lst.c revision 1.25 1 1.25 rillig /* $NetBSD: lst.c,v 1.25 2020/08/22 14:39:12 rillig Exp $ */
2 1.1 rillig
3 1.1 rillig /*
4 1.1 rillig * Copyright (c) 1988, 1989, 1990, 1993
5 1.1 rillig * The Regents of the University of California. All rights reserved.
6 1.1 rillig *
7 1.1 rillig * This code is derived from software contributed to Berkeley by
8 1.1 rillig * Adam de Boor.
9 1.1 rillig *
10 1.1 rillig * Redistribution and use in source and binary forms, with or without
11 1.1 rillig * modification, are permitted provided that the following conditions
12 1.1 rillig * are met:
13 1.1 rillig * 1. Redistributions of source code must retain the above copyright
14 1.1 rillig * notice, this list of conditions and the following disclaimer.
15 1.1 rillig * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 rillig * notice, this list of conditions and the following disclaimer in the
17 1.1 rillig * documentation and/or other materials provided with the distribution.
18 1.1 rillig * 3. Neither the name of the University nor the names of its contributors
19 1.1 rillig * may be used to endorse or promote products derived from this software
20 1.1 rillig * without specific prior written permission.
21 1.1 rillig *
22 1.1 rillig * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 1.1 rillig * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 rillig * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 rillig * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 1.1 rillig * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 1.1 rillig * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 1.1 rillig * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 1.1 rillig * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 1.1 rillig * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 1.1 rillig * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 1.1 rillig * SUCH DAMAGE.
33 1.1 rillig */
34 1.1 rillig
35 1.8 rillig #include <assert.h>
36 1.8 rillig
37 1.19 rillig #include "make.h"
38 1.1 rillig
39 1.1 rillig #ifndef MAKE_NATIVE
40 1.25 rillig static char rcsid[] = "$NetBSD: lst.c,v 1.25 2020/08/22 14:39:12 rillig Exp $";
41 1.1 rillig #else
42 1.1 rillig #include <sys/cdefs.h>
43 1.1 rillig #ifndef lint
44 1.25 rillig __RCSID("$NetBSD: lst.c,v 1.25 2020/08/22 14:39:12 rillig Exp $");
45 1.1 rillig #endif /* not lint */
46 1.1 rillig #endif
47 1.1 rillig
48 1.13 rillig struct ListNode {
49 1.15 rillig struct ListNode *prev; /* previous element in list */
50 1.15 rillig struct ListNode *next; /* next in list */
51 1.7 rillig uint8_t useCount; /* Count of functions using the node.
52 1.4 rillig * node may not be deleted until count
53 1.4 rillig * goes to 0 */
54 1.7 rillig Boolean deleted; /* List node should be removed when done */
55 1.4 rillig void *datum; /* datum associated with this element */
56 1.13 rillig };
57 1.1 rillig
58 1.1 rillig typedef enum {
59 1.1 rillig Head, Middle, Tail, Unknown
60 1.1 rillig } Where;
61 1.1 rillig
62 1.13 rillig struct List {
63 1.15 rillig LstNode first; /* first node in list */
64 1.15 rillig LstNode last; /* last node in list */
65 1.20 rillig
66 1.20 rillig /* fields for sequential access */
67 1.21 rillig Boolean isOpen; /* true if list has been Lst_Open'ed */
68 1.15 rillig Where lastAccess; /* Where in the list the last access was */
69 1.15 rillig LstNode curr; /* current node, if open. NULL if
70 1.4 rillig * *just* opened */
71 1.20 rillig LstNode prev; /* Previous node, if open. Used by Lst_Remove */
72 1.13 rillig };
73 1.1 rillig
74 1.23 rillig static ReturnStatus Lst_AtEnd(Lst, void *);
75 1.23 rillig
76 1.2 rillig static Boolean
77 1.20 rillig LstIsValid(Lst list)
78 1.2 rillig {
79 1.16 rillig return list != NULL;
80 1.2 rillig }
81 1.1 rillig
82 1.2 rillig static Boolean
83 1.20 rillig LstNodeIsValid(LstNode node)
84 1.2 rillig {
85 1.16 rillig return node != NULL;
86 1.2 rillig }
87 1.1 rillig
88 1.22 rillig /* Allocate and initialize a list node.
89 1.22 rillig *
90 1.22 rillig * The fields 'prev' and 'next' must be initialized by the caller.
