lex.c revision 1.139 1 /* $NetBSD: lex.c,v 1.139 2023/01/21 10:11:41 rillig Exp $ */
2
3 /*
4 * Copyright (c) 1996 Christopher G. Demetriou. All Rights Reserved.
5 * Copyright (c) 1994, 1995 Jochen Pohl
6 * All Rights Reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Jochen Pohl for
19 * The NetBSD Project.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #if HAVE_NBTOOL_CONFIG_H
36 #include "nbtool_config.h"
37 #endif
38
39 #include <sys/cdefs.h>
40 #if defined(__RCSID)
41 __RCSID("$NetBSD: lex.c,v 1.139 2023/01/21 10:11:41 rillig Exp $");
42 #endif
43
44 #include <ctype.h>
45 #include <errno.h>
46 #include <float.h>
47 #include <limits.h>
48 #include <math.h>
49 #include <stdlib.h>
50 #include <string.h>
51
52 #include "lint1.h"
53 #include "cgram.h"
54
55 #define CHAR_MASK ((1U << CHAR_SIZE) - 1)
56
57
58 /* Current position (it's also updated when an included file is parsed) */
59 pos_t curr_pos = { "", 1, 0 };
60
61 /*
62 * Current position in C source (not updated when an included file is
63 * parsed).
64 */
65 pos_t csrc_pos = { "", 1, 0 };
66
67 bool in_gcc_attribute;
68 bool in_system_header;
69
70 /*
71 * Valid values for 'since' are 78, 90, 99, 11.
72 *
73 * As of 2022-04-30, lint treats 11 like 99, in order to provide good error
74 * messages instead of a simple parse error. If the keyword '_Generic' were
75 * not defined, it would be interpreted as an implicit function call, leading
76 * to a parse error.
77 */
78 #define kwdef(name, token, scl, tspec, tqual, since, gcc, deco) \
79 { \
80 name, token, scl, tspec, tqual, \
81 (since) == 90, \
82 /* CONSTCOND */ (since) == 99 || (since) == 11, \
83 (gcc) > 0, \
84 ((deco) & 1) != 0, ((deco) & 2) != 0, ((deco) & 4) != 0, \
85 }
86 #define kwdef_token(name, token, since, gcc, deco) \
87 kwdef(name, token, 0, 0, 0, since, gcc, deco)
88 #define kwdef_sclass(name, sclass, since, gcc, deco) \
89 kwdef(name, T_SCLASS, sclass, 0, 0, since, gcc, deco)
90 #define kwdef_type(name, tspec, since) \
91 kwdef(name, T_TYPE, 0, tspec, 0, since, 0, 1)
92 #define kwdef_tqual(name, tqual, since, gcc, deco) \
93 kwdef(name, T_QUAL, 0, 0, tqual, since, gcc, deco)
94 #define kwdef_keyword(name, token) \
95 kwdef(name, token, 0, 0, 0, 78, 0, 1)
96
97 /* During initialization, these keywords are written to the symbol table. */
98 static const struct keyword {
99 const char *kw_name; /* keyword */
100 int kw_token; /* token returned by yylex() */
101 scl_t kw_scl; /* storage class if kw_token T_SCLASS */
102 tspec_t kw_tspec; /* type spec. if kw_token
103 * T_TYPE or T_STRUCT_OR_UNION */
104 tqual_t kw_tqual; /* type qual. if kw_token T_QUAL */
105 bool kw_c90:1; /* C90 keyword */
106 bool kw_c99_or_c11:1; /* C99 or C11 keyword */
107 bool kw_gcc:1; /* GCC keyword */
108 bool kw_plain:1; /* 'name' */
109 bool kw_leading:1; /* '__name' */
110 bool kw_both:1; /* '__name__' */
111 } keywords[] = {
112 kwdef_keyword( "_Alignas", T_ALIGNAS),
113 kwdef_keyword( "_Alignof", T_ALIGNOF),
114 kwdef_token( "alignof", T_ALIGNOF, 78,0,6),
115 kwdef_token( "asm", T_ASM, 78,1,7),
116 kwdef_token( "attribute", T_ATTRIBUTE, 78,1,6),
117 kwdef_sclass( "auto", AUTO, 78,0,1),
118 kwdef_type( "_Bool", BOOL, 99),
119 kwdef_keyword( "break", T_BREAK),
120 kwdef_token( "__builtin_offsetof", T_BUILTIN_OFFSETOF, 78,1,1),
121 kwdef_keyword( "case", T_CASE),
122 kwdef_type( "char", CHAR, 78),
123 kwdef_type( "_Complex", COMPLEX, 99),
124 kwdef_tqual( "const", CONST, 90,0,7),
125 kwdef_keyword( "continue", T_CONTINUE),
126 kwdef_keyword( "default", T_DEFAULT),
127 kwdef_keyword( "do", T_DO),
128 kwdef_type( "double", DOUBLE, 78),
129 kwdef_keyword( "else", T_ELSE),
130 kwdef_keyword( "enum", T_ENUM),
131 kwdef_token( "__extension__",T_EXTENSION, 78,1,1),
132 kwdef_sclass( "extern", EXTERN, 78,0,1),
133 kwdef_type( "float", FLOAT, 78),
134 kwdef_keyword( "for", T_FOR),
135 kwdef_token( "_Generic", T_GENERIC, 11,0,1),
136 kwdef_keyword( "goto", T_GOTO),
137 kwdef_keyword( "if", T_IF),
138 kwdef_token( "__imag__", T_IMAG, 78,1,1),
139 kwdef_sclass( "inline", INLINE, 99,0,7),
140 kwdef_type( "int", INT, 78),
141 #ifdef INT128_SIZE
142 kwdef_type( "__int128_t", INT128, 99),
143 #endif
144 kwdef_type( "long", LONG, 78),
145 kwdef_token( "_Noreturn", T_NORETURN, 11,0,1),
146 kwdef_token( "__packed", T_PACKED, 78,0,1),
147 kwdef_token( "__real__", T_REAL, 78,1,1),
148 kwdef_sclass( "register", REG, 78,0,1),
149 kwdef_tqual( "restrict", RESTRICT, 99,0,7),
150 kwdef_keyword( "return", T_RETURN),
151 kwdef_type( "short", SHORT, 78),
152 kwdef( "signed", T_TYPE, 0, SIGNED, 0, 90,0,3),
153 kwdef_keyword( "sizeof", T_SIZEOF),
154 kwdef_sclass( "static", STATIC, 78,0,1),
155 kwdef_keyword( "_Static_assert", T_STATIC_ASSERT),
156 kwdef("struct", T_STRUCT_OR_UNION, 0, STRUCT, 0, 78,0,1),
157 kwdef_keyword( "switch", T_SWITCH),
158 kwdef_token( "__symbolrename", T_SYMBOLRENAME, 78,0,1),
159 kwdef_tqual( "__thread", THREAD, 78,1,1),
