lst.c revision 1.4 1 /* $NetBSD: lst.c,v 1.4 2020/08/09 20:49:15 rillig Exp $ */
2
3 /*
4 * Copyright (c) 1988, 1989, 1990, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Adam de Boor.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35 #include "lst.h"
36 #include "make_malloc.h"
37
38 #ifndef MAKE_NATIVE
39 static char rcsid[] = "$NetBSD: lst.c,v 1.4 2020/08/09 20:49:15 rillig Exp $";
40 #else
41 #include <sys/cdefs.h>
42 #ifndef lint
43 __RCSID("$NetBSD: lst.c,v 1.4 2020/08/09 20:49:15 rillig Exp $");
44 #endif /* not lint */
45 #endif
46
47 typedef struct ListNode {
48 struct ListNode *prevPtr; /* previous element in list */
49 struct ListNode *nextPtr; /* next in list */
50 unsigned int useCount: 8, /* Count of functions using the node.
51 * node may not be deleted until count
52 * goes to 0 */
53 flags: 8; /* Node status flags */
54 void *datum; /* datum associated with this element */
55 } *ListNode;
56 /*
57 * Flags required for synchronization
58 */
59 #define LN_DELETED 0x0001 /* List node should be removed when done */
60
61 typedef enum {
62 Head, Middle, Tail, Unknown
63 } Where;
64
65 typedef struct List {
66 ListNode firstPtr; /* first node in list */
67 ListNode lastPtr; /* last node in list */
68 Boolean isCirc; /* true if the list should be considered
69 * circular */
70 /*
71 * fields for sequential access
72 */
73 Where atEnd; /* Where in the list the last access was */
74 Boolean isOpen; /* true if list has been Lst_Open'ed */
75 ListNode curPtr; /* current node, if open. NULL if
76 * *just* opened */
77 ListNode prevPtr; /* Previous node, if open. Used by
78 * Lst_Remove */
79 } *List;
80
81 /*
82 * PAlloc (var, ptype) --
83 * Allocate a pointer-typedef structure 'ptype' into the variable 'var'
84 */
85 #define PAlloc(var, ptype) \
86 var = (ptype) bmake_malloc(sizeof *(var))
87
88 /*
89 * LstValid --
90 * Return TRUE if the list is valid
91 */
92 static Boolean
93 LstValid(Lst l)
94 {
95 return l != NULL;
96 }
97
98 /*
99 * LstNodeValid --
100 * Return TRUE if the list node is valid
101 */
102 static Boolean
103 LstNodeValid(LstNode ln)
104 {
105 return ln != NULL;
106 }
107
108 /*
109 * LstIsEmpty (l) --
110 * TRUE if the list l is empty.
111 */
112 static Boolean
113 LstIsEmpty(Lst l)
114 {
115 return l->firstPtr == NULL;
116 }
117
118 /*-
119 *-----------------------------------------------------------------------
120 * Lst_Init --
121 * Create and initialize a new list.
122 *
123 * Input:
124 * circ TRUE if the list should be made circular
125 *
126 * Results:
127 * The created list.
128 *
129 * Side Effects:
130 * A list is created, what else?
131 *
132 *-----------------------------------------------------------------------
133 */
134 Lst
135 Lst_Init(Boolean circ)
136 {
137 List nList;
138
139 PAlloc (nList, List);
140
141 nList->firstPtr = NULL;
142 nList->lastPtr = NULL;
143 nList->isOpen = FALSE;
144 nList->isCirc = circ;
145 nList->atEnd = Unknown;
146
147 return nList;
148 }
149
150 /*-
151 *-----------------------------------------------------------------------
152 * Lst_Duplicate --
153 * Duplicate an entire list. If a function to copy a void *is
154 * given, the individual client elements will be duplicated as well.
155 *
156 * Input:
157 * l the list to duplicate
158 * copyProc A function to duplicate each void *
159 *
160 * Results:
161 * The new Lst structure or NULL if failure.
162 *
163 * Side Effects:
164 * A new list is created.
