Home | History | Annotate | Line # | Download | only in qsieve
qsieve.c revision 1.2
      1  1.2  lukem /* $NetBSD: qsieve.c,v 1.2 2009/01/18 01:34:30 lukem Exp $ */
      2  1.1   elad 
      3  1.1   elad /*-
      4  1.1   elad  * Copyright 1994 Phil Karn <karn (at) qualcomm.com>
      5  1.1   elad  * Copyright 1996-1998, 2003 William Allen Simpson <wsimpson (at) greendragon.com>
      6  1.1   elad  * Copyright 2000 Niels Provos <provos (at) citi.umich.edu>
      7  1.1   elad  * All rights reserved.
      8  1.1   elad  *
      9  1.1   elad  * Redistribution and use in source and binary forms, with or without
     10  1.1   elad  * modification, are permitted provided that the following conditions
     11  1.1   elad  * are met:
     12  1.1   elad  * 1. Redistributions of source code must retain the above copyright
     13  1.1   elad  *    notice, this list of conditions and the following disclaimer.
     14  1.1   elad  * 2. Redistributions in binary form must reproduce the above copyright
     15  1.1   elad  *    notice, this list of conditions and the following disclaimer in the
     16  1.1   elad  *    documentation and/or other materials provided with the distribution.
     17  1.1   elad  *
     18  1.1   elad  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     19  1.1   elad  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     20  1.1   elad  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21  1.1   elad  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     22  1.1   elad  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     23  1.1   elad  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     24  1.1   elad  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     25  1.1   elad  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     26  1.1   elad  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     27  1.1   elad  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     28  1.1   elad  */
     29  1.1   elad 
     30  1.1   elad /*
     31  1.1   elad  * Sieve candidates for "safe" primes,
     32  1.1   elad  *  suitable for use as Diffie-Hellman moduli;
     33  1.1   elad  *  that is, where q = (p-1)/2 is also prime.
     34  1.1   elad  *
     35  1.1   elad  * This is the first of two steps.
     36  1.1   elad  * This step is memory intensive.
     37  1.1   elad  *
     38  1.1   elad  * 1996 May     William Allen Simpson
     39  1.1   elad  *              extracted from earlier code by Phil Karn, April 1994.
     40  1.1   elad  *              save large primes list for later processing.
     41  1.1   elad  * 1998 May     William Allen Simpson
     42  1.1   elad  *              parameterized.
     43  1.1   elad  * 2000 Dec     Niels Provos
     44  1.1   elad  *              convert from GMP to openssl BN.
     45  1.1   elad  * 2003 Jun     William Allen Simpson
     46  1.1   elad  *              change outfile definition slightly to match openssh mistake.
     47  1.1   elad  *              move common file i/o to own file for better documentation.
     48  1.1   elad  *              redo memory again.
     49  1.1   elad  */
     50  1.1   elad 
     51  1.1   elad #include <stdio.h>
     52  1.1   elad #include <stdlib.h>
     53  1.1   elad #include <time.h>
     54  1.1   elad #include <openssl/bn.h>
     55  1.1   elad #include <string.h>
     56  1.1   elad #include <err.h>
     57  1.1   elad #include "qfile.h"
     58  1.1   elad 
     59  1.1   elad /* define DEBUG_LARGE 1 */
     60  1.1   elad /* define DEBUG_SMALL 1 */
     61  1.1   elad 
     62  1.1   elad /*
     63  1.1   elad  * Using virtual memory can cause thrashing.  This should be the largest
     64  1.1   elad  * number that is supported without a large amount of disk activity --
     65  1.1   elad  * that would increase the run time from hours to days or weeks!
     66  1.1   elad  */
     67  1.1   elad #define LARGE_MINIMUM   (8UL)	/* megabytes */
     68  1.1   elad 
     69  1.1   elad /*
     70  1.1   elad  * Do not increase this number beyond the unsigned integer bit size.
     71  1.1   elad  * Due to a multiple of 4, it must be LESS than 128 (yielding 2**30 bits).
