tsort.c revision 1.3 1 1.1 cgd /*
2 1.1 cgd * Copyright (c) 1989 The Regents of the University of California.
3 1.1 cgd * All rights reserved.
4 1.1 cgd *
5 1.1 cgd * This code is derived from software contributed to Berkeley by
6 1.1 cgd * Michael Rendell of Memorial University of Newfoundland.
7 1.1 cgd *
8 1.1 cgd * Redistribution and use in source and binary forms, with or without
9 1.1 cgd * modification, are permitted provided that the following conditions
10 1.1 cgd * are met:
11 1.1 cgd * 1. Redistributions of source code must retain the above copyright
12 1.1 cgd * notice, this list of conditions and the following disclaimer.
13 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 cgd * notice, this list of conditions and the following disclaimer in the
15 1.1 cgd * documentation and/or other materials provided with the distribution.
16 1.1 cgd * 3. All advertising materials mentioning features or use of this software
17 1.1 cgd * must display the following acknowledgement:
18 1.1 cgd * This product includes software developed by the University of
19 1.1 cgd * California, Berkeley and its contributors.
20 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
21 1.1 cgd * may be used to endorse or promote products derived from this software
22 1.1 cgd * without specific prior written permission.
23 1.1 cgd *
24 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 1.1 cgd * SUCH DAMAGE.
35 1.1 cgd */
36 1.1 cgd
37 1.1 cgd #ifndef lint
38 1.1 cgd char copyright[] =
39 1.1 cgd "@(#) Copyright (c) 1989 The Regents of the University of California.\n\
40 1.1 cgd All rights reserved.\n";
41 1.1 cgd #endif /* not lint */
42 1.1 cgd
43 1.1 cgd #ifndef lint
44 1.2 mycroft /*static char sccsid[] = "from: @(#)tsort.c 5.3 (Berkeley) 6/1/90";*/
45 1.3 cgd static char rcsid[] = "$Id: tsort.c,v 1.3 1993/11/17 12:01:04 cgd Exp $";
46 1.1 cgd #endif /* not lint */
47 1.1 cgd
48 1.1 cgd #include <sys/types.h>
49 1.1 cgd #include <errno.h>
50 1.1 cgd #include <stdio.h>
51 1.1 cgd #include <ctype.h>
52 1.1 cgd #include <string.h>
53 1.1 cgd
54 1.1 cgd /*
55 1.1 cgd * Topological sort. Input is a list of pairs of strings seperated by
56 1.1 cgd * white space (spaces, tabs, and/or newlines); strings are written to
57 1.1 cgd * standard output in sorted order, one per line.
58 1.1 cgd *
59 1.1 cgd * usage:
60 1.1 cgd * tsort [inputfile]
61 1.1 cgd * If no input file is specified, standard input is read.
62 1.1 cgd *
63 1.1 cgd * Should be compatable with AT&T tsort HOWEVER the output is not identical
64 1.1 cgd * (i.e. for most graphs there is more than one sorted order, and this tsort
65 1.1 cgd * usually generates a different one then the AT&T tsort). Also, cycle
66 1.1 cgd * reporting seems to be more accurate in this version (the AT&T tsort
67 1.1 cgd * sometimes says a node is in a cycle when it isn't).
68 1.1 cgd *
69 1.1 cgd * Michael Rendell, michael (at) stretch.cs.mun.ca - Feb 26, '90
70 1.1 cgd */
71 1.1 cgd #define HASHSIZE 53 /* doesn't need to be big */
72 1.1 cgd #define NF_MARK 0x1 /* marker for cycle detection */
73 1.1 cgd #define NF_ACYCLIC 0x2 /* this node is cycle free */
74 1.1 cgd
75 1.1 cgd typedef struct node_str NODE;
76 1.1 cgd
77 1.1 cgd struct node_str {
78 1.1 cgd char *n_name; /* name of this node */
79 1.1 cgd NODE **n_prevp; /* pointer to previous node's n_next */
80 1.1 cgd NODE *n_next; /* next node in graph */
81 1.1 cgd NODE *n_hash; /* next node in hash table */