165 *-----------------------------------------------------------------------
166 */
167 Lst
168 Lst_Duplicate(Lst l, DuplicateProc *copyProc)
169 {
170 Lst nl;
171 ListNode ln;
172 List list = l;
173
174 if (!LstValid(l)) {
175 return NULL;
176 }
177
178 nl = Lst_Init(list->isCirc);
179 if (nl == NULL) {
180 return NULL;
181 }
182
183 ln = list->firstPtr;
184 while (ln != NULL) {
185 if (copyProc != NULL) {
186 if (Lst_AtEnd(nl, copyProc(ln->datum)) == FAILURE) {
187 return NULL;
188 }
189 } else if (Lst_AtEnd(nl, ln->datum) == FAILURE) {
190 return NULL;
191 }
192
193 if (list->isCirc && ln == list->lastPtr) {
194 ln = NULL;
195 } else {
196 ln = ln->nextPtr;
197 }
198 }
199
200 return nl;
201 }
202
203 /*-
204 *-----------------------------------------------------------------------
205 * Lst_Destroy --
206 * Destroy a list and free all its resources. If the freeProc is
207 * given, it is called with the datum from each node in turn before
208 * the node is freed.
209 *
210 * Results:
211 * None.
212 *
213 * Side Effects:
214 * The given list is freed in its entirety.
215 *
216 *-----------------------------------------------------------------------
217 */
218 void
219 Lst_Destroy(Lst list, FreeProc *freeProc)
220 {
221 ListNode ln;
222 ListNode tln = NULL;
223
224 if (list == NULL)
225 return;
226
227 /* To ease scanning */
228 if (list->lastPtr != NULL)
229 list->lastPtr->nextPtr = NULL;
230 else {
231 free(list);
232 return;
233 }
234
235 if (freeProc) {
236 for (ln = list->firstPtr; ln != NULL; ln = tln) {
237 tln = ln->nextPtr;
238 freeProc(ln->datum);
239 free(ln);
240 }
241 } else {
242 for (ln = list->firstPtr; ln != NULL; ln = tln) {
243 tln = ln->nextPtr;
244 free(ln);
245 }
246 }
247
248 free(list);
249 }
250
251 /*
252 * Functions to modify a list
253 */
254
255 /*-
256 *-----------------------------------------------------------------------
257 * Lst_InsertBefore --
258 * Insert a new node with the given piece of data before the given
259 * node in the given list.
260 *
261 * Input:
262 * l list to manipulate
263 * ln node before which to insert d
264 * d datum to be inserted
265 *
266 * Results:
267 * SUCCESS or FAILURE.
268 *
269 * Side Effects:
270 * the firstPtr field will be changed if ln is the first node in the
271 * list.
272 *
273 *-----------------------------------------------------------------------
274 */
275 ReturnStatus
276 Lst_InsertBefore(Lst l, LstNode ln, void *d)
277 {
278 ListNode nLNode; /* new lnode for d */
279 ListNode lNode = ln;
280 List list = l;
281
282
283 /*
284 * check validity of arguments
285 */
286 if (LstValid(l) && (LstIsEmpty(l) && ln == NULL))
287 goto ok;
288
289 if (!LstValid(l) || LstIsEmpty(l) || !LstNodeValid(ln)) {
290 return FAILURE;
291 }
292
293 ok:
294 PAlloc (nLNode, ListNode);
295
296 nLNode->datum = d;
297 nLNode->useCount = nLNode->flags = 0;
298
299 if (ln == NULL) {
300 if (list->isCirc) {
301 nLNode->prevPtr = nLNode->nextPtr = nLNode;
302 } else {
303 nLNode->prevPtr = nLNode->nextPtr = NULL;
304 }
305 list->firstPtr = list->lastPtr = nLNode;
306 } else {
307 nLNode->prevPtr = lNode->prevPtr;
308 nLNode->nextPtr = lNode;
309
310 if (nLNode->prevPtr != NULL) {
311 nLNode->prevPtr->nextPtr = nLNode;
312 }
313 lNode->prevPtr = nLNode;
314
315 if (lNode == list->firstPtr) {
316 list->firstPtr = nLNode;
317 }
318 }
319
320 return SUCCESS;
321 }
322
323 /*-
324 *-----------------------------------------------------------------------
325 * Lst_InsertAfter --
326 * Create a new node and add it to the given list after the given node.
327 *
328 * Input:
329 * l affected list
330 * ln node after which to append the datum
331 * d said datum
332 *
333 * Results:
334 * SUCCESS if all went well.