     72  1.1   elad  */
     73  1.1   elad #define LARGE_MAXIMUM   (127UL)	/* megabytes */
     74  1.1   elad 
     75  1.1   elad /*
     76  1.1   elad  * Constant: assuming 8 bit bytes and 32 bit words
     77  1.1   elad  */
     78  1.1   elad #define SHIFT_BIT       (3)
     79  1.1   elad #define SHIFT_BYTE      (2)
     80  1.1   elad #define SHIFT_WORD      (SHIFT_BIT+SHIFT_BYTE)
     81  1.1   elad #define SHIFT_MEGABYTE  (20)
     82  1.1   elad #define SHIFT_MEGAWORD  (SHIFT_MEGABYTE-SHIFT_BYTE)
     83  1.1   elad 
     84  1.1   elad /*
     85  1.1   elad  * Constant: when used with 32-bit integers, the largest sieve prime
     86  1.1   elad  * has to be less than 2**32.
     87  1.1   elad  */
     88  1.1   elad #define SMALL_MAXIMUM   (0xffffffffUL)
     89  1.1   elad 
     90  1.1   elad /*
     91  1.1   elad  * Constant: can sieve all primes less than 2**32, as 65537**2 > 2**32-1.
     92  1.1   elad  */
     93  1.1   elad #define TINY_NUMBER     (1UL<<16)
     94  1.1   elad 
     95  1.1   elad /*
     96  1.1   elad  * Ensure enough bit space for testing 2*q.
     97  1.1   elad  */
     98  1.1   elad #define TEST_MAXIMUM    (1UL<<16)
     99  1.1   elad #define TEST_MINIMUM    (QSIZE_MINIMUM + 1)
    100  1.1   elad /* real TEST_MINIMUM    (1UL << (SHIFT_WORD - TEST_POWER)) */
    101  1.1   elad #define TEST_POWER      (3)	/* 2**n, n < SHIFT_WORD */
    102  1.1   elad 
    103  1.1   elad /*
    104  1.1   elad  * bit operations on 32-bit words
    105  1.1   elad  */
    106  1.1   elad #define BIT_CLEAR(a,n)  ((a)[(n)>>SHIFT_WORD] &= ~(1U << ((n) & 31)))
    107  1.1   elad #define BIT_SET(a,n)    ((a)[(n)>>SHIFT_WORD] |= (1U << ((n) & 31)))
    108  1.1   elad #define BIT_TEST(a,n)   ((a)[(n)>>SHIFT_WORD] & (1U << ((n) & 31)))
    109  1.1   elad 
    110  1.1   elad /*
    111  1.1   elad  * sieve relative to the initial value
    112  1.1   elad  */
    113  1.1   elad uint32_t       *LargeSieve;
    114  1.1   elad uint32_t        largewords;
    115  1.1   elad uint32_t        largetries;
    116  1.1   elad uint32_t        largenumbers;
    117  1.1   elad uint32_t        largememory;	/* megabytes */
    118  1.1   elad uint32_t        largebits;
    119  1.1   elad BIGNUM         *largebase;
    120  1.1   elad 
    121  1.1   elad /*
    122  1.1   elad  * sieve 2**30 in 2**16 parts
    123  1.1   elad  */
    124  1.1   elad uint32_t       *SmallSieve;
    125  1.1   elad uint32_t        smallbits;
    126  1.1   elad uint32_t        smallbase;
    127  1.1   elad 
    128  1.1   elad /*
    129  1.1   elad  * sieve 2**16
    130  1.1   elad  */
    131  1.1   elad uint32_t       *TinySieve;
    132  1.1   elad uint32_t        tinybits;
    133  1.1   elad 
    134  1.1   elad static void     usage(void);
    135  1.1   elad void            sieve_large(uint32_t);
    136  1.1   elad 
    137  1.1   elad /*
    138  1.1   elad  * Sieve p's and q's with small factors
    139  1.1   elad  */
    140  1.1   elad void
    141  1.1   elad sieve_large(uint32_t s)
    142  1.1   elad {
    143  1.1   elad 	BN_ULONG        r;
    144  1.1   elad 	BN_ULONG        u;
    145  1.1   elad 
    146  1.1   elad #ifdef  DEBUG_SMALL
    147  1.1   elad 	(void)fprintf(stderr, "%lu\n", s);
    148  1.1   elad #endif
    149  1.1   elad 	largetries++;
    150  1.1   elad 	/* r = largebase mod s */
    151  1.1   elad 	r = BN_mod_word(largebase, (BN_ULONG) s);
    152  1.1   elad 	if (r == 0) {
