lst.c revision 1.61 1 /* $NetBSD: lst.c,v 1.61 2020/09/04 17:59:36 rillig Exp $ */
2
3 /*
4 * Copyright (c) 1988, 1989, 1990, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Adam de Boor.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35 #include <stdint.h>
36
37 #include "make.h"
38
39 #ifndef MAKE_NATIVE
40 static char rcsid[] = "$NetBSD: lst.c,v 1.61 2020/09/04 17:59:36 rillig Exp $";
41 #else
42 #include <sys/cdefs.h>
43 #ifndef lint
44 __RCSID("$NetBSD: lst.c,v 1.61 2020/09/04 17:59:36 rillig Exp $");
45 #endif /* not lint */
46 #endif
47
48 struct ListNode {
49 struct ListNode *prev; /* previous element in list */
50 struct ListNode *next; /* next in list */
51 uint8_t useCount; /* Count of functions using the node.
52 * node may not be deleted until count
53 * goes to 0 */
54 Boolean deleted; /* List node should be removed when done */
55 union {
56 void *datum; /* datum associated with this element */
57 const GNode *gnode; /* alias, just for debugging */
58 const char *str; /* alias, just for debugging */
59 };
60 };
61
62 typedef enum {
63 Head, Middle, Tail, Unknown
64 } Where;
65
66 struct List {
67 LstNode first; /* first node in list */
68 LstNode last; /* last node in list */
69
70 /* fields for sequential access */
71 Boolean isOpen; /* true if list has been Lst_Open'ed */
72 Where lastAccess; /* Where in the list the last access was */
73 LstNode curr; /* current node, if open. NULL if
74 * *just* opened */
75 LstNode prev; /* Previous node, if open. Used by Lst_Remove */
76 };
77
78 /* Allocate and initialize a list node.
79 *
80 * The fields 'prev' and 'next' must be initialized by the caller.
81 */
82 static LstNode
83 LstNodeNew(void *datum)
84 {
85 LstNode node = bmake_malloc(sizeof *node);
86 node->useCount = 0;
87 node->deleted = FALSE;
88 node->datum = datum;
89 return node;
90 }
91
92 static Boolean
93 LstIsEmpty(Lst list)
94 {
95 return list->first == NULL;
96 }
97
98 /* Create and initialize a new, empty list. */
99 Lst
100 Lst_Init(void)
101 {
102 Lst list = bmake_malloc(sizeof *list);
103
104 list->first = NULL;
105 list->last = NULL;
106 list->isOpen = FALSE;
107 list->lastAccess = Unknown;
108
109 return list;
110 }
111
112 /* Duplicate an entire list, usually by copying the datum pointers.
113 * If copyProc is given, that function is used to create the new datum from the
114 * old datum, usually by creating a copy of it. */
115 Lst
116 Lst_Copy(Lst list, LstCopyProc copyProc)
117 {
118 Lst newList;
119 LstNode node;
120
121 assert(list != NULL);
122
123 newList = Lst_Init();
124
125 for (node = list->first; node != NULL; node = node->next) {
126 void *datum = copyProc != NULL ? copyProc(node->datum) : node->datum;
127 Lst_Append(newList, datum);
128 }
129
130 return newList;
131 }
132
133 /* Free a list and all its nodes. The list data itself are not freed though. */
134 void
135 Lst_Free(Lst list)
136 {
137 LstNode node;
138 LstNode next;
139
140 assert(list != NULL);
141
142 for (node = list->first; node != NULL; node = next) {
143 next = node->next;
144 free(node);
145 }
146
147 free(list);
148 }
149
150 /* Destroy a list and free all its resources. The freeProc is called with the
151 * datum from each node in turn before the node is freed. */
152 void
153 Lst_Destroy(Lst list, LstFreeProc freeProc)
154 {
155 LstNode node;
156 LstNode next;
157
158 assert(list != NULL);
159 assert(freeProc != NULL);
160
161 for (node = list->first; node != NULL; node = next) {
162 next = node->next;
163 freeProc(node->datum);
164 free(node);
165 }
166
167 free(list);
168 }
169
170 /*
171 * Functions to modify a list
172 */
173
174 /* Insert a new node with the given piece of data before the given node in the
175 * given list. */
176 void
177 Lst_InsertBefore(Lst list, LstNode node, void *datum)
178 {
179 LstNode newNode;
180
181 assert(list != NULL);
182 assert(!LstIsEmpty(list));
183 assert(node != NULL);
184 assert(datum != NULL);
185
186 newNode = LstNodeNew(datum);
187 newNode->prev = node->prev;
188 newNode->next = node;
189
190 if (node->prev != NULL) {
191 node->prev->next = newNode;
192 }
193 node->prev = newNode;
194
195 if (node == list->first) {
196 list->first = newNode;
197 }
198 }