335 *
336 * Side Effects:
337 * A new ListNode is created and linked in to the List. The lastPtr
338 * field of the List will be altered if ln is the last node in the
339 * list. lastPtr and firstPtr will alter if the list was empty and
340 * ln was NULL.
341 *
342 *-----------------------------------------------------------------------
343 */
344 ReturnStatus
345 Lst_InsertAfter(Lst l, LstNode ln, void *d)
346 {
347 List list;
348 ListNode lNode;
349 ListNode nLNode;
350
351 if (LstValid(l) && (ln == NULL && LstIsEmpty(l))) {
352 goto ok;
353 }
354
355 if (!LstValid(l) || LstIsEmpty(l) || !LstNodeValid(ln)) {
356 return FAILURE;
357 }
358 ok:
359
360 list = l;
361 lNode = ln;
362
363 PAlloc (nLNode, ListNode);
364 nLNode->datum = d;
365 nLNode->useCount = nLNode->flags = 0;
366
367 if (lNode == NULL) {
368 if (list->isCirc) {
369 nLNode->nextPtr = nLNode->prevPtr = nLNode;
370 } else {
371 nLNode->nextPtr = nLNode->prevPtr = NULL;
372 }
373 list->firstPtr = list->lastPtr = nLNode;
374 } else {
375 nLNode->prevPtr = lNode;
376 nLNode->nextPtr = lNode->nextPtr;
377
378 lNode->nextPtr = nLNode;
379 if (nLNode->nextPtr != NULL) {
380 nLNode->nextPtr->prevPtr = nLNode;
381 }
382
383 if (lNode == list->lastPtr) {
384 list->lastPtr = nLNode;
385 }
386 }
387
388 return SUCCESS;
389 }
390
391 /*-
392 *-----------------------------------------------------------------------
393 * Lst_AtFront --
394 * Place a piece of data at the front of a list
395 *
396 * Results:
397 * SUCCESS or FAILURE
398 *
399 * Side Effects:
400 * A new ListNode is created and stuck at the front of the list.
401 * hence, firstPtr (and possible lastPtr) in the list are altered.
402 *
403 *-----------------------------------------------------------------------
404 */
405 ReturnStatus
406 Lst_AtFront(Lst l, void *d)
407 {
408 LstNode front;
409
410 front = Lst_First(l);
411 return Lst_InsertBefore(l, front, d);
412 }
413
414 /*-
415 *-----------------------------------------------------------------------
416 * Lst_AtEnd --
417 * Add a node to the end of the given list
418 *
419 * Input:
420 * l List to which to add the datum
421 * d Datum to add
422 *
423 * Results:
424 * SUCCESS if life is good.
425 *
426 * Side Effects:
427 * A new ListNode is created and added to the list.
428 *
429 *-----------------------------------------------------------------------
430 */
431 ReturnStatus
432 Lst_AtEnd(Lst l, void *d)
433 {
434 LstNode end;
435
436 end = Lst_Last(l);
437 return Lst_InsertAfter(l, end, d);
438 }
439
440 /*-
441 *-----------------------------------------------------------------------
442 * Lst_Remove --
443 * Remove the given node from the given list.
444 *
445 * Results:
446 * SUCCESS or FAILURE.
447 *
448 * Side Effects:
449 * The list's firstPtr will be set to NULL if ln is the last
450 * node on the list. firsPtr and lastPtr will be altered if ln is
451 * either the first or last node, respectively, on the list.
452 *
453 *-----------------------------------------------------------------------
454 */
455 ReturnStatus
456 Lst_Remove(Lst l, LstNode ln)
457 {
458 List list = l;
459 ListNode lNode = ln;
460
461 if (!LstValid(l) || !LstNodeValid(ln)) {
462 return FAILURE;
463 }
464
465 /*
466 * unlink it from the list
467 */
468 if (lNode->nextPtr != NULL) {
469 lNode->nextPtr->prevPtr = lNode->prevPtr;
470 }
471 if (lNode->prevPtr != NULL) {
472 lNode->prevPtr->nextPtr = lNode->nextPtr;
473 }
474
475 /*
476 * if either the firstPtr or lastPtr of the list point to this node,
477 * adjust them accordingly
478 */
479 if (list->firstPtr == lNode) {
480 list->firstPtr = lNode->nextPtr;
481 }
482 if (list->lastPtr == lNode) {
483 list->lastPtr = lNode->prevPtr;
484 }
485
486 /*
487 * Sequential access stuff. If the node we're removing is the current
488 * node in the list, reset the current node to the previous one. If the
489 * previous one was non-existent (prevPtr == NULL), we set the
490 * end to be Unknown, since it is.
