
76 1.1 rillig
77 1.14 rillig /* Return TRUE if the list is valid. */
78 1.2 rillig static Boolean
79 1.16 rillig LstValid(Lst list)
80 1.2 rillig {
81 1.16 rillig return list != NULL;
82 1.2 rillig }
83 1.1 rillig
84 1.14 rillig /* Return TRUE if the list node is valid. */
85 1.2 rillig static Boolean
86 1.16 rillig LstNodeValid(LstNode node)
87 1.2 rillig {
88 1.16 rillig return node != NULL;
89 1.2 rillig }
90 1.1 rillig
91 1.12 rillig static LstNode
92 1.12 rillig LstNodeNew(void *datum)
93 1.12 rillig {
94 1.16 rillig LstNode node = bmake_malloc(sizeof *node);
95 1.15 rillig /* prev will be initialized by the calling code. */
96 1.15 rillig /* next will be initialized by the calling code. */
97 1.16 rillig node->useCount = 0;
98 1.16 rillig node->deleted = FALSE;
99 1.16 rillig node->datum = datum;
100 1.16 rillig return node;
101 1.12 rillig }
102 1.12 rillig
103 1.14 rillig /* Return TRUE if the list is empty. */
104 1.2 rillig static Boolean
105 1.16 rillig LstIsEmpty(Lst list)
106 1.2 rillig {
107 1.16 rillig return list->first == NULL;
108 1.2 rillig }
109 1.1 rillig
110 1.5 rillig /* Create and initialize a new, empty list. */
111 1.1 rillig Lst
112 1.5 rillig Lst_Init(void)
113 1.1 rillig {
114 1.16 rillig Lst list = bmake_malloc(sizeof *list);
115 1.1 rillig
116 1.16 rillig list->first = NULL;
117 1.16 rillig list->last = NULL;
118 1.16 rillig list->isOpen = FALSE;
119 1.16 rillig list->lastAccess = Unknown;
120 1.1 rillig
121 1.16 rillig return list;
122 1.1 rillig }
123 1.1 rillig
124 1.14 rillig /* Duplicate an entire list, usually by copying the datum pointers.
125 1.14 rillig * If copyProc is given, that function is used to create the new datum from the
126 1.14 rillig * old datum, usually by creating a copy of it.
127 1.14 rillig * Return the new list, or NULL on failure. */
128 1.1 rillig Lst
129 1.16 rillig Lst_Duplicate(Lst list, DuplicateProc *copyProc)
130 1.1 rillig {
131 1.16 rillig Lst newList;
132 1.16 rillig LstNode node;
133 1.1 rillig
134 1.16 rillig if (!LstValid(list)) {
135 1.1 rillig return NULL;
136 1.1 rillig }
137 1.1 rillig
138 1.16 rillig newList = Lst_Init();
139 1.1 rillig
140 1.16 rillig node = list->first;
141 1.16 rillig while (node != NULL) {
142 1.1 rillig if (copyProc != NULL) {
143 1.16 rillig if (Lst_AtEnd(newList, copyProc(node->datum)) == FAILURE) {
144 1.1 rillig return NULL;
145 1.1 rillig }
146 1.16 rillig } else if (Lst_AtEnd(newList, node->datum) == FAILURE) {
147 1.1 rillig return NULL;
148 1.1 rillig }
149 1.1 rillig
150 1.16 rillig node = node->next;
151 1.1 rillig }
152 1.1 rillig
153 1.16 rillig return newList;
154 1.1 rillig }
155 1.1 rillig
156 1.14 rillig /* Destroy a list and free all its resources. If the freeProc is given, it is
157 1.14 rillig * called with the datum from each node in turn before the node is freed. */
158 1.1 rillig void
159 1.1 rillig Lst_Destroy(Lst list, FreeProc *freeProc)
160 1.1 rillig {
161 1.16 rillig LstNode node;
162 1.16 rillig LstNode next = NULL;
163 1.1 rillig
164 1.1 rillig if (list == NULL)
165 1.1 rillig return;
166 1.1 rillig
167 1.1 rillig /* To ease scanning */
168 1.15 rillig if (list->last != NULL)
169 1.15 rillig list->last->next = NULL;
170 1.1 rillig else {
171 1.1 rillig free(list);
172 1.1 rillig return;
173 1.1 rillig }
174 1.1 rillig
175 1.1 rillig if (freeProc) {
176 1.16 rillig for (node = list->first; node != NULL; node = next) {
177 1.16 rillig next = node->next;
178 1.16 rillig freeProc(node->datum);
179 1.16 rillig free(node);
180 1.1 rillig }
181 1.1 rillig } else {