199
200 /* Add a piece of data at the start of the given list. */
201 void
202 Lst_Prepend(Lst list, void *datum)
203 {
204 LstNode node;
205
206 assert(list != NULL);
207 assert(datum != NULL);
208
209 node = LstNodeNew(datum);
210 node->prev = NULL;
211 node->next = list->first;
212
213 if (list->first == NULL) {
214 list->first = node;
215 list->last = node;
216 } else {
217 list->first->prev = node;
218 list->first = node;
219 }
220 }
221
222 /* Add a piece of data at the end of the given list. */
223 void
224 Lst_Append(Lst list, void *datum)
225 {
226 LstNode node;
227
228 assert(list != NULL);
229 assert(datum != NULL);
230
231 node = LstNodeNew(datum);
232 node->prev = list->last;
233 node->next = NULL;
234
235 if (list->last == NULL) {
236 list->first = node;
237 list->last = node;
238 } else {
239 list->last->next = node;
240 list->last = node;
241 }
242 }
243
244 /* Remove the given node from the given list.
245 * The datum stored in the node must be freed by the caller, if necessary. */
246 void
247 Lst_Remove(Lst list, LstNode node)
248 {
249 assert(list != NULL);
250 assert(node != NULL);
251
252 /*
253 * unlink it from the list
254 */
255 if (node->next != NULL) {
256 node->next->prev = node->prev;
257 }
258 if (node->prev != NULL) {
259 node->prev->next = node->next;
260 }
261
262 /*
263 * if either the first or last of the list point to this node,
264 * adjust them accordingly
265 */
266 if (list->first == node) {
267 list->first = node->next;
268 }
269 if (list->last == node) {
270 list->last = node->prev;
271 }
272
273 /*
274 * Sequential access stuff. If the node we're removing is the current
275 * node in the list, reset the current node to the previous one. If the
276 * previous one was non-existent (prev == NULL), we set the
277 * end to be Unknown, since it is.
278 */
279 if (list->isOpen && list->curr == node) {
280 list->curr = list->prev;
281 if (list->curr == NULL) {
282 list->lastAccess = Unknown;
283 }
284 }
285
286 /*
287 * note that the datum is unmolested. The caller must free it as
288 * necessary and as expected.
289 */
290 if (node->useCount == 0) {
291 free(node);
292 } else {
293 node->deleted = TRUE;
294 }
295 }
296
297 /* Replace the datum in the given node with the new datum. */
298 void
299 LstNode_Set(LstNode node, void *datum)
300 {
301 assert(node != NULL);
302 assert(datum != NULL);
303
304 node->datum = datum;
305 }
306
307 /* Replace the datum in the given node to NULL. */
308 void
309 LstNode_SetNull(LstNode node)
310 {
311 assert(node != NULL);
312
313 node->datum = NULL;
314 }
315
316
317 /*
318 * Node-specific functions
319 */
320
321 /* Return the first node from the given list, or NULL if the list is empty. */
322 LstNode
323 Lst_First(Lst list)
324 {
325 assert(list != NULL);
326
327 return list->first;
328 }
329
330 /* Return the last node from the given list, or NULL if the list is empty. */
331 LstNode
332 Lst_Last(Lst list)
333 {
334 assert(list != NULL);
335
336 return list->last;
337 }
338
339 /* Return the successor to the given node on its list, or NULL. */
340 LstNode
341 LstNode_Next(LstNode node)
342 {
343 assert(node != NULL);
344
345 return node->next;
346 }
347
348 /* Return the predecessor to the given node on its list, or NULL. */
349 LstNode
350 LstNode_Prev(LstNode node)
351 {
352 assert(node != NULL);
353 return node->prev;
354 }
355
356 /* Return the datum stored in the given node. */
357 void *
358 LstNode_Datum(LstNode node)
359 {
360 assert(node != NULL);
361 return node->datum;
362 }
363
364
365 /*
366 * Functions for entire lists
367 */
368
369 /* Return TRUE if the given list is empty. */
370 Boolean
371 Lst_IsEmpty(Lst list)
372 {
373 assert(list != NULL);
374
375 return LstIsEmpty(list);
376 }
377
378 /* Return the first node from the list for which the match function returns
379 * TRUE, or NULL if none of the nodes matched. */
380 LstNode
381 Lst_Find(Lst list, LstFindProc match, const void *matchArgs)
382 {
383 return Lst_FindFrom(list, Lst_First(list), match, matchArgs);
384 }
385
386 /* Return the first node from the list, starting at the given node, for which
387 * the match function returns TRUE, or NULL if none of the nodes matches.