491 */
492 if (list->isOpen && (list->curPtr == lNode)) {
493 list->curPtr = list->prevPtr;
494 if (list->curPtr == NULL) {
495 list->atEnd = Unknown;
496 }
497 }
498
499 /*
500 * the only way firstPtr can still point to ln is if ln is the last
501 * node on the list (the list is circular, so lNode->nextptr == lNode in
502 * this case). The list is, therefore, empty and is marked as such
503 */
504 if (list->firstPtr == lNode) {
505 list->firstPtr = NULL;
506 }
507
508 /*
509 * note that the datum is unmolested. The caller must free it as
510 * necessary and as expected.
511 */
512 if (lNode->useCount == 0) {
513 free(ln);
514 } else {
515 lNode->flags |= LN_DELETED;
516 }
517
518 return SUCCESS;
519 }
520
521 /*-
522 *-----------------------------------------------------------------------
523 * Lst_Replace --
524 * Replace the datum in the given node with the new datum
525 *
526 * Results:
527 * SUCCESS or FAILURE.
528 *
529 * Side Effects:
530 * The datum field fo the node is altered.
531 *
532 *-----------------------------------------------------------------------
533 */
534 ReturnStatus
535 Lst_Replace(LstNode ln, void *d)
536 {
537 if (ln == NULL) {
538 return FAILURE;
539 } else {
540 (ln)->datum = d;
541 return SUCCESS;
542 }
543 }
544
545
546 /*
547 * Node-specific functions
548 */
549
550 /*-
551 *-----------------------------------------------------------------------
552 * Lst_First --
553 * Return the first node on the given list.
554 *
555 * Results:
556 * The first node or NULL if the list is empty.
557 *
558 * Side Effects:
559 * None.
560 *
561 *-----------------------------------------------------------------------
562 */
563 LstNode
564 Lst_First(Lst l)
565 {
566 if (!LstValid(l) || LstIsEmpty(l)) {
567 return NULL;
568 } else {
569 return l->firstPtr;
570 }
571 }
572
573 /*-
574 *-----------------------------------------------------------------------
575 * Lst_Last --
576 * Return the last node on the list l.
577 *
578 * Results:
579 * The requested node or NULL if the list is empty.
580 *
581 * Side Effects:
582 * None.
583 *
584 *-----------------------------------------------------------------------
585 */
586 LstNode
587 Lst_Last(Lst l)
588 {
589 if (!LstValid(l) || LstIsEmpty(l)) {
590 return NULL;
591 } else {
592 return l->lastPtr;
593 }
594 }
595
596 /*-
597 *-----------------------------------------------------------------------
598 * Lst_Succ --
599 * Return the successor to the given node on its list.
600 *
601 * Results:
602 * The successor of the node, if it exists (note that on a circular
603 * list, if the node is the only one in the list, it is its own
604 * successor).
605 *
606 * Side Effects:
607 * None.
608 *
609 *-----------------------------------------------------------------------
610 */
611 LstNode
612 Lst_Succ(LstNode ln)
613 {
614 if (ln == NULL) {
615 return NULL;
616 } else {
617 return ln->nextPtr;
618 }
619 }
620
621 /*-
622 *-----------------------------------------------------------------------
623 * Lst_Prev --
624 * Return the predecessor to the given node on its list.
625 *
626 * Results:
627 * The predecessor of the node, if it exists (note that on a circular
628 * list, if the node is the only one in the list, it is its own
629 * predecessor).
630 *
631 * Side Effects:
632 * None.
633 *
634 *-----------------------------------------------------------------------
635 */
636 LstNode
637 Lst_Prev(LstNode ln)
638 {
639 if (ln == NULL) {
640 return NULL;
641 } else {
642 return ln->prevPtr;
643 }
644 }
645
646 /*-
647 *-----------------------------------------------------------------------
648 * Lst_Datum --
649 * Return the datum stored in the given node.