91 1.22 rillig */
92 1.12 rillig static LstNode
93 1.12 rillig LstNodeNew(void *datum)
94 1.12 rillig {
95 1.16 rillig LstNode node = bmake_malloc(sizeof *node);
96 1.16 rillig node->useCount = 0;
97 1.16 rillig node->deleted = FALSE;
98 1.16 rillig node->datum = datum;
99 1.16 rillig return node;
100 1.12 rillig }
101 1.12 rillig
102 1.2 rillig static Boolean
103 1.16 rillig LstIsEmpty(Lst list)
104 1.2 rillig {
105 1.16 rillig return list->first == NULL;
106 1.2 rillig }
107 1.1 rillig
108 1.5 rillig /* Create and initialize a new, empty list. */
109 1.1 rillig Lst
110 1.5 rillig Lst_Init(void)
111 1.1 rillig {
112 1.16 rillig Lst list = bmake_malloc(sizeof *list);
113 1.1 rillig
114 1.16 rillig list->first = NULL;
115 1.16 rillig list->last = NULL;
116 1.16 rillig list->isOpen = FALSE;
117 1.16 rillig list->lastAccess = Unknown;
118 1.1 rillig
119 1.16 rillig return list;
120 1.1 rillig }
121 1.1 rillig
122 1.14 rillig /* Duplicate an entire list, usually by copying the datum pointers.
123 1.14 rillig * If copyProc is given, that function is used to create the new datum from the
124 1.14 rillig * old datum, usually by creating a copy of it.
125 1.14 rillig * Return the new list, or NULL on failure. */
126 1.1 rillig Lst
127 1.16 rillig Lst_Duplicate(Lst list, DuplicateProc *copyProc)
128 1.1 rillig {
129 1.16 rillig Lst newList;
130 1.16 rillig LstNode node;
131 1.1 rillig
132 1.20 rillig if (!LstIsValid(list)) {
133 1.1 rillig return NULL;
134 1.1 rillig }
135 1.1 rillig
136 1.16 rillig newList = Lst_Init();
137 1.1 rillig
138 1.16 rillig node = list->first;
139 1.16 rillig while (node != NULL) {
140 1.1 rillig if (copyProc != NULL) {
141 1.16 rillig if (Lst_AtEnd(newList, copyProc(node->datum)) == FAILURE) {
142 1.1 rillig return NULL;
143 1.1 rillig }
144 1.16 rillig } else if (Lst_AtEnd(newList, node->datum) == FAILURE) {
145 1.1 rillig return NULL;
146 1.1 rillig }
147 1.1 rillig
148 1.16 rillig node = node->next;
149 1.1 rillig }
150 1.1 rillig
151 1.16 rillig return newList;
152 1.1 rillig }
153 1.1 rillig
154 1.14 rillig /* Destroy a list and free all its resources. If the freeProc is given, it is
155 1.14 rillig * called with the datum from each node in turn before the node is freed. */
156 1.1 rillig void
157 1.1 rillig Lst_Destroy(Lst list, FreeProc *freeProc)
158 1.1 rillig {
159 1.16 rillig LstNode node;
160 1.16 rillig LstNode next = NULL;
161 1.1 rillig
162 1.1 rillig if (list == NULL)
163 1.1 rillig return;
164 1.1 rillig
165 1.1 rillig /* To ease scanning */
166 1.15 rillig if (list->last != NULL)
167 1.15 rillig list->last->next = NULL;
168 1.1 rillig else {
169 1.1 rillig free(list);
170 1.1 rillig return;
171 1.1 rillig }
172 1.1 rillig
173 1.1 rillig if (freeProc) {
174 1.16 rillig for (node = list->first; node != NULL; node = next) {
175 1.16 rillig next = node->next;
176 1.16 rillig freeProc(node->datum);
177 1.16 rillig free(node);
178 1.1 rillig }
179 1.1 rillig } else {
180 1.16 rillig for (node = list->first; node != NULL; node = next) {
181 1.16 rillig next = node->next;
182 1.16 rillig free(node);
183 1.1 rillig }
184 1.1 rillig }
185 1.1 rillig
186 1.1 rillig free(list);
187 1.1 rillig }
188 1.1 rillig
189 1.1 rillig /*
190 1.1 rillig * Functions to modify a list
191 1.1 rillig */
192 1.1 rillig
193 1.14 rillig /* Insert a new node with the given piece of data before the given node in the
194 1.14 rillig * given list. */
195 1.1 rillig ReturnStatus
196 1.16 rillig Lst_InsertBefore(Lst list, LstNode node, void *datum)
197 1.1 rillig {
198 1.16 rillig LstNode newNode;
199 1.1 rillig
200 1.1 rillig /*
201 1.1 rillig * check validity of arguments
202 1.1 rillig */
203 1.20 rillig if (LstIsValid(list) && (LstIsEmpty(list) && node == NULL))
204 1.1 rillig goto ok;
205 1.1 rillig
206 1.20 rillig if (!LstIsValid(list) || LstIsEmpty(list) || !LstNodeIsValid(node)) {
207 1.1 rillig return FAILURE;
208 1.1 rillig }
209 1.1 rillig
210 1.1 rillig ok:
211 1.16 rillig newNode = LstNodeNew(datum);