    153  1.1   elad 		/* s divides into largebase exactly */
    154  1.1   elad 		u = 0;
    155  1.1   elad 	} else {
    156  1.1   elad 		/* largebase+u is first entry divisible by s */
    157  1.1   elad 		u = s - r;
    158  1.1   elad 	}
    159  1.1   elad 
    160  1.1   elad 	if (u < largebits * 2) {
    161  1.1   elad 		/*
    162  1.1   elad 		 * The sieve omits p's and q's divisible by 2, so ensure that
    163  1.1   elad 		 * largebase+u is odd. Then, step through the sieve in
    164  1.1   elad 		 * increments of 2*s
    165  1.1   elad 		 */
    166  1.1   elad 		if (u & 0x1) {
    167  1.1   elad 			/* Make largebase+u odd, and u even */
    168  1.1   elad 			u += s;
    169  1.1   elad 		}
    170  1.1   elad 
    171  1.1   elad 		/* Mark all multiples of 2*s */
    172  1.1   elad 		for (u /= 2; u < largebits; u += s) {
    173  1.1   elad 			BIT_SET(LargeSieve, (uint32_t)u);
    174  1.1   elad 		}
    175  1.1   elad 	}
    176  1.1   elad 
    177  1.1   elad 	/* r = p mod s */
    178  1.1   elad 	r = (2 * r + 1) % s;
    179  1.1   elad 
    180  1.1   elad 	if (r == 0) {
    181  1.1   elad 		/* s divides p exactly */
    182  1.1   elad 		u = 0;
    183  1.1   elad 	} else {
    184  1.1   elad 		/* p+u is first entry divisible by s */
    185  1.1   elad 		u = s - r;
    186  1.1   elad 	}
    187  1.1   elad 
    188  1.1   elad 	if (u < largebits * 4) {
    189  1.1   elad 		/*
    190  1.1   elad 		 * The sieve omits p's divisible by 4, so ensure that
    191  1.1   elad 		 * largebase+u is not. Then, step through the sieve in
    192  1.1   elad 		 * increments of 4*s
    193  1.1   elad 		 */
    194  1.1   elad 		while (u & 0x3) {
    195  1.1   elad 			if (SMALL_MAXIMUM - u < s) {
    196  1.1   elad 				return;
    197  1.1   elad 			}
    198  1.1   elad 
    199  1.1   elad 			u += s;
    200  1.1   elad 		}
    201  1.1   elad 
    202  1.1   elad 		/* Mark all multiples of 4*s */
    203  1.1   elad 		for (u /= 4; u < largebits; u += s) {
    204  1.1   elad 			BIT_SET(LargeSieve, (uint32_t)u);
    205  1.1   elad 		}
    206  1.1   elad 	}
    207  1.1   elad }
    208  1.1   elad 
    209  1.1   elad /*
    210  1.1   elad  * list candidates for Sophie-Germaine primes
    211  1.1   elad  * (where q = (p-1)/2)
    212  1.1   elad  * to standard output.
    213  1.1   elad  * The list is checked against small known primes
    214  1.1   elad  * (less than 2**30).
    215  1.1   elad  */
    216  1.1   elad int
    217  1.1   elad main(int argc, char *argv[])
    218  1.1   elad {
    219  1.1   elad 	BIGNUM         *q;
    220  1.1   elad 	uint32_t        j;
    221  1.1   elad 	int             power;
    222  1.1   elad 	uint32_t        r;
    223  1.1   elad 	uint32_t        s;
    224  1.1   elad 	uint32_t        smallwords = TINY_NUMBER >> 6;
    225  1.1   elad 	uint32_t        t;
    226  1.1   elad 	time_t          time_start;
    227  1.1   elad 	time_t          time_stop;
    228  1.1   elad 	uint32_t        tinywords = TINY_NUMBER >> 6;
    229  1.1   elad 	unsigned int    i;
    230  1.1   elad 
    231  1.1   elad 	setprogname(argv[0]);
    232  1.1   elad 
    233  1.1   elad 	if (argc < 3) {
    234  1.1   elad 		usage();
    235  1.1   elad 	}
    236  1.1   elad 
    237  1.1   elad 	/*
    238  1.1   elad          * Set power to the length in bits of the prime to be generated.
    239  1.1   elad          * This is changed to 1 less than the desired safe prime moduli p.