160 kwdef_tqual( "_Thread_local", THREAD, 11,0,1),
161 kwdef_sclass( "typedef", TYPEDEF, 78,0,1),
162 kwdef_token( "typeof", T_TYPEOF, 78,1,7),
163 #ifdef INT128_SIZE
164 kwdef_type( "__uint128_t", UINT128, 99),
165 #endif
166 kwdef("union", T_STRUCT_OR_UNION, 0, UNION, 0, 78,0,1),
167 kwdef_type( "unsigned", UNSIGN, 78),
168 kwdef_type( "void", VOID, 78),
169 kwdef_tqual( "volatile", VOLATILE, 90,0,7),
170 kwdef_keyword( "while", T_WHILE),
171 #undef kwdef
172 #undef kwdef_token
173 #undef kwdef_sclass
174 #undef kwdef_type
175 #undef kwdef_tqual
176 #undef kwdef_keyword
177 };
178
179 /* Symbol table */
180 static sym_t *symtab[HSHSIZ1];
181
182 /* type of next expected symbol */
183 symt_t symtyp;
184
185
186 static unsigned int
187 hash(const char *s)
188 {
189 unsigned int v;
190 const char *p;
191
192 v = 0;
193 for (p = s; *p != '\0'; p++) {
194 v = (v << 4) + (unsigned char)*p;
195 v ^= v >> 28;
196 }
197 return v % HSHSIZ1;
198 }
199
200 static void
201 symtab_add(sym_t *sym)
202 {
203 unsigned int h;
204
205 h = hash(sym->s_name);
206 if ((sym->s_symtab_next = symtab[h]) != NULL)
207 symtab[h]->s_symtab_ref = &sym->s_symtab_next;
208 sym->s_symtab_ref = &symtab[h];
209 symtab[h] = sym;
210 }
211
212 static sym_t *
213 symtab_search(sbuf_t *sb)
214 {
215
216 unsigned int h = hash(sb->sb_name);
217 for (sym_t *sym = symtab[h]; sym != NULL; sym = sym->s_symtab_next) {
218 if (strcmp(sym->s_name, sb->sb_name) != 0)
219 continue;
220
221 const struct keyword *kw = sym->s_keyword;
222 if (kw != NULL || in_gcc_attribute)
223 return sym;
224 if (kw == NULL && !in_gcc_attribute && sym->s_kind == symtyp)
225 return sym;
226 }
227
228 return NULL;
229 }
230
231 static void
232 symtab_remove(sym_t *sym)
233 {
234
235 if ((*sym->s_symtab_ref = sym->s_symtab_next) != NULL)
236 sym->s_symtab_next->s_symtab_ref = sym->s_symtab_ref;
237 sym->s_symtab_next = NULL;
238 }
239
240 static void
241 symtab_remove_locals(void)
242 {
243
244 for (size_t i = 0; i < HSHSIZ1; i++) {
245 for (sym_t *sym = symtab[i]; sym != NULL; ) {
246 sym_t *next = sym->s_symtab_next;
247 if (sym->s_block_level >= 1)
248 symtab_remove(sym);
249 sym = next;
250 }
251 }
252 }
253
254 #ifdef DEBUG
255 static int
256 sym_by_name(const void *va, const void *vb)
257 {
258 const sym_t *a = *(const sym_t *const *)va;
259 const sym_t *b = *(const sym_t *const *)vb;
260
261 return strcmp(a->s_name, b->s_name);
262 }
263
264 struct syms {
265 const sym_t **items;
266 size_t len;
267 size_t cap;
268 };
269
270 static void
271 syms_add(struct syms *syms, const sym_t *sym)
272 {
273 while (syms->len >= syms->cap) {
274 syms->cap *= 2;
275 syms->items = xrealloc(syms->items,
276 syms->cap * sizeof(syms->items[0]));
277 }
278 syms->items[syms->len++] = sym;
279 }
280
281 void
282 debug_symtab(void)
283 {
284 struct syms syms = { xcalloc(64, sizeof(syms.items[0])), 0, 64 };
285
286 for (int level = -1;; level++) {
287 bool more = false;
288 size_t n = sizeof(symtab) / sizeof(symtab[0]);
289
290 syms.len = 0;
291 for (size_t i = 0; i < n; i++) {
292 for (sym_t *sym = symtab[i]; sym != NULL;) {
293 if (sym->s_block_level == level &&
294 sym->s_keyword == NULL)
295 syms_add(&syms, sym);
296 if (sym->s_block_level > level)
297 more = true;
298 sym = sym->s_symtab_next;
299 }
300 }
301
302 if (syms.len > 0) {
303 debug_printf("symbol table level %d\n", level);
304 debug_indent_inc();
305 qsort(syms.items, syms.len, sizeof(syms.items[0]),
306 sym_by_name);
307 for (size_t i = 0; i < syms.len; i++)
308 debug_sym("", syms.items[i], "\n");
309 debug_indent_dec();
310
311 lint_assert(level != -1);
312 }
313
314 if (!more)
315 break;
316 }
317
318 free(syms.items);
319 }
320 #endif
321
322 static void
323 add_keyword(const struct keyword *kw, bool leading, bool trailing)
324 {
325 sym_t *sym;
326 char buf[256];
327 const char *name;
328
329 if (!leading && !trailing) {
330 name = kw->kw_name;
331 } else {
332 (void)snprintf(buf, sizeof(buf), "%s%s%s",
333 leading ? "__" : "", kw->kw_name, trailing ? "__" : "");
334 name = xstrdup(buf);
335 }
336
337 sym = block_zero_alloc(sizeof(*sym));
338 sym->s_name = name;
339 sym->s_keyword = kw;
340 sym->u.s_keyword.sk_token = kw->kw_token;
341 if (kw->kw_token == T_TYPE || kw->kw_token == T_STRUCT_OR_UNION) {
342 sym->u.s_keyword.sk_tspec = kw->kw_tspec;
343 } else if (kw->kw_token == T_SCLASS) {
344 sym->s_scl = kw->kw_scl;
345 } else if (kw->kw_token == T_QUAL) {
346 sym->u.s_keyword.sk_qualifier = kw->kw_tqual;
347 }
348
349 symtab_add(sym);
350 }
351
352 static bool
353 is_keyword_known(const struct keyword *kw)
354 {
355
356 if ((kw->kw_c90 || kw->kw_c99_or_c11) && !allow_c90)
357 return false;
358
359 /*
360 * In the 1990s, GCC defined several keywords that were later
361 * incorporated into C99, therefore in GCC mode, all C99 keywords are
362 * made available. The C11 keywords are made available as well, but
363 * there are so few that they don't matter practically.