182 1.16 rillig for (node = list->first; node != NULL; node = next) {
183 1.16 rillig next = node->next;
184 1.16 rillig free(node);
185 1.1 rillig }
186 1.1 rillig }
187 1.1 rillig
188 1.1 rillig free(list);
189 1.1 rillig }
190 1.1 rillig
191 1.1 rillig /*
192 1.1 rillig * Functions to modify a list
193 1.1 rillig */
194 1.1 rillig
195 1.14 rillig /* Insert a new node with the given piece of data before the given node in the
196 1.14 rillig * given list. */
197 1.1 rillig ReturnStatus
198 1.16 rillig Lst_InsertBefore(Lst list, LstNode node, void *datum)
199 1.1 rillig {
200 1.16 rillig LstNode newNode;
201 1.1 rillig
202 1.1 rillig /*
203 1.1 rillig * check validity of arguments
204 1.1 rillig */
205 1.16 rillig if (LstValid(list) && (LstIsEmpty(list) && node == NULL))
206 1.1 rillig goto ok;
207 1.1 rillig
208 1.16 rillig if (!LstValid(list) || LstIsEmpty(list) || !LstNodeValid(node)) {
209 1.1 rillig return FAILURE;
210 1.1 rillig }
211 1.1 rillig
212 1.1 rillig ok:
213 1.16 rillig newNode = LstNodeNew(datum);
214 1.1 rillig
215 1.16 rillig if (node == NULL) {
216 1.16 rillig newNode->prev = newNode->next = NULL;
217 1.16 rillig list->first = list->last = newNode;
218 1.1 rillig } else {
219 1.16 rillig newNode->prev = node->prev;
220 1.16 rillig newNode->next = node;
221 1.1 rillig
222 1.16 rillig if (newNode->prev != NULL) {
223 1.16 rillig newNode->prev->next = newNode;
224 1.1 rillig }
225 1.16 rillig node->prev = newNode;
226 1.1 rillig
227 1.16 rillig if (node == list->first) {
228 1.16 rillig list->first = newNode;
229 1.1 rillig }
230 1.1 rillig }
231 1.1 rillig
232 1.1 rillig return SUCCESS;
233 1.1 rillig }
234 1.1 rillig
235 1.14 rillig /* Insert a new node with the given piece of data after the given node in the
236 1.14 rillig * given list. */
237 1.1 rillig ReturnStatus
238 1.16 rillig Lst_InsertAfter(Lst list, LstNode node, void *datum)
239 1.1 rillig {
240 1.17 rillig LstNode newNode;
241 1.1 rillig
242 1.16 rillig if (LstValid(list) && (node == NULL && LstIsEmpty(list))) {
243 1.1 rillig goto ok;
244 1.1 rillig }
245 1.1 rillig
246 1.16 rillig if (!LstValid(list) || LstIsEmpty(list) || !LstNodeValid(node)) {
247 1.1 rillig return FAILURE;
248 1.1 rillig }
249 1.1 rillig ok:
250 1.1 rillig
251 1.17 rillig newNode = LstNodeNew(datum);
252 1.1 rillig
253 1.16 rillig if (node == NULL) {
254 1.17 rillig newNode->next = newNode->prev = NULL;
255 1.17 rillig list->first = list->last = newNode;
256 1.1 rillig } else {
257 1.17 rillig newNode->prev = node;
258 1.17 rillig newNode->next = node->next;
259 1.1 rillig
260 1.17 rillig node->next = newNode;
261 1.17 rillig if (newNode->next != NULL) {
262 1.17 rillig newNode->next->prev = newNode;
263 1.1 rillig }
264 1.1 rillig
265 1.16 rillig if (node == list->last) {
266 1.17 rillig list->last = newNode;
267 1.1 rillig }
268 1.1 rillig }
269 1.1 rillig
270 1.1 rillig return SUCCESS;
271 1.1 rillig }
272 1.1 rillig
273 1.14 rillig /* Add a piece of data at the front of the given list. */
274 1.1 rillig ReturnStatus
275 1.16 rillig Lst_AtFront(Lst list, void *datum)
276 1.1 rillig {
277 1.16 rillig LstNode front = Lst_First(list);
278 1.16 rillig return Lst_InsertBefore(list, front, datum);
279 1.1 rillig }
280 1.1 rillig
281 1.14 rillig /* Add a piece of data at the end of the given list. */
282 1.1 rillig ReturnStatus
283 1.16 rillig Lst_AtEnd(Lst list, void *datum)
284 1.1 rillig {
285 1.16 rillig LstNode end = Lst_Last(list);
286 1.16 rillig return Lst_InsertAfter(list, end, datum);
287 1.1 rillig }
288 1.1 rillig
289 1.8 rillig /* Remove the given node from the given list.