    240  1.1   elad          */
    241  1.1   elad 	power = (int) strtoul(argv[2], NULL, 10);
    242  1.2  lukem 	if ((unsigned)power > TEST_MAXIMUM) {
    243  1.1   elad 		errx(1, "Too many bits: %d > %lu.", power,
    244  1.1   elad 		     (unsigned long)TEST_MAXIMUM);
    245  1.1   elad 	} else if (power < TEST_MINIMUM) {
    246  1.1   elad 		errx(1, "Too few bits: %d < %lu.", power,
    247  1.1   elad 		     (unsigned long)TEST_MINIMUM);
    248  1.1   elad 	}
    249  1.1   elad 
    250  1.1   elad 	power--;		/* decrement before squaring */
    251  1.1   elad 
    252  1.1   elad 	/*
    253  1.1   elad          * The density of ordinary primes is on the order of 1/bits, so the
    254  1.1   elad          * density of safe primes should be about (1/bits)**2. Set test range
    255  1.1   elad          * to something well above bits**2 to be reasonably sure (but not
    256  1.1   elad          * guaranteed) of catching at least one safe prime.
    257  1.1   elad 	 */
    258  1.1   elad 	largewords = (uint32_t)((unsigned long)
    259  1.1   elad 			(power * power) >> (SHIFT_WORD - TEST_POWER));
    260  1.1   elad 
    261  1.1   elad 	/*
    262  1.1   elad          * Need idea of how much memory is available. We don't have to use all
    263  1.1   elad          * of it.
    264  1.1   elad 	 */
    265  1.1   elad 	largememory = (uint32_t)strtoul(argv[1], NULL, 10);
    266  1.1   elad 	if (largememory > LARGE_MAXIMUM) {
    267  1.1   elad 		warnx("Limited memory: %u MB; limit %lu MB.", largememory,
    268  1.1   elad 		      LARGE_MAXIMUM);
    269  1.1   elad 		largememory = LARGE_MAXIMUM;
    270  1.1   elad 	}
    271  1.1   elad 
    272  1.1   elad 	if (largewords <= (largememory << SHIFT_MEGAWORD)) {
    273  1.1   elad 		warnx("Increased memory: %u MB; need %u bytes.",
    274  1.1   elad 		      largememory, (largewords << SHIFT_BYTE));
    275  1.1   elad 		largewords = (largememory << SHIFT_MEGAWORD);
    276  1.1   elad 	} else if (largememory > 0) {
    277  1.1   elad 		warnx("Decreased memory: %u MB; want %u bytes.",
    278  1.1   elad 		      largememory, (largewords << SHIFT_BYTE));
    279  1.1   elad 		largewords = (largememory << SHIFT_MEGAWORD);
    280  1.1   elad 	}
    281  1.1   elad 
    282  1.1   elad 	if ((TinySieve = (uint32_t *) calloc((size_t) tinywords, sizeof(uint32_t))) == NULL) {
    283  1.1   elad 		errx(1, "Insufficient memory for tiny sieve: need %u byts.",
    284  1.1   elad 		     tinywords << SHIFT_BYTE);
    285  1.1   elad 	}
    286  1.1   elad 	tinybits = tinywords << SHIFT_WORD;
    287  1.1   elad 
    288  1.1   elad 	if ((SmallSieve = (uint32_t *) calloc((size_t) smallwords, sizeof(uint32_t))) == NULL) {
    289  1.1   elad 		errx(1, "Insufficient memory for small sieve: need %u bytes.",
    290  1.1   elad 		     smallwords << SHIFT_BYTE);
    291  1.1   elad 	}
    292  1.1   elad 	smallbits = smallwords << SHIFT_WORD;
    293  1.1   elad 
    294  1.1   elad 	/*
    295  1.1   elad 	 * dynamically determine available memory
    296  1.1   elad 	 */
    297  1.1   elad 	while ((LargeSieve = (uint32_t *)calloc((size_t)largewords,
    298  1.1   elad 						sizeof(uint32_t))) == NULL) {
    299  1.1   elad 		/* 1/4 MB chunks */
    300  1.1   elad 		largewords -= (1L << (SHIFT_MEGAWORD - 2));
    301  1.1   elad 	}
    302  1.1   elad 	largebits = largewords << SHIFT_WORD;
    303  1.1   elad 	largenumbers = largebits * 2;	/* even numbers excluded */
    304  1.1   elad 
    305  1.1   elad 	/* validation check: count the number of primes tried */
    306  1.1   elad 	largetries = 0;
    307  1.1   elad 
    308  1.1   elad 	q = BN_new();
    309  1.1   elad 	largebase = BN_new();
    310  1.1   elad 
    311  1.1   elad 	/*
    312  1.1   elad          * Generate random starting point for subprime search, or use
    313  1.1   elad          * specified parameter.