212 1.1 rillig
213 1.16 rillig if (node == NULL) {
214 1.16 rillig newNode->prev = newNode->next = NULL;
215 1.16 rillig list->first = list->last = newNode;
216 1.1 rillig } else {
217 1.16 rillig newNode->prev = node->prev;
218 1.16 rillig newNode->next = node;
219 1.1 rillig
220 1.16 rillig if (newNode->prev != NULL) {
221 1.16 rillig newNode->prev->next = newNode;
222 1.1 rillig }
223 1.16 rillig node->prev = newNode;
224 1.1 rillig
225 1.16 rillig if (node == list->first) {
226 1.16 rillig list->first = newNode;
227 1.1 rillig }
228 1.1 rillig }
229 1.1 rillig
230 1.1 rillig return SUCCESS;
231 1.1 rillig }
232 1.1 rillig
233 1.14 rillig /* Insert a new node with the given piece of data after the given node in the
234 1.14 rillig * given list. */
235 1.1 rillig ReturnStatus
236 1.16 rillig Lst_InsertAfter(Lst list, LstNode node, void *datum)
237 1.1 rillig {
238 1.17 rillig LstNode newNode;
239 1.1 rillig
240 1.20 rillig if (LstIsValid(list) && (node == NULL && LstIsEmpty(list))) {
241 1.1 rillig goto ok;
242 1.1 rillig }
243 1.1 rillig
244 1.20 rillig if (!LstIsValid(list) || LstIsEmpty(list) || !LstNodeIsValid(node)) {
245 1.1 rillig return FAILURE;
246 1.1 rillig }
247 1.1 rillig ok:
248 1.1 rillig
249 1.17 rillig newNode = LstNodeNew(datum);
250 1.1 rillig
251 1.16 rillig if (node == NULL) {
252 1.17 rillig newNode->next = newNode->prev = NULL;
253 1.17 rillig list->first = list->last = newNode;
254 1.1 rillig } else {
255 1.17 rillig newNode->prev = node;
256 1.17 rillig newNode->next = node->next;
257 1.1 rillig
258 1.17 rillig node->next = newNode;
259 1.17 rillig if (newNode->next != NULL) {
260 1.17 rillig newNode->next->prev = newNode;
261 1.1 rillig }
262 1.1 rillig
263 1.16 rillig if (node == list->last) {
264 1.17 rillig list->last = newNode;
265 1.1 rillig }
266 1.1 rillig }
267 1.1 rillig
268 1.1 rillig return SUCCESS;
269 1.1 rillig }
270 1.1 rillig
271 1.14 rillig /* Add a piece of data at the front of the given list. */
272 1.1 rillig ReturnStatus
273 1.16 rillig Lst_AtFront(Lst list, void *datum)
274 1.1 rillig {
275 1.16 rillig LstNode front = Lst_First(list);
276 1.16 rillig return Lst_InsertBefore(list, front, datum);
277 1.1 rillig }
278 1.1 rillig
279 1.14 rillig /* Add a piece of data at the end of the given list. */
280 1.1 rillig ReturnStatus
281 1.16 rillig Lst_AtEnd(Lst list, void *datum)
282 1.1 rillig {
283 1.16 rillig LstNode end = Lst_Last(list);
284 1.16 rillig return Lst_InsertAfter(list, end, datum);
285 1.1 rillig }
286 1.1 rillig
287 1.22 rillig /* Add a piece of data at the start of the given list. */
288 1.22 rillig void
289 1.22 rillig Lst_PrependS(Lst list, void *datum)
290 1.22 rillig {
291 1.22 rillig LstNode node;
292 1.22 rillig
293 1.22 rillig assert(LstIsValid(list));
294 1.22 rillig assert(datum != NULL);
295 1.22 rillig
296 1.22 rillig node = LstNodeNew(datum);
297 1.22 rillig node->prev = NULL;
298 1.22 rillig node->next = list->first;
299 1.22 rillig
300 1.22 rillig if (list->first == NULL) {
301 1.22 rillig list->first = node;
302 1.22 rillig list->last = node;
303 1.22 rillig } else {
304 1.22 rillig list->first->prev = node;
305 1.22 rillig list->first = node;
306 1.22 rillig }
307 1.22 rillig }
308 1.22 rillig
309 1.21 rillig /* Add a piece of data at the end of the given list. */
310 1.21 rillig void
311 1.21 rillig Lst_AppendS(Lst list, void *datum)
312 1.21 rillig {
313 1.21 rillig LstNode node;
314 1.21 rillig
315 1.21 rillig assert(LstIsValid(list));
316 1.21 rillig assert(datum != NULL);
317 1.21 rillig
318 1.21 rillig node = LstNodeNew(datum);
319 1.21 rillig node->prev = list->last;
320 1.21 rillig node->next = NULL;
321 1.21 rillig
322 1.21 rillig if (list->last == NULL) {
323 1.21 rillig list->first = node;
324 1.21 rillig list->last = node;
325 1.21 rillig } else {
326 1.21 rillig list->last->next = node;
327 1.21 rillig list->last = node;
328 1.21 rillig }
329 1.21 rillig }
330 1.21 rillig
331 1.8 rillig /* Remove the given node from the given list.
