1 1.5 joerg /* $NetBSD: nbperf-chm.c,v 1.5 2021/01/26 21:25:55 joerg Exp $ */ 2 1.1 joerg /*- 3 1.1 joerg * Copyright (c) 2009 The NetBSD Foundation, Inc. 4 1.1 joerg * All rights reserved. 5 1.1 joerg * 6 1.1 joerg * This code is derived from software contributed to The NetBSD Foundation 7 1.1 joerg * by Joerg Sonnenberger. 8 1.1 joerg * 9 1.1 joerg * Redistribution and use in source and binary forms, with or without 10 1.1 joerg * modification, are permitted provided that the following conditions 11 1.1 joerg * are met: 12 1.1 joerg * 13 1.1 joerg * 1. Redistributions of source code must retain the above copyright 14 1.1 joerg * notice, this list of conditions and the following disclaimer. 15 1.1 joerg * 2. Redistributions in binary form must reproduce the above copyright 16 1.1 joerg * notice, this list of conditions and the following disclaimer in 17 1.1 joerg * the documentation and/or other materials provided with the 18 1.1 joerg * distribution. 19 1.1 joerg * 20 1.1 joerg * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 1.1 joerg * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 1.1 joerg * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 1.1 joerg * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 1.1 joerg * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 1.1 joerg * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 1.1 joerg * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 1.1 joerg * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 28 1.1 joerg * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 29 1.1 joerg * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 30 1.1 joerg * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 1.1 joerg * SUCH DAMAGE. 32 1.1 joerg */ 33 1.3 joerg #if HAVE_NBTOOL_CONFIG_H 34 1.3 joerg #include "nbtool_config.h" 35 1.3 joerg #endif 36 1.1 joerg 37 1.1 joerg #include <sys/cdefs.h> 38 1.5 joerg __RCSID("$NetBSD: nbperf-chm.c,v 1.5 2021/01/26 21:25:55 joerg Exp $"); 39 1.1 joerg 40 1.1 joerg #include <err.h> 41 1.1 joerg #include <inttypes.h> 42 1.1 joerg #include <stdlib.h> 43 1.1 joerg #include <stdio.h> 44 1.1 joerg #include <string.h> 45 1.1 joerg 46 1.1 joerg #include "nbperf.h" 47 1.1 joerg 48 1.1 joerg #include "graph2.h" 49 1.1 joerg 50 1.1 joerg /* 51 1.1 joerg * A full description of the algorithm can be found in: 52 1.1 joerg * "An optimal algorithm for generating minimal perfect hash functions" 53 1.1 joerg * by Czech, Havas and Majewski in Information Processing Letters, 54 1.1 joerg * 43(5):256-264, October 1992. 55 1.1 joerg */ 56 1.1 joerg 57 1.1 joerg /* 58 1.1 joerg * The algorithm is based on random, acyclic graphs. 59 1.1 joerg * 60 1.1 joerg * Each edge in the represents a key. The vertices are the reminder of 61 1.1 joerg * the hash function mod n. n = cm with c > 2, otherwise the propability 62 1.1 joerg * of finding an acyclic graph is very low (for 2-graphs). The constant 63 1.1 joerg * for 3-graphs is 1.24. 