82 1.1 cgd int n_narcs; /* number of arcs in n_arcs[] */
83 1.1 cgd int n_arcsize; /* size of n_arcs[] array */
84 1.1 cgd NODE **n_arcs; /* array of arcs to other nodes */
85 1.1 cgd int n_refcnt; /* # of arcs pointing to this node */
86 1.1 cgd int n_flags; /* NF_* */
87 1.1 cgd };
88 1.1 cgd
89 1.1 cgd typedef struct _buf {
90 1.1 cgd char *b_buf;
91 1.1 cgd int b_bsize;
92 1.1 cgd } BUF;
93 1.1 cgd
94 1.1 cgd NODE *add_node(), *find_node();
95 1.1 cgd void add_arc(), no_memory(), remove_node(), tsort();
96 1.1 cgd char *grow_buf(), *malloc();
97 1.1 cgd
98 1.1 cgd extern int errno;
99 1.1 cgd NODE *graph;
100 1.1 cgd NODE *hashtable[HASHSIZE];
101 1.1 cgd NODE **cycle_buf;
102 1.1 cgd NODE **longest_cycle;
103 1.1 cgd
104 1.1 cgd main(argc, argv)
105 1.1 cgd int argc;
106 1.1 cgd char **argv;
107 1.1 cgd {
108 1.1 cgd register BUF *b;
109 1.1 cgd register int c, n;
110 1.1 cgd FILE *fp;
111 1.1 cgd int bsize, nused;
112 1.1 cgd BUF bufs[2];
113 1.1 cgd
114 1.1 cgd if (argc < 2)
115 1.1 cgd fp = stdin;
116 1.1 cgd else if (argc == 2) {
117 1.1 cgd (void)fprintf(stderr, "usage: tsort [ inputfile ]\n");
118 1.1 cgd exit(1);
119 1.1 cgd } else if (!(fp = fopen(argv[1], "r"))) {
120 1.1 cgd (void)fprintf(stderr, "tsort: %s.\n", strerror(errno));
121 1.1 cgd exit(1);
122 1.1 cgd }
123 1.1 cgd
124 1.1 cgd for (b = bufs, n = 2; --n >= 0; b++)
125 1.1 cgd b->b_buf = grow_buf((char *)NULL, b->b_bsize = 1024);
126 1.1 cgd
127 1.1 cgd /* parse input and build the graph */
128 1.1 cgd for (n = 0, c = getc(fp);;) {
129 1.1 cgd while (c != EOF && isspace(c))
130 1.1 cgd c = getc(fp);
131 1.1 cgd if (c == EOF)
132 1.1 cgd break;
133 1.1 cgd
134 1.1 cgd nused = 0;
135 1.1 cgd b = &bufs[n];
136 1.1 cgd bsize = b->b_bsize;
137 1.1 cgd do {
138 1.1 cgd b->b_buf[nused++] = c;
139 1.1 cgd if (nused == bsize) {
140 1.1 cgd bsize *= 2;
141 1.1 cgd b->b_buf = grow_buf(b->b_buf, bsize);
142 1.1 cgd }
143 1.1 cgd c = getc(fp);
144 1.1 cgd } while (c != EOF && !isspace(c));
145 1.1 cgd
146 1.1 cgd b->b_buf[nused] = '\0';
147 1.1 cgd b->b_bsize = bsize;
148 1.1 cgd if (n)
149 1.1 cgd add_arc(bufs[0].b_buf, bufs[1].b_buf);
150 1.1 cgd n = !n;
151 1.1 cgd }
152 1.1 cgd (void)fclose(fp);
153 1.1 cgd if (n) {
154 1.1 cgd (void)fprintf(stderr, "tsort: odd data count.\n");
155 1.1 cgd exit(1);
156 1.1 cgd }
157 1.1 cgd
158 1.1 cgd /* do the sort */
159 1.1 cgd tsort();
160 1.1 cgd exit(0);
161 1.1 cgd }
162 1.1 cgd
163 1.1 cgd /* double the size of oldbuf and return a pointer to the new buffer. */
164 1.1 cgd char *
165 1.1 cgd grow_buf(bp, size)
166 1.1 cgd char *bp;
167 1.1 cgd int size;
168 1.1 cgd {
169 1.1 cgd char *realloc();
170 1.1 cgd
171 1.1 cgd if (!(bp = realloc(bp, (u_int)size)))
172 1.1 cgd no_memory();
173 1.1 cgd return(bp);
174 1.1 cgd }
175 1.1 cgd
176 1.1 cgd /*
177 1.1 cgd * add an arc from node s1 to node s2 in the graph. If s1 or s2 are not in
178 1.1 cgd * the graph, then add them.
179 1.1 cgd */
180 1.1 cgd void
181 1.1 cgd add_arc(s1, s2)
182 1.1 cgd char *s1, *s2;
183 1.1 cgd {
184 1.1 cgd register NODE *n1;
185 1.1 cgd NODE *n2;
186 1.1 cgd int bsize;
187 1.1 cgd
188 1.1 cgd n1 = find_node(s1);
189 1.1 cgd if (!n1)
190 1.1 cgd n1 = add_node(s1);
191 1.1 cgd
192 1.1 cgd if (!strcmp(s1, s2))
193 1.1 cgd return;
194 1.1 cgd
195 1.1 cgd n2 = find_node(s2);
196 1.1 cgd if (!n2)
197 1.1 cgd n2 = add_node(s2);
198 1.1 cgd
199 1.1 cgd /*
200 1.3 cgd * Check if this arc is already here.