    314  1.1   elad 	 */
    315  1.1   elad 	if (argc < 4) {
    316  1.1   elad 		BN_rand(largebase, power, 1, 1);
    317  1.1   elad 	} else {
    318  1.1   elad 		BIGNUM         *a;
    319  1.1   elad 
    320  1.1   elad 		a = largebase;
    321  1.1   elad 		BN_hex2bn(&a, argv[2]);
    322  1.1   elad 	}
    323  1.1   elad 
    324  1.1   elad 	/* ensure odd */
    325  1.1   elad 	if (!BN_is_odd(largebase)) {
    326  1.1   elad 		BN_set_bit(largebase, 0);
    327  1.1   elad 	}
    328  1.1   elad 
    329  1.1   elad 	time(&time_start);
    330  1.1   elad 	(void)fprintf(stderr,
    331  1.1   elad 		"%.24s Sieve next %u plus %d-bit start point:\n# ",
    332  1.1   elad 		ctime(&time_start), largenumbers, power);
    333  1.1   elad 	BN_print_fp(stderr, largebase);
    334  1.1   elad 	(void)fprintf(stderr, "\n");
    335  1.1   elad 
    336  1.1   elad 	/*
    337  1.1   elad          * TinySieve
    338  1.1   elad          */
    339  1.1   elad 	for (i = 0; i < tinybits; i++) {
    340  1.1   elad 		if (BIT_TEST(TinySieve, i)) {
    341  1.1   elad 			/* 2*i+3 is composite */
    342  1.1   elad 			continue;
    343  1.1   elad 		}
    344  1.1   elad 
    345  1.1   elad 		/* The next tiny prime */
    346  1.1   elad 		t = 2 * i + 3;
    347  1.1   elad 
    348  1.1   elad 		/* Mark all multiples of t */
    349  1.1   elad 		for (j = i + t; j < tinybits; j += t) {
    350  1.1   elad 			BIT_SET(TinySieve, j);
    351  1.1   elad 		}
    352  1.1   elad 
    353  1.1   elad 		sieve_large(t);
    354  1.1   elad 	}
    355  1.1   elad 
    356  1.1   elad 	/*
    357  1.1   elad          * Start the small block search at the next possible prime. To avoid
    358  1.1   elad          * fencepost errors, the last pass is skipped.
    359  1.1   elad          */
    360  1.1   elad 	for (smallbase = TINY_NUMBER + 3;
    361  1.1   elad 	     smallbase < (SMALL_MAXIMUM - TINY_NUMBER);
    362  1.1   elad 	     smallbase += TINY_NUMBER) {
    363  1.1   elad 		for (i = 0; i < tinybits; i++) {
    364  1.1   elad 			if (BIT_TEST(TinySieve, i)) {
    365  1.1   elad 				/* 2*i+3 is composite */
    366  1.1   elad 				continue;
    367  1.1   elad 			}
    368  1.1   elad 
    369  1.1   elad 			/* The next tiny prime */
    370  1.1   elad 			t = 2 * i + 3;
    371  1.1   elad 			r = smallbase % t;
    372  1.1   elad 
    373  1.1   elad 			if (r == 0) {
    374  1.1   elad 				/* t divides into smallbase exactly */
    375  1.1   elad 				s = 0;
    376  1.1   elad 			} else {
    377  1.1   elad 				/* smallbase+s is first entry divisible by t */
    378  1.1   elad 				s = t - r;
    379  1.1   elad 			}
    380  1.1   elad 
    381  1.1   elad 			/*
    382  1.1   elad 			 * The sieve omits even numbers, so ensure that
    383  1.1   elad 			 * smallbase+s is odd. Then, step through the sieve in
    384  1.1   elad 			 * increments of 2*t
    385  1.1   elad 			 */
    386  1.1   elad 			if (s & 1) {
    387  1.1   elad 				/* Make smallbase+s odd, and s even */
    388  1.1   elad 				s += t;
    389  1.1   elad 			}
    390  1.1   elad 
    391  1.1   elad 			/* Mark all multiples of 2*t */
    392  1.1   elad 			for (s /= 2; s < smallbits; s += t) {