64 1.1 joerg * 65 1.1 joerg * After the hashing phase, the graph is checked for cycles. 66 1.1 joerg * A cycle-free graph is either empty or has a vertex of degree 1. 67 1.1 joerg * Removing the edge for this vertex doesn't change this property, 68 1.1 joerg * so applying this recursively reduces the size of the graph. 69 1.1 joerg * If the graph is empty at the end of the process, it was acyclic. 70 1.1 joerg * 71 1.1 joerg * The assignment step now sets g[i] := 0 and processes the edges 72 1.1 joerg * in reverse order of removal. That ensures that at least one vertex 73 1.1 joerg * is always unvisited and can be assigned. 74 1.1 joerg */ 75 1.1 joerg 76 1.1 joerg struct state { 77 1.4 joerg struct SIZED(graph) graph; 78 1.1 joerg uint32_t *g; 79 1.1 joerg uint8_t *visited; 80 1.1 joerg }; 81 1.1 joerg 82 1.4 joerg #if GRAPH_SIZE == 3 83 1.1 joerg static void 84 1.1 joerg assign_nodes(struct state *state) 85 1.1 joerg { 86 1.4 joerg struct SIZED(edge) *e; 87 1.1 joerg size_t i; 88 1.4 joerg uint32_t e_idx, v0, v1, v2, g; 89 1.1 joerg 90 1.1 joerg for (i = 0; i < state->graph.e; ++i) { 91 1.1 joerg e_idx = state->graph.output_order[i]; 92 1.1 joerg e = &state->graph.edges[e_idx]; 93 1.4 joerg if (!state->visited[e->vertices[0]]) { 94 1.4 joerg v0 = e->vertices[0]; 95 1.4 joerg v1 = e->vertices[1]; 96 1.4 joerg v2 = e->vertices[2]; 97 1.4 joerg } else if (!state->visited[e->vertices[1]]) { 98 1.4 joerg v0 = e->vertices[1]; 99 1.4 joerg v1 = e->vertices[0]; 100 1.4 joerg v2 = e->vertices[2]; 101 1.1 joerg } else { 102 1.4 joerg v0 = e->vertices[2]; 103 1.4 joerg v1 = e->vertices[0]; 104 1.4 joerg v2 = e->vertices[1]; 105 1.4 joerg } 106 1.4 joerg g = e_idx - state->g[v1] - state->g[v2]; 107 1.4 joerg if (g >= state->graph.e) { 108 1.4 joerg g += state->graph.e; 109 1.4 joerg if (g >= state->graph.e) 110 1.4 joerg g += state->graph.e; 111 1.1 joerg } 112 1.4 joerg state->g[v0] = g; 113 1.4 joerg state->visited[v0] = 1; 114 1.4 joerg state->visited[v1] = 1; 115 1.4 joerg state->visited[v2] = 1; 116 1.4 joerg } 117 1.4 joerg } 118 1.1 joerg #else 119 1.4 joerg static void 120 1.4 joerg assign_nodes(struct state *state) 121 1.4 joerg { 122 1.4 joerg struct SIZED(edge) *e; 123 1.4 joerg size_t i; 124 1.4 joerg uint32_t e_idx, v0, v1, g; 125 1.4 joerg 126 1.4 joerg for (i = 0; i < state->graph.e; ++i) { 127 1.4 joerg e_idx = state->graph.output_order[i]; 128 1.4 joerg e = &state->graph.edges[e_idx]; 129 1.4 joerg if (!state->visited[e->vertices[0]]) { 130 1.4 joerg v0 = e->vertices[0]; 131 1.4 joerg v1 = e->vertices[1]; 132 1.1 joerg } else { 133 1.4 joerg v0 = e->vertices[1]; 134 1.4 joerg v1 = e->vertices[0]; 135 1.1 joerg } 136 1.4 joerg g = e_idx - state->g[v1]; 137 1.4 joerg if (g >= state->graph.e) 138 1.4 joerg g += state->graph.e; 139 1.4 joerg state->g[v0] = g; 140 1.4 joerg state->visited[v0] = 1; 141 1.4 joerg state->visited[v1] = 1; 142 1.1 joerg } 143 1.1 joerg } 144 1.4 joerg #endif 145 1.1 joerg 146 1.1 joerg static void 147 1.1 joerg print_hash(struct nbperf *nbperf, struct state *state) 148 1.1 joerg { 149 1.2 joerg uint32_t i, per_line; 150 1.1 joerg const char *g_type; 151 1.2 joerg int g_width; 152 1.1 joerg 153 1.1 joerg fprintf(nbperf->output, "#include <stdlib.h>\n\n"); 154 1.1 joerg 155 1.1 joerg fprintf(nbperf->output, "%suint32_t\n", 156 1.1 joerg nbperf->static_hash ? "static " : ""); 157 1.1 joerg fprintf(nbperf->output, 158 1.1 joerg "%s(const void * __restrict key, size_t keylen)\n", 159 1.1 joerg nbperf->hash_name); 160 1.1 joerg fprintf(nbperf->output, "{\n"); 161 1.2 joerg if (state->graph.v >= 65536) { 162 1.1 joerg g_type = "uint32_t"; 163 1.2 joerg g_width = 8; 164 1.2 joerg per_line = 4; 165 1.2 joerg } else if (state->graph.v >= 256) { 166 1.1 joerg g_type = "uint16_t"; 167 1.2 joerg g_width = 4; 168 1.2 joerg per_line = 8; 169 1.2 joerg } else { 170 1.1 joerg g_type = "uint8_t"; 171 1.2 joerg g_width = 2; 172 1.2 joerg per_line = 10; 173 1.2 joerg } 174 1.1 joerg fprintf(nbperf->output, "\tstatic const %s g[%" PRId32 "] = {\n", 175 1.1 joerg g_type, state->graph.v); 176 1.1 joerg for (i = 0; i < state->graph.v; ++i) { 177 1.2 joerg fprintf(nbperf->output, "%s0x%0*" PRIx32 ",%s", 178 1.2 joerg (i % per_line == 0 ? "\t " : " "), 179 1.2 joerg g_width, state->g[i], 180 1.2 joerg (i % per_line == per_line - 1 ? "\n" : "")); 181 1.1 joerg } 182 1.2 joerg if (i % per_line != 0) 183 1.1 joerg fprintf(nbperf->output, "\n\t};\n"); 184 1.1 joerg else 185 1.1 joerg fprintf(nbperf->output, "\t};\n"); 186 1.1 joerg fprintf(nbperf->output, "\tuint32_t h[%zu];\n\n", nbperf->hash_size); 187 1.1 joerg (*nbperf->print_hash)(nbperf, "\t", "key", "keylen", "h"); 188 1.4 joerg 189 1.4 joerg fprintf(nbperf->output, "\n\th[0] = h[0] %% %" PRIu32 ";\n", 190 1.4 joerg state->graph.v); 191 1.4 joerg fprintf(nbperf->output, "\th[1] = h[1] %% %" PRIu32 ";\n", 192 1.4 joerg state->graph.v); 193 1.4 joerg #if GRAPH_SIZE == 3 194 1.4 joerg fprintf(nbperf->output, "\th[2] = h[2] %% %" PRIu32 ";\n", 195 1.4 joerg state->graph.v); 196 1.4 joerg #endif 197 1.4 joerg 198 1.4 joerg if (state->graph.hash_fudge & 1) 199 1.4 joerg fprintf(nbperf->output, "\th[1] ^= (h[0] == h[1]);\n"); 200 1.4 joerg 201 1.4 joerg #if GRAPH_SIZE == 3 202 1.4 joerg if (state->graph.hash_fudge & 2) { 203 1.4 joerg fprintf(nbperf->output, 204 1.4 joerg "\th[2] ^= (h[0] == h[2] || h[1] == h[2]);\n"); 205 1.4 joerg fprintf(nbperf->output, 206 1.4 joerg "\th[2] ^= 2 * (h[0] == h[2] || h[1] == h[2]);\n"); 207 1.4 joerg } 208 1.4 joerg #endif 209 1.4 joerg 210 1.4 joerg #if GRAPH_SIZE == 3 211 1.4 joerg