290 1.8 rillig * The datum stored in the node must be freed by the caller, if necessary. */
291 1.8 rillig void
292 1.16 rillig Lst_RemoveS(Lst list, LstNode node)
293 1.1 rillig {
294 1.16 rillig assert(LstValid(list));
295 1.16 rillig assert(LstNodeValid(node));
296 1.1 rillig
297 1.1 rillig /*
298 1.1 rillig * unlink it from the list
299 1.1 rillig */
300 1.16 rillig if (node->next != NULL) {
301 1.16 rillig node->next->prev = node->prev;
302 1.1 rillig }
303 1.16 rillig if (node->prev != NULL) {
304 1.16 rillig node->prev->next = node->next;
305 1.1 rillig }
306 1.1 rillig
307 1.1 rillig /*
308 1.15 rillig * if either the first or last of the list point to this node,
309 1.1 rillig * adjust them accordingly
310 1.1 rillig */
311 1.16 rillig if (list->first == node) {
312 1.16 rillig list->first = node->next;
313 1.1 rillig }
314 1.16 rillig if (list->last == node) {
315 1.16 rillig list->last = node->prev;
316 1.1 rillig }
317 1.1 rillig
318 1.1 rillig /*
319 1.1 rillig * Sequential access stuff. If the node we're removing is the current
320 1.1 rillig * node in the list, reset the current node to the previous one. If the
321 1.15 rillig * previous one was non-existent (prev == NULL), we set the
322 1.1 rillig * end to be Unknown, since it is.
323 1.1 rillig */
324 1.16 rillig if (list->isOpen && list->curr == node) {
325 1.15 rillig list->curr = list->prev;
326 1.15 rillig if (list->curr == NULL) {
327 1.15 rillig list->lastAccess = Unknown;
328 1.1 rillig }
329 1.1 rillig }
330 1.1 rillig
331 1.1 rillig /*
332 1.1 rillig * note that the datum is unmolested. The caller must free it as
333 1.1 rillig * necessary and as expected.
334 1.1 rillig */
335 1.16 rillig if (node->useCount == 0) {
336 1.16 rillig free(node);
337 1.1 rillig } else {
338 1.16 rillig node->deleted = TRUE;
339 1.1 rillig }
340 1.1 rillig }
341 1.1 rillig
342 1.8 rillig /* Replace the datum in the given node with the new datum. */
343 1.8 rillig void
344 1.16 rillig Lst_ReplaceS(LstNode node, void *datum)
345 1.1 rillig {
346 1.16 rillig node->datum = datum;
347 1.1 rillig }
348 1.1 rillig
349 1.1 rillig
350 1.1 rillig /*
351 1.1 rillig * Node-specific functions
352 1.1 rillig */
353 1.1 rillig
354 1.14 rillig /* Return the first node from the given list, or NULL if the list is empty or
355 1.14 rillig * invalid. */
356 1.1 rillig LstNode
357 1.16 rillig Lst_First(Lst list)
358 1.1 rillig {
359 1.16 rillig if (!LstValid(list) || LstIsEmpty(list)) {
360 1.1 rillig return NULL;
361 1.1 rillig } else {
362 1.16 rillig return list->first;
363 1.1 rillig }
364 1.1 rillig }
365 1.1 rillig
366 1.14 rillig /* Return the last node from the given list, or NULL if the list is empty or
367 1.14 rillig * invalid. */
368 1.1 rillig LstNode
369 1.16 rillig Lst_Last(Lst list)
370 1.1 rillig {
371 1.16 rillig if (!LstValid(list) || LstIsEmpty(list)) {
372 1.1 rillig return NULL;
373 1.1 rillig } else {
374 1.16 rillig return list->last;
375 1.1 rillig }
376 1.1 rillig }
377 1.1 rillig
378 1.6 rillig /* Return the successor to the given node on its list, or NULL. */
379 1.1 rillig LstNode
380 1.16 rillig Lst_Succ(LstNode node)
381 1.1 rillig {
382 1.16 rillig if (node == NULL) {
383 1.1 rillig return NULL;
384 1.1 rillig } else {
385 1.16 rillig return node->next;
386 1.1 rillig }