388 *
389 * The start node may be NULL, in which case nothing is found. This allows
390 * for passing Lst_First or LstNode_Next as the start node. */
391 LstNode
392 Lst_FindFrom(Lst list, LstNode node, LstFindProc match, const void *matchArgs)
393 {
394 LstNode tln;
395
396 assert(list != NULL);
397 assert(match != NULL);
398
399 for (tln = node; tln != NULL; tln = tln->next) {
400 if (match(tln->datum, matchArgs))
401 return tln;
402 }
403
404 return NULL;
405 }
406
407 /* Return the first node that contains the given datum, or NULL. */
408 LstNode
409 Lst_FindDatum(Lst list, const void *datum)
410 {
411 LstNode node;
412
413 assert(list != NULL);
414 assert(datum != NULL);
415
416 for (node = list->first; node != NULL; node = node->next) {
417 if (node->datum == datum) {
418 return node;
419 }
420 }
421
422 return NULL;
423 }
424
425 /* Apply the given function to each element of the given list. The function
426 * should return 0 if traversal should continue and non-zero if it should
427 * abort. */
428 int
429 Lst_ForEach(Lst list, LstActionProc proc, void *procData)
430 {
431 if (LstIsEmpty(list))
432 return 0; /* XXX: Document what this value means. */
433 return Lst_ForEachFrom(list, Lst_First(list), proc, procData);
434 }
435
436 /* Apply the given function to each element of the given list, starting from
437 * the given node. The function should return 0 if traversal should continue,
438 * and non-zero if it should abort. */
439 int
440 Lst_ForEachFrom(Lst list, LstNode node,
441 LstActionProc proc, void *procData)
442 {
443 LstNode tln = node;
444 LstNode next;
445 Boolean done;
446 int result;
447
448 assert(list != NULL);
449 assert(node != NULL);
450 assert(proc != NULL);
451
452 do {
453 /*
454 * Take care of having the current element deleted out from under
455 * us.
456 */
457
458 next = tln->next;
459
460 /*
461 * We're done with the traversal if
462 * - the next node to examine doesn't exist and
463 * - nothing's been added after the current node (check this
464 * after proc() has been called).
465 */
466 done = next == NULL;
467
468 tln->useCount++;
469 result = (*proc)(tln->datum, procData);
470 tln->useCount--;
471
472 /*
473 * Now check whether a node has been added.
474 * Note: this doesn't work if this node was deleted before
475 * the new node was added.
476 */
477 if (next != tln->next) {
478 next = tln->next;
479 done = 0;
480 }
481
482 if (tln->deleted) {
483 free((char *)tln);
484 }
485 tln = next;
486 } while (!result && !LstIsEmpty(list) && !done);
487
488 return result;
489 }
490
491 /* Move all nodes from list2 to the end of list1.