364 */
365 if (allow_gcc)
366 return true;
367 if (kw->kw_gcc)
368 return false;
369
370 if (kw->kw_c99_or_c11 && !allow_c99)
371 return false;
372 return true;
373 }
374
375 /*
376 * All keywords are written to the symbol table. This saves us looking
377 * in an extra table for each name we found.
378 */
379 void
380 initscan(void)
381 {
382 const struct keyword *kw, *end;
383
384 end = keywords + sizeof(keywords) / sizeof(keywords[0]);
385 for (kw = keywords; kw != end; kw++) {
386 if (!is_keyword_known(kw))
387 continue;
388 if (kw->kw_plain)
389 add_keyword(kw, false, false);
390 if (kw->kw_leading)
391 add_keyword(kw, true, false);
392 if (kw->kw_both)
393 add_keyword(kw, true, true);
394 }
395 }
396
397 /*
398 * When scanning the remainder of a long token (see lex_input), read a byte
399 * and return it as an unsigned char or as EOF.
400 *
401 * Increment the line counts if necessary.
402 */
403 static int
404 read_byte(void)
405 {
406 int c;
407
408 if ((c = lex_input()) == EOF)
409 return c;
410 c &= CHAR_MASK;
411 if (c == '\0')
412 return EOF; /* lex returns 0 on EOF. */
413 if (c == '\n')
414 lex_next_line();
415 return c;
416 }
417
418 static int
419 lex_keyword(sym_t *sym)
420 {
421 int t;
422
423 if ((t = sym->u.s_keyword.sk_token) == T_SCLASS) {
424 yylval.y_scl = sym->s_scl;
425 } else if (t == T_TYPE || t == T_STRUCT_OR_UNION) {
426 yylval.y_tspec = sym->u.s_keyword.sk_tspec;
427 } else if (t == T_QUAL) {
428 yylval.y_tqual = sym->u.s_keyword.sk_qualifier;
429 }
430 return t;
431 }
432
433 /*
434 * Lex has found a letter followed by zero or more letters or digits.
435 * It looks for a symbol in the symbol table with the same name. This
436 * symbol must either be a keyword or a symbol of the type required by
437 * symtyp (label, member, tag, ...).
438 *
439 * If it is a keyword, the token is returned. In some cases it is described
440 * more deeply by data written to yylval.
441 *
442 * If it is a symbol, T_NAME is returned and the name is stored in yylval.
443 * If there is already a symbol of the same name and type in the symbol
444 * table, yylval.y_name->sb_sym points there.
445 */
446 extern int
447 lex_name(const char *yytext, size_t yyleng)
448 {
449 char *s;
450 sbuf_t *sb;
451 sym_t *sym;
452 int tok;
453
454 sb = xmalloc(sizeof(*sb));
455 sb->sb_name = yytext;
456 sb->sb_len = yyleng;
457 if ((sym = symtab_search(sb)) != NULL && sym->s_keyword != NULL) {
458 free(sb);
459 return lex_keyword(sym);
460 }
461
462 sb->sb_sym = sym;
463
464 if (sym != NULL) {
465 lint_assert(block_level >= sym->s_block_level);
466 sb->sb_name = sym->s_name;
467 tok = sym->s_scl == TYPEDEF ? T_TYPENAME : T_NAME;
468 } else {
469 s = block_zero_alloc(yyleng + 1);
470 (void)memcpy(s, yytext, yyleng + 1);
471 sb->sb_name = s;
472 tok = T_NAME;
473 }
474
475 yylval.y_name = sb;
476 return tok;
477 }
478
479 /*
480 * Convert a string representing an integer into internal representation.
481 * Return T_CON, storing the numeric value in yylval, for yylex.
