Home | History | Annotate | Line # | Download | only in sort
radix_sort.c revision 1.2
      1  1.2  dsl /*	$NetBSD: radix_sort.c,v 1.2 2009/09/05 12:00:25 dsl Exp $	*/
      2  1.1  dsl 
      3  1.1  dsl /*-
      4  1.1  dsl  * Copyright (c) 1990, 1993
      5  1.1  dsl  *	The Regents of the University of California.  All rights reserved.
      6  1.1  dsl  *
      7  1.1  dsl  * This code is derived from software contributed to Berkeley by
      8  1.1  dsl  * Peter McIlroy and by Dan Bernstein at New York University,
      9  1.1  dsl  *
     10  1.1  dsl  * Redistribution and use in source and binary forms, with or without
     11  1.1  dsl  * modification, are permitted provided that the following conditions
     12  1.1  dsl  * are met:
     13  1.1  dsl  * 1. Redistributions of source code must retain the above copyright
     14  1.1  dsl  *    notice, this list of conditions and the following disclaimer.
     15  1.1  dsl  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.1  dsl  *    notice, this list of conditions and the following disclaimer in the
     17  1.1  dsl  *    documentation and/or other materials provided with the distribution.
     18  1.1  dsl  * 3. Neither the name of the University nor the names of its contributors
     19  1.1  dsl  *    may be used to endorse or promote products derived from this software
     20  1.1  dsl  *    without specific prior written permission.
     21  1.1  dsl  *
     22  1.1  dsl  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  1.1  dsl  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  1.1  dsl  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  1.1  dsl  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  1.1  dsl  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  1.1  dsl  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  1.1  dsl  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  1.1  dsl  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  1.1  dsl  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  1.1  dsl  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  1.1  dsl  * SUCH DAMAGE.
     33  1.1  dsl  */
     34  1.1  dsl 
     35  1.1  dsl #include <sys/cdefs.h>
     36  1.1  dsl #if defined(LIBC_SCCS) && !defined(lint)
     37  1.1  dsl #if 0
     38  1.1  dsl static char sccsid[] = "@(#)radixsort.c	8.2 (Berkeley) 4/28/95";
     39  1.1  dsl #else
     40  1.2  dsl __RCSID("$NetBSD: radix_sort.c,v 1.2 2009/09/05 12:00:25 dsl Exp $");
     41  1.1  dsl #endif
     42  1.1  dsl #endif /* LIBC_SCCS and not lint */
     43  1.1  dsl 
     44  1.1  dsl /*
     45  1.1  dsl  * 'stable' radix sort initially from libc/stdlib/radixsort.c
     46  1.1  dsl  */
     47  1.1  dsl 
     48  1.1  dsl #include <sys/types.h>
     49  1.1  dsl 
     50  1.1  dsl #include <assert.h>
     51  1.1  dsl #include <errno.h>
     52  1.1  dsl #include "sort.h"
     53  1.1  dsl 
     54  1.1  dsl typedef struct {
     55  1.2  dsl 	const RECHEADER **sa;	/* Base of saved area */
     56  1.2  dsl 	int sn;				/* Number of entries */
     57  1.2  dsl 	int si;				/* index into data for compare */
     58  1.1  dsl } stack;
     59  1.1  dsl 
     60  1.2  dsl static inline int simplesort(const RECHEADER **, int, int, const u_char *, u_int);
     61  1.2  dsl static int r_sort_b(const RECHEADER **,
     62  1.2  dsl 	    const RECHEADER **, int, int, const u_char *, u_int);
     63  1.1  dsl 
     64  1.1  dsl #define	THRESHOLD	20		/* Divert to simplesort(). */
     65  1.1  dsl #define	SIZE		512		/* Default stack size. */
     66  1.1  dsl 
     67  1.2  dsl #define empty(s)	(s >= sp)
     68  1.2  dsl #define pop(a, n, i)	a = (--sp)->sa, n = sp->sn, i = sp->si
     69  1.2  dsl #define push(a, n, i)	sp->sa = a, sp->sn = n, (sp++)->si = i
     70  1.2  dsl #define swap(a, b, t)	t = a, a = b, b = t
     71  1.2  dsl 
     72  1.1  dsl int
     73  1.2  dsl radix_sort(const RECHEADER **a, const RECHEADER **ta, int n, const u_char *tab, u_int endch)