201 1.3 cgd */
202 1.3 cgd for (i = 0; i < n1->n_narcs; i++)
203 1.3 cgd if (n1->n_arcs[i] == n2)
204 1.3 cgd return;
205 1.3 cgd
206 1.3 cgd /*
207 1.3 cgd * Add it.
208 1.1 cgd */
209 1.1 cgd if (n1->n_narcs == n1->n_arcsize) {
210 1.1 cgd if (!n1->n_arcsize)
211 1.1 cgd n1->n_arcsize = 10;
212 1.1 cgd bsize = n1->n_arcsize * sizeof(*n1->n_arcs) * 2;
213 1.1 cgd n1->n_arcs = (NODE **)grow_buf((char *)n1->n_arcs, bsize);
214 1.1 cgd n1->n_arcsize = bsize / sizeof(*n1->n_arcs);
215 1.1 cgd }
216 1.1 cgd n1->n_arcs[n1->n_narcs++] = n2;
217 1.1 cgd ++n2->n_refcnt;
218 1.1 cgd }
219 1.1 cgd
220 1.1 cgd hash_string(s)
221 1.1 cgd char *s;
222 1.1 cgd {
223 1.1 cgd register int hash, i;
224 1.1 cgd
225 1.1 cgd for (hash = 0, i = 1; *s; s++, i++)
226 1.1 cgd hash += *s * i;
227 1.1 cgd return(hash % HASHSIZE);
228 1.1 cgd }
229 1.1 cgd
230 1.1 cgd /*
231 1.1 cgd * find a node in the graph and return a pointer to it - returns null if not
232 1.1 cgd * found.
233 1.1 cgd */
234 1.1 cgd NODE *
235 1.1 cgd find_node(name)
236 1.1 cgd char *name;
237 1.1 cgd {
238 1.1 cgd register NODE *n;
239 1.1 cgd
240 1.1 cgd for (n = hashtable[hash_string(name)]; n; n = n->n_hash)
241 1.1 cgd if (!strcmp(n->n_name, name))
242 1.1 cgd return(n);
243 1.1 cgd return((NODE *)NULL);
244 1.1 cgd }
245 1.1 cgd
246 1.1 cgd /* Add a node to the graph and return a pointer to it. */
247 1.1 cgd NODE *
248 1.1 cgd add_node(name)
249 1.1 cgd char *name;
250 1.1 cgd {
251 1.1 cgd register NODE *n;
252 1.1 cgd int hash;
253 1.1 cgd
254 1.1 cgd if (!(n = (NODE *)malloc(sizeof(NODE))) || !(n->n_name = strdup(name)))
255 1.1 cgd no_memory();
256 1.1 cgd
257 1.1 cgd n->n_narcs = 0;
258 1.1 cgd n->n_arcsize = 0;
259 1.1 cgd n->n_arcs = (NODE **)NULL;
260 1.1 cgd n->n_refcnt = 0;
261 1.1 cgd n->n_flags = 0;
262 1.1 cgd
263 1.1 cgd /* add to linked list */
264 1.1 cgd if (n->n_next = graph)
265 1.1 cgd graph->n_prevp = &n->n_next;
266 1.1 cgd n->n_prevp = &graph;
267 1.1 cgd graph = n;
268 1.1 cgd
269 1.1 cgd /* add to hash table */
270 1.1 cgd hash = hash_string(name);
271 1.1 cgd n->n_hash = hashtable[hash];
272 1.1 cgd hashtable[hash] = n;
273 1.1 cgd return(n);
274 1.1 cgd }
275 1.1 cgd
276 1.1 cgd /* do topological sort on graph */
277 1.1 cgd void
278 1.1 cgd tsort()
279 1.1 cgd {
280 1.1 cgd register NODE *n, *next;
281 1.1 cgd register int cnt;
282 1.1 cgd
283 1.1 cgd while (graph) {
284 1.1 cgd /*
285 1.1 cgd * keep getting rid of simple cases until there are none left,
286 1.1 cgd * if there are any nodes still in the graph, then there is
287 1.1 cgd * a cycle in it.
288 1.1 cgd */
289 1.1 cgd do {
290 1.1 cgd for (cnt = 0, n = graph; n; n = next) {
291 1.1 cgd next = n->n_next;
292 1.1 cgd if (n->n_refcnt == 0) {
293 1.1 cgd remove_node(n);
294 1.1 cgd ++cnt;
295 1.1 cgd }
296 1.1 cgd }
297 1.1 cgd } while (graph && cnt);
298 1.1 cgd
299 1.1 cgd if (!graph)
300 1.1 cgd break;
301 1.1 cgd
302 1.1 cgd if (!cycle_buf) {
303 1.1 cgd /*
304 1.1 cgd * allocate space for two cycle logs - one to be used
305 1.1 cgd * as scratch space, the other to save the longest
306 1.1 cgd * cycle.