fprintf(nbperf->output, "\treturn (g[h[0]] + g[h[1]] + g[h[2]]) %% " 212 1.4 joerg "%" PRIu32 ";\n", state->graph.e); 213 1.1 joerg #else 214 1.4 joerg fprintf(nbperf->output, "\treturn (g[h[0]] + g[h[1]]) %% " 215 1.4 joerg "%" PRIu32 ";\n", state->graph.e); 216 1.1 joerg #endif 217 1.1 joerg fprintf(nbperf->output, "}\n"); 218 1.1 joerg 219 1.1 joerg if (nbperf->map_output != NULL) { 220 1.1 joerg for (i = 0; i < state->graph.e; ++i) 221 1.1 joerg fprintf(nbperf->map_output, "%" PRIu32 "\n", i); 222 1.1 joerg } 223 1.1 joerg } 224 1.1 joerg 225 1.1 joerg int 226 1.4 joerg #if GRAPH_SIZE == 3 227 1.1 joerg chm3_compute(struct nbperf *nbperf) 228 1.1 joerg #else 229 1.1 joerg chm_compute(struct nbperf *nbperf) 230 1.1 joerg #endif 231 1.1 joerg { 232 1.1 joerg struct state state; 233 1.1 joerg int retval = -1; 234 1.1 joerg uint32_t v, e; 235 1.1 joerg 236 1.4 joerg #if GRAPH_SIZE == 3 237 1.1 joerg if (nbperf->c == 0) 238 1.1 joerg nbperf-> c = 1.24; 239 1.1 joerg 240 1.1 joerg if (nbperf->c < 1.24) 241 1.1 joerg errx(1, "The argument for option -c must be at least 1.24"); 242 1.1 joerg 243 1.1 joerg if (nbperf->hash_size < 3) 244 1.1 joerg errx(1, "The hash function must generate at least 3 values"); 245 1.1 joerg #else 246 1.1 joerg if (nbperf->c == 0) 247 1.1 joerg nbperf-> c = 2; 248 1.1 joerg 249 1.1 joerg if (nbperf->c < 2) 250 1.1 joerg errx(1, "The argument for option -c must be at least 2"); 251 1.1 joerg 252 1.1 joerg if (nbperf->hash_size < 2) 253 1.1 joerg errx(1, "The hash function must generate at least 2 values"); 254 1.1 joerg #endif 255 1.1 joerg 256 1.1 joerg (*nbperf->seed_hash)(nbperf); 257 1.1 joerg e = nbperf->n; 258 1.1 joerg v = nbperf->c * nbperf->n; 259 1.4 joerg #if GRAPH_SIZE == 3 260 1.1 joerg if (v == 1.24 * nbperf->n) 261 1.1 joerg ++v; 262 1.1 joerg if (v < 10) 263 1.1 joerg v = 10; 264 1.4 joerg if (nbperf->allow_hash_fudging) 265 1.5 joerg v = (v + 3) & ~3; 266 1.1 joerg #else 267 1.1 joerg if (v == 2 * nbperf->n) 268 1.1 joerg ++v; 269 1.4 joerg if (nbperf->allow_hash_fudging) 270 1.5 joerg v = (v + 1) & ~1; 271 1.1 joerg #endif 272 1.1 joerg 273 1.1 joerg state.g = calloc(sizeof(uint32_t), v); 274 1.1 joerg state.visited = calloc(sizeof(uint8_t), v); 275 1.1 joerg if (state.g == NULL || state.visited == NULL) 276 1.1 joerg err(1, "malloc failed"); 277 1.1 joerg 278 1.4 joerg SIZED2(_setup)(&state.graph, v, e); 279 1.4 joerg if (SIZED2(_hash)(nbperf, &state.graph)) 280 1.1 joerg goto failed; 281 1.4 joerg if (SIZED2(_output_order)(&state.graph)) 282 1.1 joerg goto failed; 283 1.1 joerg assign_nodes(&state); 284 1.1 joerg print_hash(nbperf, &state); 285 1.1 joerg 286 1.1 joerg retval = 0; 287 1.1 joerg 288 1.1 joerg failed: 289 1.4 joerg SIZED2(_free)(&state.graph); 290 1.1 joerg free(state.g); 291 1.1 joerg free(state.visited); 292 1.1 joerg return retval; 293 1.1 joerg } 294