387 1.1 rillig }
388 1.1 rillig
389 1.6 rillig /* Return the predecessor to the given node on its list, or NULL. */
390 1.1 rillig LstNode
391 1.16 rillig Lst_Prev(LstNode node)
392 1.1 rillig {
393 1.16 rillig if (node == NULL) {
394 1.1 rillig return NULL;
395 1.1 rillig } else {
396 1.16 rillig return node->prev;
397 1.1 rillig }
398 1.1 rillig }
399 1.1 rillig
400 1.14 rillig /* Return the datum stored in the given node, or NULL if the node is invalid. */
401 1.1 rillig void *
402 1.16 rillig Lst_Datum(LstNode node)
403 1.1 rillig {
404 1.16 rillig if (node != NULL) {
405 1.16 rillig return node->datum;
406 1.1 rillig } else {
407 1.1 rillig return NULL;
408 1.1 rillig }
409 1.1 rillig }
410 1.1 rillig
411 1.1 rillig
412 1.1 rillig /*
413 1.1 rillig * Functions for entire lists
414 1.1 rillig */
415 1.1 rillig
416 1.14 rillig /* Return TRUE if the given list is empty or invalid. */
417 1.1 rillig Boolean
418 1.16 rillig Lst_IsEmpty(Lst list)
419 1.1 rillig {
420 1.16 rillig return !LstValid(list) || LstIsEmpty(list);
421 1.1 rillig }
422 1.1 rillig
423 1.14 rillig /* Return the first node from the given list for which the given comparison
424 1.14 rillig * function returns 0, or NULL if none of the nodes matches. */
425 1.1 rillig LstNode
426 1.16 rillig Lst_Find(Lst list, const void *cmpData, int (*cmp)(const void *, const void *))
427 1.1 rillig {
428 1.16 rillig return Lst_FindFrom(list, Lst_First(list), cmpData, cmp);
429 1.1 rillig }
430 1.1 rillig
431 1.14 rillig /* Return the first node from the given list, starting at the given node, for
432 1.14 rillig * which the given comparison function returns 0, or NULL if none of the nodes
433 1.14 rillig * matches. */
434 1.1 rillig LstNode
435 1.16 rillig Lst_FindFrom(Lst list, LstNode node, const void *cmpData,
436 1.16 rillig int (*cmp)(const void *, const void *))
437 1.1 rillig {
438 1.13 rillig LstNode tln;
439 1.1 rillig
440 1.16 rillig if (!LstValid(list) || LstIsEmpty(list) || !LstNodeValid(node)) {
441 1.1 rillig return NULL;
442 1.1 rillig }
443 1.1 rillig
444 1.16 rillig tln = node;
445 1.1 rillig
446 1.1 rillig do {
447 1.16 rillig if ((*cmp)(tln->datum, cmpData) == 0)
448 1.1 rillig return tln;
449 1.15 rillig tln = tln->next;
450 1.16 rillig } while (tln != node && tln != NULL);
451 1.1 rillig
452 1.1 rillig return NULL;
453 1.1 rillig }
454 1.1 rillig
455 1.14 rillig /* Return the first node that contains the given datum, or NULL. */
456 1.1 rillig LstNode
457 1.16 rillig Lst_Member(Lst list, void *datum)
458 1.1 rillig {
459 1.16 rillig LstNode node;
460 1.1 rillig
461 1.1 rillig if (list == NULL) {
462 1.1 rillig return NULL;
463 1.1 rillig }
464 1.16 rillig node = list->first;
465 1.16 rillig if (node == NULL) {
466 1.1 rillig return NULL;
467 1.1 rillig }
468 1.1 rillig
469 1.1 rillig do {
470 1.16 rillig if (node->datum == datum) {
471 1.16 rillig return node;
472 1.1 rillig }
473 1.16 rillig node = node->next;
474 1.16 rillig } while (node != NULL && node != list->first);
475 1.1 rillig
476 1.1 rillig return NULL;
477 1.1 rillig }
478 1.1 rillig
479 1.14 rillig /* Apply the given function to each element of the given list. The function
480 1.14 rillig * should return 0 if traversal should continue and non-zero if it should
481 1.14 rillig * abort. */