650 *
651 * Results:
652 * The datum or NULL if the node is invalid.
653 *
654 * Side Effects:
655 * None.
656 *
657 *-----------------------------------------------------------------------
658 */
659 void *
660 Lst_Datum(LstNode ln)
661 {
662 if (ln != NULL) {
663 return ln->datum;
664 } else {
665 return NULL;
666 }
667 }
668
669
670 /*
671 * Functions for entire lists
672 */
673
674 /*-
675 *-----------------------------------------------------------------------
676 * Lst_IsEmpty --
677 * Return TRUE if the given list is empty.
678 *
679 * Results:
680 * TRUE if the list is empty, FALSE otherwise.
681 *
682 * Side Effects:
683 * None.
684 *
685 * A list is considered empty if its firstPtr == NULL (or if
686 * the list itself is NULL).
687 *-----------------------------------------------------------------------
688 */
689 Boolean
690 Lst_IsEmpty(Lst l)
691 {
692 return !LstValid(l) || LstIsEmpty(l);
693 }
694
695 /*-
696 *-----------------------------------------------------------------------
697 * Lst_Find --
698 * Find a node on the given list using the given comparison function
699 * and the given datum.
700 *
701 * Results:
702 * The found node or NULL if none matches.
703 *
704 * Side Effects:
705 * None.
706 *
707 *-----------------------------------------------------------------------
708 */
709 LstNode
710 Lst_Find(Lst l, const void *d, int (*cProc)(const void *, const void *))
711 {
712 return Lst_FindFrom(l, Lst_First(l), d, cProc);
713 }
714
715 /*-
716 *-----------------------------------------------------------------------
717 * Lst_FindFrom --
718 * Search for a node starting and ending with the given one on the
719 * given list using the passed datum and comparison function to
720 * determine when it has been found.
721 *
722 * Results:
723 * The found node or NULL
724 *
725 * Side Effects:
726 * None.
727 *
728 *-----------------------------------------------------------------------
729 */
730 LstNode
731 Lst_FindFrom(Lst l, LstNode ln, const void *d,
732 int (*cProc)(const void *, const void *))
733 {
734 ListNode tln;
735
736 if (!LstValid(l) || LstIsEmpty(l) || !LstNodeValid(ln)) {
737 return NULL;
738 }
739
740 tln = ln;
741
742 do {
743 if ((*cProc)(tln->datum, d) == 0)
744 return tln;
745 tln = tln->nextPtr;
746 } while (tln != ln && tln != NULL);
747
748 return NULL;
749 }
750
751 /*-
752 * See if a given datum is on a given list.
753 */
754 LstNode
755 Lst_Member(Lst l, void *d)
756 {
757 List list = l;
758 ListNode lNode;
759
760 if (list == NULL) {
761 return NULL;
762 }
763 lNode = list->firstPtr;
764 if (lNode == NULL) {
765 return NULL;
766 }
767
768 do {
769 if (lNode->datum == d) {
770 return lNode;
771 }
772 lNode = lNode->nextPtr;
773 } while (lNode != NULL && lNode != list->firstPtr);
774
775 return NULL;
776 }
777
778 /*-
779 *-----------------------------------------------------------------------
780 * Lst_ForEach --
781 * Apply the given function to each element of the given list. The
782 * function should return 0 if Lst_ForEach should continue and non-
783 * zero if it should abort.
784 *
785 * Results:
786 * None.
787 *
788 * Side Effects:
789 * Only those created by the passed-in function.
790 *
791 *-----------------------------------------------------------------------
792 */
793 /*VARARGS2*/
794 int
795 Lst_ForEach(Lst l, int (*proc)(void *, void *), void *d)
796 {
797 return Lst_ForEachFrom(l, Lst_First(l), proc, d);
798 }
799
800 /*-
801 *-----------------------------------------------------------------------
802 * Lst_ForEachFrom --
803 * Apply the given function to each element of the given list,
804 * starting from a given point.
805 *
806 * If the list is circular, the application will wrap around to the
807 * beginning of the list again.
808 *
809 * The function should return 0 if traversal should continue, and
810 * non-zero if it should abort.
811 *
812 * Results:
813 * None.
814 *
815 * Side Effects:
816 * Only those created by the passed-in function.