332 1.8 rillig * The datum stored in the node must be freed by the caller, if necessary. */
333 1.8 rillig void
334 1.16 rillig Lst_RemoveS(Lst list, LstNode node)
335 1.1 rillig {
336 1.20 rillig assert(LstIsValid(list));
337 1.20 rillig assert(LstNodeIsValid(node));
338 1.1 rillig
339 1.1 rillig /*
340 1.1 rillig * unlink it from the list
341 1.1 rillig */
342 1.16 rillig if (node->next != NULL) {
343 1.16 rillig node->next->prev = node->prev;
344 1.1 rillig }
345 1.16 rillig if (node->prev != NULL) {
346 1.16 rillig node->prev->next = node->next;
347 1.1 rillig }
348 1.1 rillig
349 1.1 rillig /*
350 1.15 rillig * if either the first or last of the list point to this node,
351 1.1 rillig * adjust them accordingly
352 1.1 rillig */
353 1.16 rillig if (list->first == node) {
354 1.16 rillig list->first = node->next;
355 1.1 rillig }
356 1.16 rillig if (list->last == node) {
357 1.16 rillig list->last = node->prev;
358 1.1 rillig }
359 1.1 rillig
360 1.1 rillig /*
361 1.1 rillig * Sequential access stuff. If the node we're removing is the current
362 1.1 rillig * node in the list, reset the current node to the previous one. If the
363 1.15 rillig * previous one was non-existent (prev == NULL), we set the
364 1.1 rillig * end to be Unknown, since it is.
365 1.1 rillig */
366 1.16 rillig if (list->isOpen && list->curr == node) {
367 1.15 rillig list->curr = list->prev;
368 1.15 rillig if (list->curr == NULL) {
369 1.15 rillig list->lastAccess = Unknown;
370 1.1 rillig }
371 1.1 rillig }
372 1.1 rillig
373 1.1 rillig /*
374 1.1 rillig * note that the datum is unmolested. The caller must free it as
375 1.1 rillig * necessary and as expected.
376 1.1 rillig */
377 1.16 rillig if (node->useCount == 0) {
378 1.16 rillig free(node);
379 1.1 rillig } else {
380 1.16 rillig node->deleted = TRUE;
381 1.1 rillig }
382 1.1 rillig }
383 1.1 rillig
384 1.8 rillig /* Replace the datum in the given node with the new datum. */
385 1.8 rillig void
386 1.16 rillig Lst_ReplaceS(LstNode node, void *datum)
387 1.1 rillig {
388 1.16 rillig node->datum = datum;
389 1.1 rillig }
390 1.1 rillig
391 1.1 rillig
392 1.1 rillig /*
393 1.1 rillig * Node-specific functions
394 1.1 rillig */
395 1.1 rillig
396 1.14 rillig /* Return the first node from the given list, or NULL if the list is empty or
397 1.14 rillig * invalid. */
398 1.1 rillig LstNode
399 1.16 rillig Lst_First(Lst list)
400 1.1 rillig {
401 1.20 rillig if (!LstIsValid(list) || LstIsEmpty(list)) {
402 1.1 rillig return NULL;
403 1.1 rillig } else {
404 1.16 rillig return list->first;
405 1.1 rillig }
406 1.1 rillig }
407 1.1 rillig
408 1.14 rillig /* Return the last node from the given list, or NULL if the list is empty or
409 1.14 rillig * invalid. */
410 1.1 rillig LstNode
411 1.16 rillig Lst_Last(Lst list)
412 1.1 rillig {
413 1.20 rillig if (!LstIsValid(list) || LstIsEmpty(list)) {
414 1.1 rillig return NULL;
415 1.1 rillig } else {
416 1.16 rillig return list->last;
417 1.1 rillig }
418 1.1 rillig }
419 1.1 rillig
420 1.6 rillig /* Return the successor to the given node on its list, or NULL. */
421 1.1 rillig LstNode
422 1.16 rillig Lst_Succ(LstNode node)
423 1.1 rillig {
424 1.16 rillig if (node == NULL) {
425 1.1 rillig return NULL;
426 1.1 rillig } else {
427 1.16 rillig return node->next;
428 1.1 rillig }
429 1.1 rillig }
430 1.1 rillig
431 1.6 rillig /* Return the predecessor to the given node on its list, or NULL. */
432 1.1 rillig LstNode
433 1.16 rillig Lst_Prev(LstNode node)
434 1.1 rillig {
435 1.16 rillig if (node == NULL) {