482 1.1 rillig int
483 1.16 rillig Lst_ForEach(Lst list, int (*proc)(void *, void *), void *procData)
484 1.1 rillig {
485 1.16 rillig return Lst_ForEachFrom(list, Lst_First(list), proc, procData);
486 1.1 rillig }
487 1.1 rillig
488 1.14 rillig /* Apply the given function to each element of the given list, starting from
489 1.14 rillig * the given node. The function should return 0 if traversal should continue,
490 1.14 rillig * and non-zero if it should abort. */
491 1.1 rillig int
492 1.16 rillig Lst_ForEachFrom(Lst list, LstNode node,
493 1.16 rillig int (*proc)(void *, void *), void *procData)
494 1.1 rillig {
495 1.16 rillig LstNode tln = node;
496 1.13 rillig LstNode next;
497 1.4 rillig Boolean done;
498 1.4 rillig int result;
499 1.1 rillig
500 1.4 rillig if (!LstValid(list) || LstIsEmpty(list)) {
501 1.1 rillig return 0;
502 1.1 rillig }
503 1.1 rillig
504 1.1 rillig do {
505 1.1 rillig /*
506 1.1 rillig * Take care of having the current element deleted out from under
507 1.1 rillig * us.
508 1.1 rillig */
509 1.1 rillig
510 1.15 rillig next = tln->next;
511 1.1 rillig
512 1.1 rillig /*
513 1.1 rillig * We're done with the traversal if
514 1.1 rillig * - the next node to examine is the first in the queue or
515 1.1 rillig * doesn't exist and
516 1.1 rillig * - nothing's been added after the current node (check this
517 1.1 rillig * after proc() has been called).
518 1.1 rillig */
519 1.15 rillig done = (next == NULL || next == list->first);
520 1.1 rillig
521 1.17 rillig tln->useCount++;
522 1.16 rillig result = (*proc)(tln->datum, procData);
523 1.17 rillig tln->useCount--;
524 1.1 rillig
525 1.1 rillig /*
526 1.1 rillig * Now check whether a node has been added.
527 1.1 rillig * Note: this doesn't work if this node was deleted before
528 1.1 rillig * the new node was added.
529 1.1 rillig */
530 1.15 rillig if (next != tln->next) {
531 1.15 rillig next = tln->next;
532 1.4 rillig done = 0;
533 1.1 rillig }
534 1.1 rillig
535 1.7 rillig if (tln->deleted) {
536 1.1 rillig free((char *)tln);
537 1.1 rillig }
538 1.1 rillig tln = next;
539 1.1 rillig } while (!result && !LstIsEmpty(list) && !done);
540 1.1 rillig
541 1.1 rillig return result;
542 1.1 rillig }
543 1.1 rillig
544 1.14 rillig /* Concatenate two lists. New nodes are created to hold the data elements,
545 1.14 rillig * if specified, but the data themselves are not copied. If the data
546 1.14 rillig * should be duplicated to avoid confusion with another list, the Lst_Duplicate
547 1.14 rillig * function should be called first. If LST_CONCLINK is specified, the second
548 1.14 rillig * list is destroyed since its pointers have been corrupted and the list is no
549 1.14 rillig * longer usable.
550 1.1 rillig *
551 1.1 rillig * Input:
552 1.16 rillig * list1 The list to which list2 is to be appended
553 1.16 rillig * list2 The list to append to list1
554 1.14 rillig * flags LST_CONCNEW if the list nodes should be duplicated
555 1.14 rillig * LST_CONCLINK if the list nodes should just be relinked
556 1.1 rillig */
557 1.1 rillig ReturnStatus
558 1.16 rillig Lst_Concat(Lst list1, Lst list2, int flags)
559 1.1 rillig {
560 1.16 rillig LstNode node; /* original node */
561 1.16 rillig LstNode newNode;
562 1.16 rillig LstNode last; /* the last element in the list.