817 *
818 *-----------------------------------------------------------------------
819 */
820 /*VARARGS2*/
821 int
822 Lst_ForEachFrom(Lst l, LstNode ln, int (*proc)(void *, void *),
823 void *d)
824 {
825 ListNode tln = ln;
826 List list = l;
827 ListNode next;
828 Boolean done;
829 int result;
830
831 if (!LstValid(list) || LstIsEmpty(list)) {
832 return 0;
833 }
834
835 do {
836 /*
837 * Take care of having the current element deleted out from under
838 * us.
839 */
840
841 next = tln->nextPtr;
842
843 /*
844 * We're done with the traversal if
845 * - the next node to examine is the first in the queue or
846 * doesn't exist and
847 * - nothing's been added after the current node (check this
848 * after proc() has been called).
849 */
850 done = (next == NULL || next == list->firstPtr);
851
852 (void)tln->useCount++;
853 result = (*proc)(tln->datum, d);
854 (void)tln->useCount--;
855
856 /*
857 * Now check whether a node has been added.
858 * Note: this doesn't work if this node was deleted before
859 * the new node was added.
860 */
861 if (next != tln->nextPtr) {
862 next = tln->nextPtr;
863 done = 0;
864 }
865
866 if (tln->flags & LN_DELETED) {
867 free((char *)tln);
868 }
869 tln = next;
870 } while (!result && !LstIsEmpty(list) && !done);
871
872 return result;
873 }
874
875 /*-
876 *-----------------------------------------------------------------------
877 * Lst_Concat --
878 * Concatenate two lists. New elements are created to hold the data
879 * elements, if specified, but the elements themselves are not copied.
880 * If the elements should be duplicated to avoid confusion with another
881 * list, the Lst_Duplicate function should be called first.
882 * If LST_CONCLINK is specified, the second list is destroyed since
883 * its pointers have been corrupted and the list is no longer useable.
884 *
885 * Input:
886 * l1 The list to which l2 is to be appended
887 * l2 The list to append to l1
888 * flags LST_CONCNEW if LstNode's should be duplicated
889 * LST_CONCLINK if should just be relinked
890 *
891 * Results:
892 * SUCCESS if all went well. FAILURE otherwise.
893 *
894 * Side Effects:
895 * New elements are created and appended the first list.
896 *-----------------------------------------------------------------------
897 */
898 ReturnStatus
899 Lst_Concat(Lst l1, Lst l2, int flags)
900 {
901 ListNode ln; /* original LstNode */
902 ListNode nln; /* new LstNode */
903 ListNode last; /* the last element in the list. Keeps
904 * bookkeeping until the end */
905 List list1 = l1;
906 List list2 = l2;
907
908 if (!LstValid(l1) || !LstValid(l2)) {
909 return FAILURE;
910 }
911
912 if (flags == LST_CONCLINK) {
913 if (list2->firstPtr != NULL) {
914 /*
915 * We set the nextPtr of the
916 * last element of list two to be NIL to make the loop easier and
917 * so we don't need an extra case should the first list turn
918 * out to be non-circular -- the final element will already point
919 * to NIL space and the first element will be untouched if it
920 * existed before and will also point to NIL space if it didn't.
921 */
922 list2->lastPtr->nextPtr = NULL;
923 /*
924 * So long as the second list isn't empty, we just link the
925 * first element of the second list to the last element of the
926 * first list. If the first list isn't empty, we then link the
927 * last element of the list to the first element of the second list
928 * The last element of the second list, if it exists, then becomes
929 * the last element of the first list.