436 1.1 rillig return NULL;
437 1.1 rillig } else {
438 1.16 rillig return node->prev;
439 1.1 rillig }
440 1.1 rillig }
441 1.1 rillig
442 1.14 rillig /* Return the datum stored in the given node, or NULL if the node is invalid. */
443 1.1 rillig void *
444 1.16 rillig Lst_Datum(LstNode node)
445 1.1 rillig {
446 1.16 rillig if (node != NULL) {
447 1.16 rillig return node->datum;
448 1.1 rillig } else {
449 1.1 rillig return NULL;
450 1.1 rillig }
451 1.1 rillig }
452 1.1 rillig
453 1.1 rillig
454 1.1 rillig /*
455 1.1 rillig * Functions for entire lists
456 1.1 rillig */
457 1.1 rillig
458 1.14 rillig /* Return TRUE if the given list is empty or invalid. */
459 1.1 rillig Boolean
460 1.16 rillig Lst_IsEmpty(Lst list)
461 1.1 rillig {
462 1.20 rillig return !LstIsValid(list) || LstIsEmpty(list);
463 1.1 rillig }
464 1.1 rillig
465 1.14 rillig /* Return the first node from the given list for which the given comparison
466 1.14 rillig * function returns 0, or NULL if none of the nodes matches. */
467 1.1 rillig LstNode
468 1.16 rillig Lst_Find(Lst list, const void *cmpData, int (*cmp)(const void *, const void *))
469 1.1 rillig {
470 1.16 rillig return Lst_FindFrom(list, Lst_First(list), cmpData, cmp);
471 1.1 rillig }
472 1.1 rillig
473 1.14 rillig /* Return the first node from the given list, starting at the given node, for
474 1.14 rillig * which the given comparison function returns 0, or NULL if none of the nodes
475 1.14 rillig * matches. */
476 1.1 rillig LstNode
477 1.16 rillig Lst_FindFrom(Lst list, LstNode node, const void *cmpData,
478 1.16 rillig int (*cmp)(const void *, const void *))
479 1.1 rillig {
480 1.13 rillig LstNode tln;
481 1.1 rillig
482 1.20 rillig if (!LstIsValid(list) || LstIsEmpty(list) || !LstNodeIsValid(node)) {
483 1.1 rillig return NULL;
484 1.1 rillig }
485 1.1 rillig
486 1.16 rillig tln = node;
487 1.1 rillig
488 1.1 rillig do {
489 1.16 rillig if ((*cmp)(tln->datum, cmpData) == 0)
490 1.1 rillig return tln;
491 1.15 rillig tln = tln->next;
492 1.16 rillig } while (tln != node && tln != NULL);
493 1.1 rillig
494 1.1 rillig return NULL;
495 1.1 rillig }
496 1.1 rillig
497 1.14 rillig /* Return the first node that contains the given datum, or NULL. */
498 1.1 rillig LstNode
499 1.16 rillig Lst_Member(Lst list, void *datum)
500 1.1 rillig {
501 1.16 rillig LstNode node;
502 1.1 rillig
503 1.1 rillig if (list == NULL) {
504 1.1 rillig return NULL;
505 1.1 rillig }
506 1.16 rillig node = list->first;
507 1.16 rillig if (node == NULL) {
508 1.1 rillig return NULL;
509 1.1 rillig }
510 1.1 rillig
511 1.1 rillig do {
512 1.16 rillig if (node->datum == datum) {
513 1.16 rillig return node;
514 1.1 rillig }
515 1.16 rillig node = node->next;
516 1.16 rillig } while (node != NULL && node != list->first);
517 1.1 rillig
518 1.1 rillig return NULL;
519 1.1 rillig }
520 1.1 rillig
521 1.14 rillig /* Apply the given function to each element of the given list. The function
522 1.14 rillig * should return 0 if traversal should continue and non-zero if it should
523 1.14 rillig * abort. */
524 1.1 rillig int
525 1.16 rillig Lst_ForEach(Lst list, int (*proc)(void *, void *), void *procData)
526 1.1 rillig {
527 1.16 rillig return Lst_ForEachFrom(list, Lst_First(list), proc, procData);
528 1.1 rillig }
529 1.1 rillig
530 1.14 rillig /* Apply the given function to each element of the given list, starting from
531 1.14 rillig * the given node. The function should return 0 if traversal should continue,
532 1.14 rillig * and non-zero if it should abort. */
533 1.1 rillig int