     74  1.1  dsl {
     75  1.1  dsl 	endch = tab[endch];
     76  1.2  dsl 	if (n < THRESHOLD && !DEBUG('r')) {
     77  1.2  dsl 		return simplesort(a, n, 0, tab, endch);
     78  1.1  dsl 	}
     79  1.2  dsl 	return r_sort_b(a, ta, n, 0, tab, endch);
     80  1.1  dsl }
     81  1.1  dsl 
     82  1.2  dsl static int
     83  1.2  dsl r_sort_b(const RECHEADER **a, const RECHEADER **ta, int n, int i, const u_char *tr, u_int endch)
     84  1.1  dsl {
     85  1.1  dsl 	static u_int count[256], nc, bmin;
     86  1.1  dsl 	u_int c;
     87  1.2  dsl 	const RECHEADER **ak, **ai;
     88  1.1  dsl 	stack s[512], *sp, *sp0, *sp1, temp;
     89  1.2  dsl 	const RECHEADER **top[256];
     90  1.1  dsl 	u_int *cp, bigc;
     91  1.2  dsl 	int nrec = n;
     92  1.1  dsl 
     93  1.1  dsl 	sp = s;
     94  1.1  dsl 	push(a, n, i);
     95  1.1  dsl 	while (!empty(s)) {
     96  1.1  dsl 		pop(a, n, i);
     97  1.2  dsl 		if (n < THRESHOLD && !DEBUG('r')) {
     98  1.1  dsl 			simplesort(a, n, i, tr, endch);
     99  1.1  dsl 			continue;
    100  1.1  dsl 		}
    101  1.1  dsl 
    102  1.1  dsl 		if (nc == 0) {
    103  1.1  dsl 			bmin = 255;
    104  1.1  dsl 			for (ak = a + n; --ak >= a;) {
    105  1.2  dsl 				c = tr[(*ak)->data[i]];
    106  1.1  dsl 				if (++count[c] == 1 && c != endch) {
    107  1.1  dsl 					if (c < bmin)
    108  1.1  dsl 						bmin = c;
    109  1.1  dsl 					nc++;
    110  1.1  dsl 				}
    111  1.1  dsl 			}
    112  1.1  dsl 			if (sp + nc > s + SIZE) {
    113  1.1  dsl 				r_sort_b(a, ta, n, i, tr, endch);
    114  1.1  dsl 				continue;
    115  1.1  dsl 			}
    116  1.1  dsl 		}
    117  1.1  dsl 
    118  1.1  dsl 		sp0 = sp1 = sp;
    119  1.1  dsl 		bigc = 2;
    120  1.1  dsl 		if (endch == 0) {
    121  1.1  dsl 			top[0] = ak = a + count[0];
    122  1.1  dsl 			count[0] = 0;
    123  1.1  dsl 		} else {
    124  1.1  dsl 			ak = a;
    125  1.1  dsl 			top[255] = a + n;
    126  1.1  dsl 			count[255] = 0;
    127  1.1  dsl 		}
    128  1.1  dsl 		for (cp = count + bmin; nc > 0; cp++) {
    129  1.1  dsl 			while (*cp == 0)
    130  1.1  dsl 				cp++;
    131  1.1  dsl 			if ((c = *cp) > 1) {
    132  1.1  dsl 				if (c > bigc) {
    133  1.1  dsl 					bigc = c;
    134  1.1  dsl 					sp1 = sp;
    135  1.1  dsl 				}
    136  1.1  dsl 				push(ak, c, i+1);
    137  1.1  dsl 			}
    138  1.1  dsl 			top[cp-count] = ak += c;
    139  1.1  dsl 			*cp = 0;			/* Reset count[]. */
    140  1.1  dsl 			nc--;
    141  1.1  dsl 		}
    142  1.1  dsl 		swap(*sp0, *sp1, temp);
    143  1.1  dsl 
    144  1.1  dsl 		for (ak = ta + n, ai = a+n; ak > ta;)	/* Copy to temp. */
    145  1.1  dsl 			*--ak = *--ai;
    146  1.1  dsl 		for (ak = ta+n; --ak >= ta;)		/* Deal to piles. */
    147  1.2  dsl 			*--top[tr[(*ak)->data[i]]] = *ak;
    148  1.1  dsl 	}
    149  1.2  dsl 
    150  1.2  dsl 	return nrec;
    151  1.1  dsl }
    152  1.1  dsl 
    153  1.1  dsl /* insertion sort */
    154  1.2  dsl static inline int
    155  1.2  dsl simplesort(const RECHEADER **a, int n, int b, const u_char *tr, u_int endch)
    156  1.1  dsl {
    157  1.2  dsl 	const RECHEADER **ak, **ai, *tmp;
    158  1.2  dsl 	const RECHEADER **lim = a + n;
    159  1.2  dsl 	const u_char *s, *t;
    160  1.1  dsl 	u_char ch;
    161  1.1  dsl 
    162  1.2  dsl 	if (n <= 1)
    163  1.2  dsl 		return n;
    164  1.1  dsl 
    165  1.2  dsl 	for (ak = a+1; ak < lim; ak++) {
    166  1.1  dsl 		for (ai = ak; ai > a; ai--) {
    167  1.2  dsl 			for (s = ai[0]->data + b, t = ai[-1]->data + b;
    168  1.1  dsl 			    (ch = tr[*s]) != endch; s++, t++)
    169  1.1  dsl 				if (ch != tr[*t])
    170  1.1  dsl 					break;
    171  1.2  dsl 			if (ch >= tr[*t]) {
    172  1.2  dsl 
    173  1.1  dsl 				break;
    174  1.2  dsl 			}
    175  1.2  dsl 			swap(ai[0], ai[-1], tmp);
    176  1.1  dsl 		}
    177  1.2  dsl 	}
    178  1.2  dsl 
    179  1.2  dsl 	return n;
    180  1.1  dsl }
    181