563 1.16 rillig * Keeps bookkeeping until the end */
564 1.1 rillig
565 1.16 rillig if (!LstValid(list1) || !LstValid(list2)) {
566 1.1 rillig return FAILURE;
567 1.1 rillig }
568 1.1 rillig
569 1.1 rillig if (flags == LST_CONCLINK) {
570 1.15 rillig if (list2->first != NULL) {
571 1.1 rillig /*
572 1.1 rillig * So long as the second list isn't empty, we just link the
573 1.1 rillig * first element of the second list to the last element of the
574 1.1 rillig * first list. If the first list isn't empty, we then link the
575 1.1 rillig * last element of the list to the first element of the second list
576 1.1 rillig * The last element of the second list, if it exists, then becomes
577 1.1 rillig * the last element of the first list.
578 1.1 rillig */
579 1.15 rillig list2->first->prev = list1->last;
580 1.15 rillig if (list1->last != NULL) {
581 1.15 rillig list1->last->next = list2->first;
582 1.1 rillig } else {
583 1.15 rillig list1->first = list2->first;
584 1.1 rillig }
585 1.15 rillig list1->last = list2->last;
586 1.1 rillig }
587 1.16 rillig free(list2);
588 1.15 rillig } else if (list2->first != NULL) {
589 1.1 rillig /*
590 1.15 rillig * We set the 'next' of the last element of list 2 to be nil to make
591 1.1 rillig * the loop less difficult. The loop simply goes through the entire
592 1.15 rillig * second list creating new LstNodes and filling in the 'next', and
593 1.16 rillig * 'prev' to fit into list1 and its datum field from the
594 1.16 rillig * datum field of the corresponding element in list2. The 'last' node
595 1.16 rillig * follows the last of the new nodes along until the entire list2 has
596 1.1 rillig * been appended. Only then does the bookkeeping catch up with the
597 1.1 rillig * changes. During the first iteration of the loop, if 'last' is nil,
598 1.1 rillig * the first list must have been empty so the newly-created node is
599 1.1 rillig * made the first node of the list.
600 1.1 rillig */
601 1.15 rillig list2->last->next = NULL;
602 1.16 rillig for (last = list1->last, node = list2->first;
603 1.16 rillig node != NULL;
604 1.16 rillig node = node->next)
605 1.16 rillig {
606 1.16 rillig newNode = LstNodeNew(node->datum);
607 1.1 rillig if (last != NULL) {
608 1.16 rillig last->next = newNode;
609 1.1 rillig } else {
610 1.16 rillig list1->first = newNode;
611 1.1 rillig }
612 1.16 rillig newNode->prev = last;
613 1.16 rillig last = newNode;
614 1.1 rillig }
615 1.1 rillig
616 1.1 rillig /*
617 1.1 rillig * Finish bookkeeping. The last new element becomes the last element
618 1.1 rillig * of list one.
619 1.1 rillig */
620 1.15 rillig list1->last = last;
621 1.15 rillig last->next = NULL;
622 1.1 rillig }
623 1.1 rillig
624 1.1 rillig return SUCCESS;
625 1.1 rillig }
626 1.1 rillig
627 1.1 rillig
628 1.1 rillig /*
629 1.1 rillig * these functions are for dealing with a list as a table, of sorts.
630 1.1 rillig * An idea of the "current element" is kept and used by all the functions
631 1.1 rillig * between Lst_Open() and Lst_Close().
632 1.1 rillig *
633 1.1 rillig * The sequential functions access the list in a slightly different way.
634 1.1 rillig * CurPtr points to their idea of the current node in the list and they
635 1.1 rillig * access the list based on it.