534 1.16 rillig Lst_ForEachFrom(Lst list, LstNode node,
535 1.16 rillig int (*proc)(void *, void *), void *procData)
536 1.1 rillig {
537 1.16 rillig LstNode tln = node;
538 1.13 rillig LstNode next;
539 1.4 rillig Boolean done;
540 1.4 rillig int result;
541 1.1 rillig
542 1.20 rillig if (!LstIsValid(list) || LstIsEmpty(list)) {
543 1.1 rillig return 0;
544 1.1 rillig }
545 1.1 rillig
546 1.1 rillig do {
547 1.1 rillig /*
548 1.1 rillig * Take care of having the current element deleted out from under
549 1.1 rillig * us.
550 1.1 rillig */
551 1.1 rillig
552 1.15 rillig next = tln->next;
553 1.1 rillig
554 1.1 rillig /*
555 1.1 rillig * We're done with the traversal if
556 1.1 rillig * - the next node to examine is the first in the queue or
557 1.1 rillig * doesn't exist and
558 1.1 rillig * - nothing's been added after the current node (check this
559 1.1 rillig * after proc() has been called).
560 1.1 rillig */
561 1.15 rillig done = (next == NULL || next == list->first);
562 1.1 rillig
563 1.17 rillig tln->useCount++;
564 1.16 rillig result = (*proc)(tln->datum, procData);
565 1.17 rillig tln->useCount--;
566 1.1 rillig
567 1.1 rillig /*
568 1.1 rillig * Now check whether a node has been added.
569 1.1 rillig * Note: this doesn't work if this node was deleted before
570 1.1 rillig * the new node was added.
571 1.1 rillig */
572 1.15 rillig if (next != tln->next) {
573 1.15 rillig next = tln->next;
574 1.4 rillig done = 0;
575 1.1 rillig }
576 1.1 rillig
577 1.7 rillig if (tln->deleted) {
578 1.1 rillig free((char *)tln);
579 1.1 rillig }
580 1.1 rillig tln = next;
581 1.1 rillig } while (!result && !LstIsEmpty(list) && !done);
582 1.1 rillig
583 1.1 rillig return result;
584 1.1 rillig }
585 1.1 rillig
586 1.14 rillig /* Concatenate two lists. New nodes are created to hold the data elements,
587 1.14 rillig * if specified, but the data themselves are not copied. If the data
588 1.14 rillig * should be duplicated to avoid confusion with another list, the Lst_Duplicate
589 1.14 rillig * function should be called first. If LST_CONCLINK is specified, the second
590 1.14 rillig * list is destroyed since its pointers have been corrupted and the list is no
591 1.14 rillig * longer usable.
592 1.1 rillig *
593 1.1 rillig * Input:
594 1.16 rillig * list1 The list to which list2 is to be appended
595 1.16 rillig * list2 The list to append to list1
596 1.14 rillig * flags LST_CONCNEW if the list nodes should be duplicated
597 1.14 rillig * LST_CONCLINK if the list nodes should just be relinked
598 1.1 rillig */
599 1.1 rillig ReturnStatus
600 1.16 rillig Lst_Concat(Lst list1, Lst list2, int flags)
601 1.1 rillig {
602 1.16 rillig LstNode node; /* original node */
603 1.16 rillig LstNode newNode;
604 1.16 rillig LstNode last; /* the last element in the list.
605 1.16 rillig * Keeps bookkeeping until the end */
606 1.1 rillig
607 1.20 rillig if (!LstIsValid(list1) || !LstIsValid(list2)) {
608 1.1 rillig return FAILURE;
609 1.1 rillig }
610 1.1 rillig
611 1.1 rillig if (flags == LST_CONCLINK) {
612 1.15 rillig if (list2->first != NULL) {
613 1.1 rillig /*
614 1.1 rillig * So long as the second list isn't empty, we just link the
615 1.1 rillig * first element of the second list to the last element of the
616 1.1 rillig * first list. If the first list isn't empty, we then link the
617 1.1 rillig * last element of the list to the first element of the second list
618 1.1 rillig * The last element of the second list, if it exists, then becomes
619 1.1 rillig * the last element of the first list.