930 */
931 list2->firstPtr->prevPtr = list1->lastPtr;
932 if (list1->lastPtr != NULL) {
933 list1->lastPtr->nextPtr = list2->firstPtr;
934 } else {
935 list1->firstPtr = list2->firstPtr;
936 }
937 list1->lastPtr = list2->lastPtr;
938 }
939 if (list1->isCirc && list1->firstPtr != NULL) {
940 /*
941 * If the first list is supposed to be circular and it is (now)
942 * non-empty, we must make sure it's circular by linking the
943 * first element to the last and vice versa
944 */
945 list1->firstPtr->prevPtr = list1->lastPtr;
946 list1->lastPtr->nextPtr = list1->firstPtr;
947 }
948 free(l2);
949 } else if (list2->firstPtr != NULL) {
950 /*
951 * We set the nextPtr of the last element of list 2 to be nil to make
952 * the loop less difficult. The loop simply goes through the entire
953 * second list creating new LstNodes and filling in the nextPtr, and
954 * prevPtr to fit into l1 and its datum field from the
955 * datum field of the corresponding element in l2. The 'last' node
956 * follows the last of the new nodes along until the entire l2 has
957 * been appended. Only then does the bookkeeping catch up with the
958 * changes. During the first iteration of the loop, if 'last' is nil,
959 * the first list must have been empty so the newly-created node is
960 * made the first node of the list.
961 */
962 list2->lastPtr->nextPtr = NULL;
963 for (last = list1->lastPtr, ln = list2->firstPtr;
964 ln != NULL;
965 ln = ln->nextPtr)
966 {
967 PAlloc (nln, ListNode);
968 nln->datum = ln->datum;
969 if (last != NULL) {
970 last->nextPtr = nln;
971 } else {
972 list1->firstPtr = nln;
973 }
974 nln->prevPtr = last;
975 nln->flags = nln->useCount = 0;
976 last = nln;
977 }
978
979 /*
980 * Finish bookkeeping. The last new element becomes the last element
981 * of list one.
982 */
983 list1->lastPtr = last;
984
985 /*
986 * The circularity of both list one and list two must be corrected
987 * for -- list one because of the new nodes added to it; list two
988 * because of the alteration of list2->lastPtr's nextPtr to ease the
989 * above for loop.
990 */
991 if (list1->isCirc) {
992 list1->lastPtr->nextPtr = list1->firstPtr;
993 list1->firstPtr->prevPtr = list1->lastPtr;
994 } else {
995 last->nextPtr = NULL;
996 }
997
998 if (list2->isCirc) {
999 list2->lastPtr->nextPtr = list2->firstPtr;
1000 }
1001 }
1002
1003 return SUCCESS;
1004 }
1005
1006
1007 /*
1008 * these functions are for dealing with a list as a table, of sorts.
1009 * An idea of the "current element" is kept and used by all the functions
1010 * between Lst_Open() and Lst_Close().
1011 *
1012 * The sequential functions access the list in a slightly different way.
1013 * CurPtr points to their idea of the current node in the list and they
1014 * access the list based on it.
1015 *
1016 * If the list is circular, Lst_Next and Lst_Prev will go around the list
1017 * forever. Lst_IsAtEnd must be used to determine when to stop.
1018 */
1019
1020 /*-
1021 *-----------------------------------------------------------------------
1022 * Lst_Open --
1023 * Open a list for sequential access. A list can still be searched,
1024 * etc., without confusing these functions.
1025 *
1026 * Results:
1027 * SUCCESS or FAILURE.
1028 *
1029 * Side Effects:
1030 * isOpen is set TRUE and curPtr is set to NULL so the
1031 * other sequential functions know it was just opened and can choose
1032 * the first element accessed based on this.
1033 *
1034 *-----------------------------------------------------------------------
1035 */
1036 ReturnStatus
1037 Lst_Open(Lst l)
1038 {
1039 if (LstValid(l) == FALSE) {
1040 return FAILURE;
1041 }
1042 l->isOpen = TRUE;
1043 l->atEnd = LstIsEmpty(l) ? Head : Unknown;
1044 l->curPtr = NULL;
1045
1046 return SUCCESS;
1047 }
1048
1049 /*-
1050 *-----------------------------------------------------------------------
1051 * Lst_Next --
1052 * Return the next node for the given list.
1053 *
1054 * Results:
1055 * The next node or NULL if the list has yet to be opened. Also
1056 * if the list is non-circular and the end has been reached, NULL
1057 * is returned.
1058 *
1059 * Side Effects:
1060 * the curPtr field is updated.
1061 *
1062 *-----------------------------------------------------------------------
1063 */
1064 LstNode
1065 Lst_Next(Lst l)
1066 {
1067 ListNode tln;
1068 List list = l;
1069
1070 if ((LstValid(l) == FALSE) ||
1071 (list->isOpen == FALSE)) {
1072 return NULL;
1073 }
1074
1075 list->prevPtr = list->curPtr;
1076
1077 if (list->curPtr == NULL) {
1078 if (list->atEnd == Unknown) {
1079 /*
1080 * If we're just starting out, atEnd will be Unknown.