636 1.1 rillig */
637 1.1 rillig
638 1.14 rillig /* Open a list for sequential access. A list can still be searched, etc.,
639 1.14 rillig * without confusing these functions. */
640 1.1 rillig ReturnStatus
641 1.16 rillig Lst_Open(Lst list)
642 1.1 rillig {
643 1.16 rillig if (!LstValid(list)) {
644 1.4 rillig return FAILURE;
645 1.4 rillig }
646 1.16 rillig list->isOpen = TRUE;
647 1.16 rillig list->lastAccess = LstIsEmpty(list) ? Head : Unknown;
648 1.16 rillig list->curr = NULL;
649 1.1 rillig
650 1.4 rillig return SUCCESS;
651 1.1 rillig }
652 1.1 rillig
653 1.10 rillig /* Open a list for sequential access. A list can still be searched, etc.,
654 1.10 rillig * without confusing these functions. */
655 1.10 rillig void
656 1.16 rillig Lst_OpenS(Lst list)
657 1.10 rillig {
658 1.16 rillig assert(LstValid(list));
659 1.16 rillig assert(!list->isOpen);
660 1.10 rillig
661 1.16 rillig list->isOpen = TRUE;
662 1.16 rillig list->lastAccess = LstIsEmpty(list) ? Head : Unknown;
663 1.16 rillig list->curr = NULL;
664 1.10 rillig }
665 1.10 rillig
666 1.10 rillig /* Return the next node for the given list, or NULL if the end has been
667 1.10 rillig * reached. */
668 1.1 rillig LstNode
669 1.16 rillig Lst_NextS(Lst list)
670 1.1 rillig {
671 1.16 rillig LstNode node;
672 1.1 rillig
673 1.16 rillig assert(LstValid(list));
674 1.9 rillig assert(list->isOpen);
675 1.1 rillig
676 1.15 rillig list->prev = list->curr;
677 1.1 rillig
678 1.15 rillig if (list->curr == NULL) {
679 1.15 rillig if (list->lastAccess == Unknown) {
680 1.1 rillig /*
681 1.15 rillig * If we're just starting out, lastAccess will be Unknown.
682 1.1 rillig * Then we want to start this thing off in the right
683 1.15 rillig * direction -- at the start with lastAccess being Middle.
684 1.1 rillig */
685 1.16 rillig list->curr = node = list->first;
686 1.15 rillig list->lastAccess = Middle;
687 1.1 rillig } else {
688 1.16 rillig node = NULL;
689 1.15 rillig list->lastAccess = Tail;
690 1.1 rillig }
691 1.1 rillig } else {
692 1.16 rillig node = list->curr->next;
693 1.16 rillig list->curr = node;
694 1.1 rillig
695 1.16 rillig if (node == list->first || node == NULL) {
696 1.1 rillig /*
697 1.1 rillig * If back at the front, then we've hit the end...
698 1.1 rillig */
699 1.15 rillig list->lastAccess = Tail;
700 1.1 rillig } else {
701 1.1 rillig /*
702 1.1 rillig * Reset to Middle if gone past first.
703 1.1 rillig */
704 1.15 rillig list->lastAccess = Middle;
705 1.1 rillig }
706 1.1 rillig }
707 1.1 rillig
708 1.16 rillig return node;
709 1.1 rillig }
710 1.1 rillig
711 1.10 rillig /* Close a list which was opened for sequential access. */
712 1.1 rillig void
713 1.16 rillig Lst_CloseS(Lst list)
714 1.1 rillig {
715 1.16 rillig assert(LstValid(list));
716 1.16 rillig assert(list->isOpen);
717 1.1 rillig
718 1.10 rillig list->isOpen = FALSE;
719 1.15 rillig list->lastAccess = Unknown;
720 1.1 rillig }
721 1.1 rillig
722 1.1 rillig
723 1.1 rillig /*
724 1.1 rillig * for using the list as a queue
725 1.1 rillig */
726 1.1 rillig
727 1.14 rillig /* Add the datum to the tail of the given list. */
728 1.1 rillig ReturnStatus
729 1.16 rillig Lst_EnQueue(Lst list, void *datum)
730 1.1 rillig {
731 1.16 rillig if (!LstValid(list)) {
732 1.1 rillig return FAILURE;
733 1.1 rillig }
734 1.1 rillig
735 1.16 rillig return Lst_InsertAfter(list, Lst_Last(list), datum);
736 1.1 rillig }
737 1.1 rillig
738 1.14 rillig /* Remove and return the datum at the head of the given list, or NULL if the
739 1.14 rillig * list is empty. */
740 1.1 rillig void *
741 1.16 rillig Lst_DeQueue(Lst list)
742 1.1 rillig {
743 1.16 rillig LstNode head;
744 1.16 rillig void *datum;
745 1.1 rillig
746 1.16 rillig head = Lst_First(list);
747 1.16 rillig if (head == NULL) {
748 1.1 rillig return NULL;
749 1.1 rillig }
750 1.1 rillig
751 1.16 rillig datum = head->datum;
752 1.16 rillig Lst_RemoveS(list, head);
753 1.16 rillig return datum;
754 1.1 rillig }
755