620 1.1 rillig */
621 1.15 rillig list2->first->prev = list1->last;
622 1.15 rillig if (list1->last != NULL) {
623 1.15 rillig list1->last->next = list2->first;
624 1.1 rillig } else {
625 1.15 rillig list1->first = list2->first;
626 1.1 rillig }
627 1.15 rillig list1->last = list2->last;
628 1.1 rillig }
629 1.16 rillig free(list2);
630 1.15 rillig } else if (list2->first != NULL) {
631 1.1 rillig /*
632 1.15 rillig * We set the 'next' of the last element of list 2 to be nil to make
633 1.1 rillig * the loop less difficult. The loop simply goes through the entire
634 1.15 rillig * second list creating new LstNodes and filling in the 'next', and
635 1.16 rillig * 'prev' to fit into list1 and its datum field from the
636 1.16 rillig * datum field of the corresponding element in list2. The 'last' node
637 1.16 rillig * follows the last of the new nodes along until the entire list2 has
638 1.1 rillig * been appended. Only then does the bookkeeping catch up with the
639 1.1 rillig * changes. During the first iteration of the loop, if 'last' is nil,
640 1.1 rillig * the first list must have been empty so the newly-created node is
641 1.1 rillig * made the first node of the list.
642 1.1 rillig */
643 1.15 rillig list2->last->next = NULL;
644 1.16 rillig for (last = list1->last, node = list2->first;
645 1.16 rillig node != NULL;
646 1.16 rillig node = node->next)
647 1.16 rillig {
648 1.16 rillig newNode = LstNodeNew(node->datum);
649 1.1 rillig if (last != NULL) {
650 1.16 rillig last->next = newNode;
651 1.1 rillig } else {
652 1.16 rillig list1->first = newNode;
653 1.1 rillig }
654 1.16 rillig newNode->prev = last;
655 1.16 rillig last = newNode;
656 1.1 rillig }
657 1.1 rillig
658 1.1 rillig /*
659 1.1 rillig * Finish bookkeeping. The last new element becomes the last element
660 1.1 rillig * of list one.
661 1.1 rillig */
662 1.15 rillig list1->last = last;
663 1.15 rillig last->next = NULL;
664 1.1 rillig }
665 1.1 rillig
666 1.1 rillig return SUCCESS;
667 1.1 rillig }
668 1.1 rillig
669 1.22 rillig /* Copy the element data from src to the start of dst. */
670 1.22 rillig void
671 1.22 rillig Lst_PrependAllS(Lst dst, Lst src)
672 1.22 rillig {
673 1.22 rillig LstNode node;
674 1.22 rillig for (node = src->last; node != NULL; node = node->prev)
675 1.22 rillig Lst_PrependS(dst, node->datum);
676 1.22 rillig }
677 1.22 rillig
678 1.22 rillig /* Copy the element data from src to the end of dst. */
679 1.22 rillig void
680 1.22 rillig Lst_AppendAllS(Lst dst, Lst src)
681 1.22 rillig {
682 1.22 rillig LstNode node;
683 1.22 rillig for (node = src->first; node != NULL; node = node->next)
684 1.22 rillig Lst_AppendS(dst, node->datum);
685 1.22 rillig }
686 1.1 rillig
687 1.1 rillig /*
688 1.1 rillig * these functions are for dealing with a list as a table, of sorts.
689 1.1 rillig * An idea of the "current element" is kept and used by all the functions
690 1.1 rillig * between Lst_Open() and Lst_Close().
691 1.1 rillig *
692 1.1 rillig * The sequential functions access the list in a slightly different way.
693 1.1 rillig * CurPtr points to their idea of the current node in the list and they
694 1.1 rillig * access the list based on it.
695 1.1 rillig */
696 1.1 rillig
697 1.14 rillig /* Open a list for sequential access. A list can still be searched, etc.,
698 1.14 rillig * without confusing these functions. */
699 1.1 rillig ReturnStatus
700 1.16 rillig Lst_Open(Lst list)
701 1.1 rillig {
702 1.20 rillig if (!LstIsValid(list)) {
703 1.4 rillig return FAILURE;
704 1.4 rillig }
705 1.19 rillig Lst_OpenS(list);
706 1.4 rillig return SUCCESS;
707 1.1 rillig }
708 1.1 rillig
709 1.10 rillig /* Open a list for sequential access. A list can still be searched, etc.,
710 1.10 rillig * without confusing these functions. */
711 1.10 rillig void
712 1.16 rillig Lst_OpenS(Lst list)
713 1.10 rillig {
714 1.20 rillig assert(LstIsValid(list));
715 1.24 rillig
716 1.19 rillig /* XXX: This assertion fails for NetBSD's "build.sh -j1 tools", somewhere
717 1.19 rillig * between "dependall ===> compat" and "dependall ===> binstall".