482 */
483 int
484 lex_integer_constant(const char *yytext, size_t yyleng, int base)
485 {
486 int l_suffix, u_suffix;
487 size_t len;
488 const char *cp;
489 char c, *eptr;
490 tspec_t typ;
491 bool ansiu;
492 bool warned = false;
493 uint64_t uq = 0;
494
495 /* C11 6.4.4.1p5 */
496 static const tspec_t suffix_type[2][3] = {
497 { INT, LONG, QUAD, },
498 { UINT, ULONG, UQUAD, }
499 };
500
501 cp = yytext;
502 len = yyleng;
503
504 /* skip 0[xX] or 0[bB] */
505 if (base == 16 || base == 2) {
506 cp += 2;
507 len -= 2;
508 }
509
510 /* read suffixes */
511 l_suffix = u_suffix = 0;
512 for (;;) {
513 if ((c = cp[len - 1]) == 'l' || c == 'L') {
514 l_suffix++;
515 } else if (c == 'u' || c == 'U') {
516 u_suffix++;
517 } else {
518 break;
519 }
520 len--;
521 }
522 if (l_suffix > 2 || u_suffix > 1) {
523 /* malformed integer constant */
524 warning(251);
525 if (l_suffix > 2)
526 l_suffix = 2;
527 if (u_suffix > 1)
528 u_suffix = 1;
529 }
530 if (!allow_c90 && u_suffix != 0) {
531 /* suffix U is illegal in traditional C */
532 warning(97);
533 }
534 typ = suffix_type[u_suffix][l_suffix];
535
536 errno = 0;
537
538 uq = (uint64_t)strtoull(cp, &eptr, base);
539 lint_assert(eptr == cp + len);
540 if (errno != 0) {
541 /* integer constant out of range */
542 warning(252);
543 warned = true;
544 }
545
546 /*
547 * If the value is too big for the current type, we must choose
548 * another type.
549 */
550 ansiu = false;
551 switch (typ) {
552 case INT:
553 if (uq <= TARG_INT_MAX) {
554 /* ok */
555 } else if (uq <= TARG_UINT_MAX && base != 10) {
556 typ = UINT;
557 } else if (uq <= TARG_LONG_MAX) {
558 typ = LONG;
559 } else {
560 typ = ULONG;
561 if (uq > TARG_ULONG_MAX && !warned) {
562 /* integer constant out of range */
563 warning(252);
564 }
565 }
566 if (typ == UINT || typ == ULONG) {
567 if (!allow_c90) {
568 typ = LONG;
569 } else if (allow_trad || allow_c99) {
570 /*
571 * Remember that the constant is unsigned
572 * only in ANSI C.
573 *
574 * TODO: C99 behaves like C90 here.
575 */
576 ansiu = true;
577 }
578 }
579 break;
580 case UINT:
581 if (uq > TARG_UINT_MAX) {
582 typ = ULONG;
583 if (uq > TARG_ULONG_MAX && !warned) {
584 /* integer constant out of range */
585 warning(252);
586 }
587 }
588 break;
589 case LONG:
590 if (uq > TARG_LONG_MAX && allow_c90) {
591 typ = ULONG;
592 /* TODO: C99 behaves like C90 here. */
593 if (allow_trad || allow_c99)
594 ansiu = true;
595 if (uq > TARG_ULONG_MAX && !warned) {
596 /* integer constant out of range */
597 warning(252);
598 }
599 }
600 break;
601 case ULONG:
602 if (uq > TARG_ULONG_MAX && !warned) {
603 /* integer constant out of range */
604 warning(252);
605 }
606 break;
607 case QUAD:
608 if (uq > TARG_QUAD_MAX && allow_c90) {
609 typ = UQUAD;
610 /* TODO: C99 behaves like C90 here. */
611 if (allow_trad || allow_c99)
612 ansiu = true;
613 }
614 break;
615 case UQUAD:
616 if (uq > TARG_UQUAD_MAX && !warned) {
617 /* integer constant out of range */
618 warning(252);
619 }
620 break;
621 default:
622 break;
623 }
624
625 uq = (uint64_t)convert_integer((int64_t)uq, typ, 0);
626
627 yylval.y_val = xcalloc(1, sizeof(*yylval.y_val));
628 yylval.y_val->v_tspec = typ;
629 yylval.y_val->v_unsigned_since_c90 = ansiu;
630 yylval.y_val->v_quad = (int64_t)uq;
631
632 return T_CON;
633 }
634
635 /*
636 * Extend or truncate q to match t. If t is signed, sign-extend.
637 *
638 * len is the number of significant bits. If len is 0, len is set
639 * to the width of type t.
640 */
641 int64_t
642 convert_integer(int64_t q, tspec_t t, unsigned int len)
643 {
644
645 if (len == 0)
646 len = size_in_bits(t);
647
648 uint64_t vbits = value_bits(len);
649 return t == PTR || is_uinteger(t) || ((q & bit(len - 1)) == 0)
650 ? (int64_t)(q & vbits)
651 : (int64_t)(q | ~vbits);
652 }
653
654 /*
655 * Convert a string representing a floating point value into its numerical
656 * representation. Type and value are returned in yylval.
657 *
658 * XXX Currently it is not possible to convert constants of type
659 * long double which are greater than DBL_MAX.
660 */
661 int
662 lex_floating_constant(const char *yytext, size_t yyleng)
663 {
664 const char *cp;
665 size_t len;
666 tspec_t typ;
667 char c, *eptr;
668 double d;
669 float f = 0;
670
671 cp = yytext;
672 len = yyleng;
673
674 if (cp[len - 1] == 'i')
675 len--; /* imaginary, do nothing for now */
676
677 if ((c = cp[len - 1]) == 'f' || c == 'F') {
678 typ = FLOAT;
679 len--;
680 } else if (c == 'l' || c == 'L') {
681 typ = LDOUBLE;
682 len--;
683 } else {
684 if (c == 'd' || c == 'D')
685 len--;
686 typ = DOUBLE;
687 }
688
689 if (!allow_c90 && typ != DOUBLE) {
690 /* suffixes F and L are illegal in traditional C */
691 warning(98);
692 }
693
694 errno = 0;
695 d = strtod(cp, &eptr);
696 if (eptr != cp + len) {
697 switch (*eptr) {
698 /*
699 * XXX: non-native non-current strtod() may not handle hex
700 * floats, ignore the rest if we find traces of hex float
701 * syntax...