492 * List2 is destroyed and freed. */
493 void
494 Lst_MoveAll(Lst list1, Lst list2)
495 {
496 assert(list1 != NULL);
497 assert(list2 != NULL);
498
499 if (list2->first != NULL) {
500 list2->first->prev = list1->last;
501 if (list1->last != NULL) {
502 list1->last->next = list2->first;
503 } else {
504 list1->first = list2->first;
505 }
506 list1->last = list2->last;
507 }
508 free(list2);
509 }
510
511 /* Copy the element data from src to the start of dst. */
512 void
513 Lst_PrependAll(Lst dst, Lst src)
514 {
515 LstNode node;
516 for (node = src->last; node != NULL; node = node->prev)
517 Lst_Prepend(dst, node->datum);
518 }
519
520 /* Copy the element data from src to the end of dst. */
521 void
522 Lst_AppendAll(Lst dst, Lst src)
523 {
524 LstNode node;
525 for (node = src->first; node != NULL; node = node->next)
526 Lst_Append(dst, node->datum);
527 }
528
529 /*
530 * these functions are for dealing with a list as a table, of sorts.
531 * An idea of the "current element" is kept and used by all the functions
532 * between Lst_Open() and Lst_Close().
533 *
534 * The sequential functions access the list in a slightly different way.
535 * CurPtr points to their idea of the current node in the list and they
536 * access the list based on it.
537 */
538
539 /* Open a list for sequential access. A list can still be searched, etc.,
540 * without confusing these functions. */
541 void
542 Lst_Open(Lst list)
543 {
544 assert(list != NULL);
545 assert(!list->isOpen);
546
547 list->isOpen = TRUE;
548 list->lastAccess = LstIsEmpty(list) ? Head : Unknown;
549 list->curr = NULL;
550 }
551
552 /* Return the next node for the given list, or NULL if the end has been
553 * reached. */
554 LstNode
555 Lst_Next(Lst list)
556 {
557 LstNode node;
558
559 assert(list != NULL);
560 assert(list->isOpen);
561
562 list->prev = list->curr;
563
564 if (list->curr == NULL) {
565 if (list->lastAccess == Unknown) {
566 /*
567 * If we're just starting out, lastAccess will be Unknown.
568 * Then we want to start this thing off in the right
569 * direction -- at the start with lastAccess being Middle.
570 */
571 list->curr = node = list->first;
572 list->lastAccess = Middle;
573 } else {
574 node = NULL;
575 list->lastAccess = Tail;
576 }
577 } else {
578 node = list->curr->next;
579 list->curr = node;
580
581 if (node == list->first || node == NULL) {
582 /*
583 * If back at the front, then we've hit the end...
584 */
585 list->lastAccess = Tail;
586 } else {
587 /*
588 * Reset to Middle if gone past first.
589 */
590 list->lastAccess = Middle;
591 }
592 }
593
594 return node;
595 }
596
597 /* Close a list which was opened for sequential access. */
598 void
599 Lst_Close(Lst list)
600 {
601 assert(list != NULL);
602 assert(list->isOpen);
603
604 list->isOpen = FALSE;
605 list->lastAccess = Unknown;
606 }
607
608
609 /*
610 * for using the list as a queue
611 */
612
613 /* Add the datum to the tail of the given list. */
614 void
615 Lst_Enqueue(Lst list, void *datum)
616 {
617 Lst_Append(list, datum);
618 }
619
620 /* Remove and return the datum at the head of the given list. */
621 void *
622 Lst_Dequeue(Lst list)
623 {
624 void *datum;
625
626 assert(list != NULL);
627 assert(!LstIsEmpty(list));
628
629 datum = list->first->datum;
630 Lst_Remove(list, list->first);
631 assert(datum != NULL);
632 return datum;
633 }
634
635 void
636 Stack_Init(Stack *stack)
637 {
638 stack->len = 0;
639 stack->cap = 10;
640 stack->items = bmake_malloc(stack->cap * sizeof stack->items[0]);
641 }
642
643 Boolean Stack_IsEmpty(Stack *stack)
644 {
645 return stack->len == 0;
646 }
647
648 void Stack_Push(Stack *stack, void *datum)
649 {
650 if (stack->len >= stack->cap) {
651 stack->cap *= 2;
652 stack->items = bmake_realloc(stack->items,
653 stack->cap * sizeof stack->items[0]);
654 }
655 stack->items[stack->len] = datum;
656 stack->len++;
657 }
658
659 void *Stack_Pop(Stack *stack)
660 {
661 assert(stack->len > 0);
662 stack->len--;
663 return stack->items[stack->len];
664 }
665
666 void Stack_Done(Stack *stack)
667 {
668 free(stack->items);
669 }
670