307 1.1 cgd */
308 1.1 cgd for (cnt = 0, n = graph; n; n = n->n_next)
309 1.1 cgd ++cnt;
310 1.1 cgd cycle_buf =
311 1.1 cgd (NODE **)malloc((u_int)sizeof(NODE *) * cnt);
312 1.1 cgd longest_cycle =
313 1.1 cgd (NODE **)malloc((u_int)sizeof(NODE *) * cnt);
314 1.1 cgd if (!cycle_buf || !longest_cycle)
315 1.1 cgd no_memory();
316 1.1 cgd }
317 1.1 cgd for (n = graph; n; n = n->n_next)
318 1.1 cgd if (!(n->n_flags & NF_ACYCLIC)) {
319 1.1 cgd if (cnt = find_cycle(n, n, 0, 0)) {
320 1.1 cgd register int i;
321 1.1 cgd
322 1.1 cgd (void)fprintf(stderr,
323 1.1 cgd "tsort: cycle in data.\n");
324 1.1 cgd for (i = 0; i < cnt; i++)
325 1.1 cgd (void)fprintf(stderr,
326 1.1 cgd "tsort: %s.\n", longest_cycle[i]->n_name);
327 1.1 cgd remove_node(n);
328 1.1 cgd break;
329 1.1 cgd } else
330 1.1 cgd /* to avoid further checks */
331 1.1 cgd n->n_flags = NF_ACYCLIC;
332 1.1 cgd }
333 1.1 cgd
334 1.1 cgd if (!n) {
335 1.1 cgd (void)fprintf(stderr,
336 1.1 cgd "tsort: internal error -- could not find cycle.\n");
337 1.1 cgd exit(1);
338 1.1 cgd }
339 1.1 cgd }
340 1.1 cgd }
341 1.1 cgd
342 1.1 cgd /* print node and remove from graph (does not actually free node) */
343 1.1 cgd void
344 1.1 cgd remove_node(n)
345 1.1 cgd register NODE *n;
346 1.1 cgd {
347 1.1 cgd register NODE **np;
348 1.1 cgd register int i;
349 1.1 cgd
350 1.1 cgd (void)printf("%s\n", n->n_name);
351 1.1 cgd for (np = n->n_arcs, i = n->n_narcs; --i >= 0; np++)
352 1.1 cgd --(*np)->n_refcnt;
353 1.1 cgd n->n_narcs = 0;
354 1.1 cgd *n->n_prevp = n->n_next;
355 1.1 cgd if (n->n_next)
356 1.1 cgd n->n_next->n_prevp = n->n_prevp;
357 1.1 cgd }
358 1.1 cgd
359 1.1 cgd /* look for the longest cycle from node from to node to. */
360 1.1 cgd find_cycle(from, to, longest_len, depth)
361 1.1 cgd NODE *from, *to;
362 1.1 cgd int depth, longest_len;
363 1.1 cgd {
364 1.1 cgd register NODE **np;
365 1.1 cgd register int i, len;
366 1.1 cgd
367 1.1 cgd /*
368 1.1 cgd * avoid infinite loops and ignore portions of the graph known
369 1.1 cgd * to be acyclic
370 1.1 cgd */
371 1.1 cgd if (from->n_flags & (NF_MARK|NF_ACYCLIC))
372 1.1 cgd return(0);
373 1.1 cgd from->n_flags = NF_MARK;
374 1.1 cgd
375 1.1 cgd for (np = from->n_arcs, i = from->n_narcs; --i >= 0; np++) {
376 1.1 cgd cycle_buf[depth] = *np;
377 1.1 cgd if (*np == to) {
378 1.1 cgd if (depth + 1 > longest_len) {
379 1.1 cgd longest_len = depth + 1;
380 1.1 cgd (void)memcpy((char *)longest_cycle,
381 1.1 cgd (char *)cycle_buf,
382 1.1 cgd longest_len * sizeof(NODE *));
383 1.1 cgd }
384 1.1 cgd } else {
385 1.1 cgd len = find_cycle(*np, to, longest_len, depth + 1);
386 1.1 cgd if (len > longest_len)
387 1.1 cgd longest_len = len;
388 1.1 cgd }
389 1.1 cgd }
390 1.1 cgd from->n_flags &= ~NF_MARK;
391 1.1 cgd return(longest_len);
392 1.1 cgd }
393 1.1 cgd
394 1.1 cgd void
395 1.1 cgd no_memory()
396 1.1 cgd {
397 1.1 cgd (void)fprintf(stderr, "tsort: %s.\n", strerror(ENOMEM));
398 1.1 cgd exit(1);
399 1.1 cgd }
400