702 */
703 case 'p':
704 case 'P':
705 case 'x':
706 case 'X':
707 d = 0;
708 errno = 0;
709 break;
710 default:
711 INTERNAL_ERROR("lex_floating_constant(%.*s)",
712 (int)(eptr - cp), cp);
713 }
714 }
715 if (errno != 0)
716 /* floating-point constant out of range */
717 warning(248);
718
719 if (typ == FLOAT) {
720 f = (float)d;
721 if (isfinite(f) == 0) {
722 /* floating-point constant out of range */
723 warning(248);
724 f = f > 0 ? FLT_MAX : -FLT_MAX;
725 }
726 }
727
728 yylval.y_val = xcalloc(1, sizeof(*yylval.y_val));
729 yylval.y_val->v_tspec = typ;
730 if (typ == FLOAT)
731 yylval.y_val->v_ldbl = f;
732 else
733 yylval.y_val->v_ldbl = d;
734
735 return T_CON;
736 }
737
738 int
739 lex_operator(int t, op_t o)
740 {
741
742 yylval.y_op = o;
743 return t;
744 }
745
746 static int prev_byte = -1;
747
748 static int
749 read_escaped_oct(int c)
750 {
751 int n = 3;
752 int value = 0;
753 do {
754 value = (value << 3) + (c - '0');
755 c = read_byte();
756 } while (--n > 0 && '0' <= c && c <= '7');
757 prev_byte = c;
758 if (value > TARG_UCHAR_MAX) {
759 /* character escape does not fit in character */
760 warning(76);
761 value &= CHAR_MASK;
762 }
763 return value;
764 }
765
766 static int
767 read_escaped_hex(int c)
768 {
769 if (!allow_c90)
770 /* \x undefined in traditional C */
771 warning(82);
772 int value = 0;
773 int state = 0; /* 0 = no digits, 1 = OK, -1 = overflow */
774 while (c = read_byte(), isxdigit(c)) {
775 c = isdigit(c) ? c - '0' : toupper(c) - 'A' + 10;
776 value = (value << 4) + c;
777 if (state >= 0) {
778 if ((value & ~CHAR_MASK) != 0) {
779 /* overflow in hex escape */
780 warning(75);
781 state = -1;
782 } else {
783 state = 1;
784 }
785 }
786 }
787 prev_byte = c;
788 if (state == 0) {
789 /* no hex digits follow \x */
790 error(74);
791 }
792 if (state == -1)
793 value &= CHAR_MASK;
794 return value;
795 }
796
797 static int
798 read_escaped_backslash(int delim)
799 {
800 int c;
801
802 switch (c = read_byte()) {
803 case '"':
804 if (!allow_c90 && delim == '\'')
805 /* \" inside character constants undef... */
806 warning(262);
807 return '"';
808 case '\'':
809 return '\'';
810 case '?':
811 if (!allow_c90)
812 /* \? undefined in traditional C */
813 warning(263);
814 return '?';
815 case '\\':
816 return '\\';
817 case 'a':
818 if (!allow_c90)
819 /* \a undefined in traditional C */
820 warning(81);
821 return '\a';
822 case 'b':
823 return '\b';
824 case 'f':
825 return '\f';
826 case 'n':
827 return '\n';
828 case 'r':
829 return '\r';
830 case 't':
831 return '\t';
832 case 'v':
833 if (!allow_c90)
834 /* \v undefined in traditional C */
835 warning(264);
836 return '\v';
837 case '8': case '9':
838 /* bad octal digit %c */
839 warning(77, c);
840 /* FALLTHROUGH */
841 case '0': case '1': case '2': case '3':
842 case '4': case '5': case '6': case '7':
843 return read_escaped_oct(c);
844 case 'x':
845 return read_escaped_hex(c);
846 case '\n':
847 return -3;
848 case EOF:
849 return -2;
850 default:
851 if (isprint(c)) {
852 /* dubious escape \%c */
853 warning(79, c);
854 } else {
855 /* dubious escape \%o */
856 warning(80, c);
857 }
858 return c;
859 }
860 }
861
862 /*
863 * Read a character which is part of a character constant or of a string
864 * and handle escapes.
865 *
866 * The argument is the character which delimits the character constant or
867 * string.
868 *
869 * Returns -1 if the end of the character constant or string is reached,
870 * -2 if the EOF is reached, and the character otherwise.
871 */
872 static int
873 get_escaped_char(int delim)
874 {
875 int c;
876
877 if (prev_byte == -1) {
878 c = read_byte();
879 } else {
880 c = prev_byte;
881 prev_byte = -1;
882 }
883 if (c == delim)
884 return -1;
885 switch (c) {
886 case '\n':
887 if (!allow_c90) {
888 /* newline in string or char constant */
889 error(254);
890 return -2;
891 }
892 return c;
893 case '\0':
894 /* syntax error '%s' */
895 error(249, "EOF or null byte in literal");
896 return -2;
897 case EOF:
898 return -2;
899 case '\\':
900 c = read_escaped_backslash(delim);
901 if (c == -3)
902 return get_escaped_char(delim);
903 }
904 return c;
905 }
906
907 /* Called if lex found a leading "'". */
908 int
909 lex_character_constant(void)
910 {
911 size_t n;
912 int val, c;
913
914 n = 0;
915 val = 0;
916 while ((c = get_escaped_char('\'')) >= 0) {
917 val = (val << CHAR_SIZE) + c;
918 n++;
919 }
920 if (c == -2) {
921 /* unterminated character constant */
922 error(253);
923 } else if (n > sizeof(int) || (n > 1 && (pflag || hflag))) {