1081 * Then we want to start this thing off in the right
1082 * direction -- at the start with atEnd being Middle.
1083 */
1084 list->curPtr = tln = list->firstPtr;
1085 list->atEnd = Middle;
1086 } else {
1087 tln = NULL;
1088 list->atEnd = Tail;
1089 }
1090 } else {
1091 tln = list->curPtr->nextPtr;
1092 list->curPtr = tln;
1093
1094 if (tln == list->firstPtr || tln == NULL) {
1095 /*
1096 * If back at the front, then we've hit the end...
1097 */
1098 list->atEnd = Tail;
1099 } else {
1100 /*
1101 * Reset to Middle if gone past first.
1102 */
1103 list->atEnd = Middle;
1104 }
1105 }
1106
1107 return tln;
1108 }
1109
1110 /*-
1111 *-----------------------------------------------------------------------
1112 * Lst_IsAtEnd --
1113 * Return true if have reached the end of the given list.
1114 *
1115 * Results:
1116 * TRUE if at the end of the list (this includes the list not being
1117 * open or being invalid) or FALSE if not. We return TRUE if the list
1118 * is invalid or unopend so as to cause the caller to exit its loop
1119 * asap, the assumption being that the loop is of the form
1120 * while (!Lst_IsAtEnd (l)) {
1121 * ...
1122 * }
1123 *
1124 * Side Effects:
1125 * None.
1126 *
1127 *-----------------------------------------------------------------------
1128 */
1129 Boolean
1130 Lst_IsAtEnd(Lst l)
1131 {
1132 List list = l;
1133
1134 return !LstValid(l) || !list->isOpen ||
1135 list->atEnd == Head || list->atEnd == Tail;
1136 }
1137
1138 /*-
1139 *-----------------------------------------------------------------------
1140 * Lst_Close --
1141 * Close a list which was opened for sequential access.
1142 *
1143 * Input:
1144 * l The list to close
1145 *
1146 * Results:
1147 * None.
1148 *
1149 * Side Effects:
1150 * The list is closed.
1151 *
1152 *-----------------------------------------------------------------------
1153 */
1154 void
1155 Lst_Close(Lst l)
1156 {
1157 List list = l;
1158
1159 if (LstValid(l) == TRUE) {
1160 list->isOpen = FALSE;
1161 list->atEnd = Unknown;
1162 }
1163 }
1164
1165
1166 /*
1167 * for using the list as a queue
1168 */
1169
1170 /*-
1171 *-----------------------------------------------------------------------
1172 * Lst_EnQueue --
1173 * Add the datum to the tail of the given list.
1174 *
1175 * Results:
1176 * SUCCESS or FAILURE as returned by Lst_InsertAfter.
1177 *
1178 * Side Effects:
1179 * the lastPtr field is altered all the time and the firstPtr field
1180 * will be altered if the list used to be empty.
1181 *
1182 *-----------------------------------------------------------------------
1183 */
1184 ReturnStatus
1185 Lst_EnQueue(Lst l, void *d)
1186 {
1187 if (LstValid(l) == FALSE) {
1188 return FAILURE;
1189 }
1190
1191 return Lst_InsertAfter(l, Lst_Last(l), d);
1192 }
1193
1194 /*-
1195 *-----------------------------------------------------------------------
1196 * Lst_DeQueue --
1197 * Remove and return the datum at the head of the given list.
1198 *
1199 * Results:
1200 * The datum in the node at the head or NULL if the list
1201 * is empty.
1202 *
1203 * Side Effects:
1204 * The head node is removed from the list.
1205 *
1206 *-----------------------------------------------------------------------
1207 */
1208 void *
1209 Lst_DeQueue(Lst l)
1210 {
1211 void *rd;
1212 ListNode tln;
1213
1214 tln = Lst_First(l);
1215 if (tln == NULL) {
1216 return NULL;
1217 }
1218
1219 rd = tln->datum;
1220 if (Lst_Remove(l, tln) == FAILURE) {
1221 return NULL;
1222 } else {
1223 return rd;
1224 }
1225 }
1226