718 1.19 rillig * Building without the "-j1" succeeds though. */
719 1.24 rillig if (DEBUG(LINT) && list->isOpen)
720 1.19 rillig Parse_Error(PARSE_WARNING, "Internal inconsistency: list opened twice");
721 1.10 rillig
722 1.16 rillig list->isOpen = TRUE;
723 1.16 rillig list->lastAccess = LstIsEmpty(list) ? Head : Unknown;
724 1.16 rillig list->curr = NULL;
725 1.10 rillig }
726 1.10 rillig
727 1.10 rillig /* Return the next node for the given list, or NULL if the end has been
728 1.10 rillig * reached. */
729 1.1 rillig LstNode
730 1.16 rillig Lst_NextS(Lst list)
731 1.1 rillig {
732 1.16 rillig LstNode node;
733 1.1 rillig
734 1.20 rillig assert(LstIsValid(list));
735 1.9 rillig assert(list->isOpen);
736 1.1 rillig
737 1.15 rillig list->prev = list->curr;
738 1.1 rillig
739 1.15 rillig if (list->curr == NULL) {
740 1.15 rillig if (list->lastAccess == Unknown) {
741 1.1 rillig /*
742 1.15 rillig * If we're just starting out, lastAccess will be Unknown.
743 1.1 rillig * Then we want to start this thing off in the right
744 1.15 rillig * direction -- at the start with lastAccess being Middle.
745 1.1 rillig */
746 1.16 rillig list->curr = node = list->first;
747 1.15 rillig list->lastAccess = Middle;
748 1.1 rillig } else {
749 1.16 rillig node = NULL;
750 1.15 rillig list->lastAccess = Tail;
751 1.1 rillig }
752 1.1 rillig } else {
753 1.16 rillig node = list->curr->next;
754 1.16 rillig list->curr = node;
755 1.1 rillig
756 1.16 rillig if (node == list->first || node == NULL) {
757 1.1 rillig /*
758 1.1 rillig * If back at the front, then we've hit the end...
759 1.1 rillig */
760 1.15 rillig list->lastAccess = Tail;
761 1.1 rillig } else {
762 1.1 rillig /*
763 1.1 rillig * Reset to Middle if gone past first.
764 1.1 rillig */
765 1.15 rillig list->lastAccess = Middle;
766 1.1 rillig }
767 1.1 rillig }
768 1.1 rillig
769 1.16 rillig return node;
770 1.1 rillig }
771 1.1 rillig
772 1.10 rillig /* Close a list which was opened for sequential access. */
773 1.1 rillig void
774 1.16 rillig Lst_CloseS(Lst list)
775 1.1 rillig {
776 1.20 rillig assert(LstIsValid(list));
777 1.16 rillig assert(list->isOpen);
778 1.1 rillig
779 1.10 rillig list->isOpen = FALSE;
780 1.15 rillig list->lastAccess = Unknown;
781 1.1 rillig }
782 1.1 rillig
783 1.1 rillig
784 1.1 rillig /*
785 1.1 rillig * for using the list as a queue
786 1.1 rillig */
787 1.1 rillig
788 1.14 rillig /* Add the datum to the tail of the given list. */
789 1.25 rillig void
790 1.25 rillig Lst_EnqueueS(Lst list, void *datum)
791 1.1 rillig {
792 1.25 rillig Lst_AppendS(list, datum);
793 1.1 rillig }
794 1.1 rillig
795 1.25 rillig /* Remove and return the datum at the head of the given list. */
796 1.1 rillig void *
797 1.25 rillig Lst_DequeueS(Lst list)
798 1.1 rillig {
799 1.16 rillig void *datum;
800 1.1 rillig
801 1.25 rillig assert(LstIsValid(list));
802 1.25 rillig assert(!LstIsEmpty(list));
803 1.1 rillig
804 1.25 rillig datum = list->first->datum;
805 1.25 rillig Lst_RemoveS(list, list->first);
806 1.25 rillig assert(datum != NULL);
807 1.16 rillig return datum;
808 1.1 rillig }
809