924 /* XXX: should rather be sizeof(TARG_INT) */
925
926 /* too many characters in character constant */
927 error(71);
928 } else if (n > 1) {
929 /* multi-character character constant */
930 warning(294);
931 } else if (n == 0) {
932 /* empty character constant */
933 error(73);
934 }
935 if (n == 1)
936 val = (int)convert_integer(val, CHAR, CHAR_SIZE);
937
938 yylval.y_val = xcalloc(1, sizeof(*yylval.y_val));
939 yylval.y_val->v_tspec = INT;
940 yylval.y_val->v_quad = val;
941
942 return T_CON;
943 }
944
945 /*
946 * Called if lex found a leading L\'
947 */
948 int
949 lex_wide_character_constant(void)
950 {
951 static char buf[MB_LEN_MAX + 1];
952 size_t n, nmax;
953 int c;
954 wchar_t wc;
955
956 nmax = MB_CUR_MAX;
957
958 n = 0;
959 while ((c = get_escaped_char('\'')) >= 0) {
960 if (n < nmax)
961 buf[n] = (char)c;
962 n++;
963 }
964
965 wc = 0;
966
967 if (c == -2) {
968 /* unterminated character constant */
969 error(253);
970 } else if (n == 0) {
971 /* empty character constant */
972 error(73);
973 } else if (n > nmax) {
974 n = nmax;
975 /* too many characters in character constant */
976 error(71);
977 } else {
978 buf[n] = '\0';
979 (void)mbtowc(NULL, NULL, 0);
980 if (mbtowc(&wc, buf, nmax) < 0)
981 /* invalid multibyte character */
982 error(291);
983 }
984
985 yylval.y_val = xcalloc(1, sizeof(*yylval.y_val));
986 yylval.y_val->v_tspec = WCHAR;
987 yylval.y_val->v_quad = wc;
988
989 return T_CON;
990 }
991
992 /* See https://gcc.gnu.org/onlinedocs/cpp/Preprocessor-Output.html */
993 static void
994 parse_line_directive_flags(const char *p,
995 bool *is_begin, bool *is_end, bool *is_system)
996 {
997
998 *is_begin = false;
999 *is_end = false;
1000 *is_system = false;
1001
1002 while (*p != '\0') {
1003 const char *word_start, *word_end;
1004
1005 while (ch_isspace(*p))
1006 p++;
1007
1008 word_start = p;
1009 while (*p != '\0' && !ch_isspace(*p))
1010 p++;
1011 word_end = p;
1012
1013 if (word_end - word_start == 1 && word_start[0] == '1')
1014 *is_begin = true;
1015 if (word_end - word_start == 1 && word_start[0] == '2')
1016 *is_end = true;
1017 if (word_end - word_start == 1 && word_start[0] == '3')
1018 *is_system = true;
1019 /* Flag '4' is only interesting for C++. */
1020 }
1021 }
1022
1023 /*
1024 * Called for preprocessor directives. Currently implemented are:
1025 * # pragma [argument...]
1026 * # lineno
1027 * # lineno "filename"
1028 * # lineno "filename" GCC-flag...
1029 */
1030 void
1031 lex_directive(const char *yytext)
1032 {
1033 const char *cp, *fn;
1034 char c, *eptr;
1035 size_t fnl;
1036 long ln;
1037 bool is_begin, is_end, is_system;
1038
1039 static bool first = true;
1040
1041 /* Go to first non-whitespace after # */
1042 for (cp = yytext + 1; (c = *cp) == ' ' || c == '\t'; cp++)
1043 continue;
1044
1045 if (!ch_isdigit(c)) {
1046 if (strncmp(cp, "pragma", 6) == 0 && ch_isspace(cp[6]))
1047 return;
1048 error:
1049 /* undefined or invalid # directive */
1050 warning(255);
1051 return;
1052 }
1053 ln = strtol(--cp, &eptr, 10);
1054 if (eptr == cp)
1055 goto error;
1056 if ((c = *(cp = eptr)) != ' ' && c != '\t' && c != '\0')
1057 goto error;
1058 while ((c = *cp++) == ' ' || c == '\t')
1059 continue;
1060 if (c != '\0') {
1061 if (c != '"')
1062 goto error;
1063 fn = cp;
1064 while ((c = *cp) != '"' && c != '\0')
1065 cp++;
1066 if (c != '"')
1067 goto error;
1068 if ((fnl = cp++ - fn) > PATH_MAX)
1069 goto error;
1070 /* empty string means stdin */
1071 if (fnl == 0) {
1072 fn = "{standard input}";
1073 fnl = 16; /* strlen (fn) */
1074 }
1075 curr_pos.p_file = record_filename(fn, fnl);
1076 /*
1077 * If this is the first directive, the name is the name
1078 * of the C source file as specified at the command line.
1079 * It is written to the output file.
1080 */
1081 if (first) {
1082 csrc_pos.p_file = curr_pos.p_file;
1083 outsrc(transform_filename(curr_pos.p_file,
1084 strlen(curr_pos.p_file)));
1085 first = false;
1086 }
1087
1088 parse_line_directive_flags(cp, &is_begin, &is_end, &is_system);
1089 update_location(curr_pos.p_file, (int)ln, is_begin, is_end);
1090 in_system_header = is_system;
1091 }
1092 curr_pos.p_line = (int)ln - 1;
1093 curr_pos.p_uniq = 0;
1094 if (curr_pos.p_file == csrc_pos.p_file) {
1095 csrc_pos.p_line = (int)ln - 1;
1096 csrc_pos.p_uniq = 0;
1097 }
1098 }
1099
1100 /*
1101 * Handle lint comments such as ARGSUSED.
1102 *
1103 * If one of these comments is recognized, the argument, if any, is
1104 * parsed and a function which handles this comment is called.