    393  1.1   elad 				BIT_SET(SmallSieve, s);
    394  1.1   elad 			}
    395  1.1   elad 		}
    396  1.1   elad 
    397  1.1   elad 		/*
    398  1.1   elad                  * SmallSieve
    399  1.1   elad                  */
    400  1.1   elad 		for (i = 0; i < smallbits; i++) {
    401  1.1   elad 			if (BIT_TEST(SmallSieve, i)) {
    402  1.1   elad 				/* 2*i+smallbase is composite */
    403  1.1   elad 				continue;
    404  1.1   elad 			}
    405  1.1   elad 
    406  1.1   elad 			/* The next small prime */
    407  1.1   elad 			sieve_large((2 * i) + smallbase);
    408  1.1   elad 		}
    409  1.1   elad 
    410  1.1   elad 		memset(SmallSieve, 0, (size_t)(smallwords << SHIFT_BYTE));
    411  1.1   elad 	}
    412  1.1   elad 
    413  1.1   elad 	time(&time_stop);
    414  1.1   elad 	(void)fprintf(stderr,
    415  1.1   elad 		"%.24s Sieved with %u small primes in %lu seconds\n",
    416  1.1   elad 		ctime(&time_stop), largetries,
    417  1.1   elad 		(long) (time_stop - time_start));
    418  1.1   elad 
    419  1.1   elad 	for (j = r = 0; j < largebits; j++) {
    420  1.1   elad 		if (BIT_TEST(LargeSieve, j)) {
    421  1.1   elad 			/* Definitely composite, skip */
    422  1.1   elad 			continue;
    423  1.1   elad 		}
    424  1.1   elad 
    425  1.1   elad #ifdef  DEBUG_LARGE
    426  1.1   elad 		(void)fprintf(stderr, "test q = largebase+%lu\n", 2 * j);
    427  1.1   elad #endif
    428  1.1   elad 
    429  1.1   elad 		BN_set_word(q, (unsigned long)(2 * j));
    430  1.1   elad 		BN_add(q, q, largebase);
    431  1.1   elad 
    432  1.1   elad 		if (0 > qfileout(stdout,
    433  1.1   elad 				 (uint32_t) QTYPE_SOPHIE_GERMAINE,
    434  1.1   elad 				 (uint32_t) QTEST_SIEVE,
    435  1.1   elad 				 largetries,
    436  1.1   elad 				 (uint32_t) (power - 1), /* MSB */
    437  1.1   elad 				 (uint32_t) (0), /* generator unknown */
    438  1.1   elad 				 q)) {
    439  1.1   elad 			break;
    440  1.1   elad 		}
    441  1.1   elad 
    442  1.1   elad 		r++;		/* count q */
    443  1.1   elad 	}
    444  1.1   elad 
    445  1.1   elad 	time(&time_stop);
    446  1.1   elad 
    447  1.1   elad 	free(LargeSieve);
    448  1.1   elad 	free(SmallSieve);
    449  1.1   elad 	free(TinySieve);
    450  1.1   elad 
    451  1.1   elad 	fflush(stdout);
    452  1.1   elad 	/* fclose(stdout); */
    453  1.1   elad 
    454  1.1   elad 	(void) fprintf(stderr, "%.24s Found %u candidates\n",
    455  1.1   elad 	    ctime(&time_stop), r);
    456  1.1   elad 
    457  1.1   elad 	return (0);
    458  1.1   elad }
    459  1.1   elad 
    460  1.1   elad static void
    461  1.1   elad usage(void)
    462  1.1   elad {
    463  1.1   elad 	(void)fprintf(stderr, "Usage: %s <megabytes> <bits> [initial]\n"
    464  1.1   elad 		"Possible values for <megabytes>: 0, %lu to %lu\n"
    465  1.1   elad 		"Possible values for <bits>: %lu to %lu\n",
    466  1.1   elad 		getprogname(),
    467  1.1   elad 		LARGE_MINIMUM,
    468  1.1   elad 		LARGE_MAXIMUM,
    469  1.1   elad 		(unsigned long) TEST_MINIMUM,
    470  1.1   elad 		(unsigned long) TEST_MAXIMUM);
    471  1.1   elad 
    472  1.1   elad 	exit(1);
    473  1.1   elad }
    474