1105 */
1106 void
1107 lex_comment(void)
1108 {
1109 int c, lc;
1110 static const struct {
1111 const char *keywd;
1112 bool arg;
1113 void (*func)(int);
1114 } keywtab[] = {
1115 { "ARGSUSED", true, argsused },
1116 { "BITFIELDTYPE", false, bitfieldtype },
1117 { "CONSTCOND", false, constcond },
1118 { "CONSTANTCOND", false, constcond },
1119 { "CONSTANTCONDITION", false, constcond },
1120 { "FALLTHRU", false, fallthru },
1121 { "FALLTHROUGH", false, fallthru },
1122 { "FALL THROUGH", false, fallthru },
1123 { "fallthrough", false, fallthru },
1124 { "LINTLIBRARY", false, lintlib },
1125 { "LINTED", true, linted },
1126 { "LONGLONG", false, longlong },
1127 { "NOSTRICT", true, linted },
1128 { "NOTREACHED", false, not_reached },
1129 { "PRINTFLIKE", true, printflike },
1130 { "PROTOLIB", true, protolib },
1131 { "SCANFLIKE", true, scanflike },
1132 { "VARARGS", true, varargs },
1133 };
1134 char keywd[32];
1135 char arg[32];
1136 size_t l, i;
1137 int a;
1138 bool eoc;
1139
1140 eoc = false;
1141
1142 /* Skip whitespace after the start of the comment */
1143 while (c = read_byte(), isspace(c))
1144 continue;
1145
1146 /* Read the potential keyword to keywd */
1147 l = 0;
1148 while (c != EOF && l < sizeof(keywd) - 1 &&
1149 (isalpha(c) || isspace(c))) {
1150 if (islower(c) && l > 0 && ch_isupper(keywd[0]))
1151 break;
1152 keywd[l++] = (char)c;
1153 c = read_byte();
1154 }
1155 while (l > 0 && ch_isspace(keywd[l - 1]))
1156 l--;
1157 keywd[l] = '\0';
1158
1159 /* look for the keyword */
1160 for (i = 0; i < sizeof(keywtab) / sizeof(keywtab[0]); i++) {
1161 if (strcmp(keywtab[i].keywd, keywd) == 0)
1162 break;
1163 }
1164 if (i == sizeof(keywtab) / sizeof(keywtab[0]))
1165 goto skip_rest;
1166
1167 /* skip whitespace after the keyword */
1168 while (isspace(c))
1169 c = read_byte();
1170
1171 /* read the argument, if the keyword accepts one and there is one */
1172 l = 0;
1173 if (keywtab[i].arg) {
1174 while (isdigit(c) && l < sizeof(arg) - 1) {
1175 arg[l++] = (char)c;
1176 c = read_byte();
1177 }
1178 }
1179 arg[l] = '\0';
1180 a = l != 0 ? atoi(arg) : -1;
1181
1182 /* skip whitespace after the argument */
1183 while (isspace(c))
1184 c = read_byte();
1185
1186 if (c != '*' || (c = read_byte()) != '/') {
1187 if (keywtab[i].func != linted)
1188 /* extra characters in lint comment */
1189 warning(257);
1190 } else {
1191 /*
1192 * remember that we have already found the end of the
1193 * comment
1194 */
1195 eoc = true;
1196 }
1197
1198 if (keywtab[i].func != NULL)
1199 (*keywtab[i].func)(a);
1200
1201 skip_rest:
1202 while (!eoc) {
1203 lc = c;
1204 if ((c = read_byte()) == EOF) {
1205 /* unterminated comment */
1206 error(256);
1207 break;
1208 }
1209 if (lc == '*' && c == '/')
1210 eoc = true;
1211 }
1212 }
1213
1214 /*
1215 * Handle // style comments
1216 */
1217 void
1218 lex_slash_slash_comment(void)
1219 {
1220 int c;
1221
1222 if (!allow_c99 && !allow_gcc)
1223 /* %s does not support // comments */
1224 gnuism(312, allow_c90 ? "C90" : "traditional C");
1225
1226 while ((c = read_byte()) != EOF && c != '\n')
1227 continue;
1228 }
1229
1230 /*
1231 * Clear flags for lint comments LINTED, LONGLONG and CONSTCOND.
1232 * clear_warn_flags is called after function definitions and global and
1233 * local declarations and definitions. It is also called between
1234 * the controlling expression and the body of control statements
1235 * (if, switch, for, while).
1236 */
1237 void
1238 clear_warn_flags(void)
1239 {
1240
1241 lwarn = LWARN_ALL;
1242 quadflg = false;
1243 constcond_flag = false;
1244 }
1245
1246 /*
1247 * Strings are stored in a dynamically allocated buffer and passed
1248 * in yylval.y_string to the parser. The parser or the routines called
1249 * by the parser are responsible for freeing this buffer.
1250 */
1251 int
1252 lex_string(void)
1253 {
1254 unsigned char *s;
1255 int c;
1256 size_t len, max;
1257 strg_t *strg;
1258
1259 s = xmalloc(max = 64);
1260
1261 len = 0;
1262 while ((c = get_escaped_char('"')) >= 0) {
1263 /* +1 to reserve space for a trailing NUL character */
1264 if (len + 1 == max)
1265 s = xrealloc(s, max *= 2);
1266 s[len++] = (char)c;
1267 }
1268 s[len] = '\0';
1269 if (c == -2)
1270 /* unterminated string constant */
1271 error(258);
1272
1273 strg = xcalloc(1, sizeof(*strg));
1274 strg->st_char = true;
1275 strg->st_len = len;
1276 strg->st_mem = s;
1277
1278 yylval.y_string = strg;
1279 return T_STRING;
1280 }
1281
1282 int
1283 lex_wide_string(void)
1284 {
1285 char *s;
1286 int c, n;
1287 size_t i, wi;
1288 size_t len, max, wlen;
1289 wchar_t *ws;
1290 strg_t *strg;
1291
1292 s = xmalloc(max = 64);
1293 len = 0;
1294 while ((c = get_escaped_char('"')) >= 0) {
1295 /* +1 to save space for a trailing NUL character */
1296 if (len + 1 >= max)
1297 s = xrealloc(s, max *= 2);
1298 s[len++] = (char)c;
1299 }
1300 s[len] = '\0';
1301 if (c == -2)
1302 /* unterminated string constant */
1303 error(258);
1304
1305 /* get length of wide-character string */
1306 (void)mblen(NULL, 0);
1307 for (i = 0, wlen = 0; i < len; i += n, wlen++) {
1308 if ((n = mblen(&s[i], MB_CUR_MAX)) == -1) {
1309 /* invalid multibyte character */
1310 error(291);
1311 break;
1312 }
1313 if (n == 0)
1314 n = 1;
1315 }
1316
1317 ws = xmalloc((wlen + 1) * sizeof(*ws));
1318
1319 /* convert from multibyte to wide char */
1320 (void)mbtowc(NULL, NULL, 0);
1321 for (i = 0, wi = 0; i < len; i += n, wi++) {
1322 if ((n = mbtowc(&ws[wi], &s[i], MB_CUR_MAX)) == -1)
1323 break;
1324 if (n == 0)
1325 n = 1;
1326 }
1327 ws[wi] = 0;
1328 free(s);
1329
1330 strg = xcalloc(1, sizeof(*strg));
1331 strg->st_char = false;
1332 strg->st_len = wlen;
1333 strg->st_mem = ws;
1334
1335 yylval.y_string = strg;
1336 return T_STRING;
1337 }
1338
1339 void
1340 lex_next_line(void)
1341 {
1342 curr_pos.p_line++;
1343 curr_pos.p_uniq = 0;
1344 debug_step("parsing %s:%d", curr_pos.p_file, curr_pos.p_line);
1345 if (curr_pos.p_file == csrc_pos.p_file) {
1346 csrc_pos.p_line++;
1347 csrc_pos.p_uniq = 0;
1348 }
1349 }
1350
1351 void
1352 lex_unknown_character(int c)
1353 {
1354
1355 /* unknown character \%o */
1356 error(250, c);
1357 }
1358
1359 /*
1360 * The scanner does not create new symbol table entries for symbols it cannot
1361 * find in the symbol table. This is to avoid putting undeclared symbols into
1362 * the symbol table if a syntax error occurs.
1363 *
1364 * getsym is called as soon as it is probably ok to put the symbol in the
1365 * symbol table. It is still possible that symbols are put in the symbol
1366 * table that are not completely declared due to syntax errors. To avoid too
1367 * many problems in this case, symbols get type 'int' in getsym.
1368 *
1369 * XXX calls to getsym should be delayed until declare_1_* is called.
1370 */
1371 sym_t *
1372 getsym(sbuf_t *sb)
1373 {
1374 dinfo_t *di;
1375 char *s;
1376 sym_t *sym;
1377
1378 sym = sb->sb_sym;
1379
1380 /*
1381 * During member declaration it is possible that name() looked
1382 * for symbols of type FVFT, although it should have looked for
1383 * symbols of type FTAG. Same can happen for labels. Both cases
1384 * are compensated here.
1385 */
1386 if (symtyp == FMEMBER || symtyp == FLABEL) {
1387 if (sym == NULL || sym->s_kind == FVFT)
1388 sym = symtab_search(sb);
1389 }
1390
1391 if (sym != NULL) {
1392 lint_assert(sym->s_kind == symtyp);
1393 symtyp = FVFT;
1394 free(sb);
1395 return sym;
1396 }
1397
1398 /* create a new symbol table entry */
1399
1400 /* labels must always be allocated at level 1 (outermost block) */
1401 if (symtyp == FLABEL) {
1402 sym = level_zero_alloc(1, sizeof(*sym));
1403 s = level_zero_alloc(1, sb->sb_len + 1);
1404 (void)memcpy(s, sb->sb_name, sb->sb_len + 1);
1405 sym->s_name = s;
1406 sym->s_block_level = 1;
1407 di = dcs;
1408 while (di->d_enclosing != NULL &&
1409 di->d_enclosing->d_enclosing != NULL)
1410 di = di->d_enclosing;
1411 lint_assert(di->d_kind == DK_AUTO);
1412 } else {
1413 sym = block_zero_alloc(sizeof(*sym));
1414 sym->s_name = sb->sb_name;
1415 sym->s_block_level = block_level;
1416 di = dcs;
1417 }
1418
1419 UNIQUE_CURR_POS(sym->s_def_pos);
1420 if ((sym->s_kind = symtyp) != FLABEL)
1421 sym->s_type = gettyp(INT);
1422
1423 symtyp = FVFT;
1424
1425 if (!in_gcc_attribute) {
1426 symtab_add(sym);
1427
1428 *di->d_ldlsym = sym;
1429 di->d_ldlsym = &sym->s_level_next;
1430 }
1431
1432 free(sb);
1433 return sym;
1434 }
1435
1436 /*
1437 * Construct a temporary symbol. The symbol name starts with a digit, making
1438 * the name illegal.
1439 */
1440 sym_t *
1441 mktempsym(type_t *tp)
1442 {
1443 static unsigned n = 0;
1444 char *s = level_zero_alloc((size_t)block_level, 64);
1445 sym_t *sym = block_zero_alloc(sizeof(*sym));
1446 scl_t scl;
1447
1448 (void)snprintf(s, 64, "%.8u_tmp", n++);
1449
1450 scl = dcs->d_scl;
1451 if (scl == NOSCL)
1452 scl = block_level > 0 ? AUTO : EXTERN;
1453
1454 sym->s_name = s;
1455 sym->s_type = tp;
1456 sym->s_block_level = block_level;
1457 sym->s_scl = scl;
1458 sym->s_kind = FVFT;
1459 sym->s_used = true;
1460 sym->s_set = true;
1461
1462 symtab_add(sym);
1463
1464 *dcs->d_ldlsym = sym;
1465 dcs->d_ldlsym = &sym->s_level_next;
1466
1467 return sym;
1468 }
1469
1470 /* Remove a symbol forever from the symbol table. */
1471 void
1472 rmsym(sym_t *sym)
1473 {
1474
1475 debug_step("rmsym '%s' %s '%s'",
1476 sym->s_name, symt_name(sym->s_kind), type_name(sym->s_type));
1477 symtab_remove(sym);
1478
1479 /* avoid that the symbol will later be put back to the symbol table */
1480 sym->s_block_level = -1;
1481 }
1482
1483 /*
1484 * Remove all symbols from the symbol table that have the same level as the
1485 * given symbol.
1486 */
1487 void
1488 rmsyms(sym_t *syms)
1489 {
1490 sym_t *sym;
1491
1492 /* Note the use of s_level_next instead of s_symtab_next. */
1493 for (sym = syms; sym != NULL; sym = sym->s_level_next) {
1494 if (sym->s_block_level != -1) {
1495 debug_step("rmsyms '%s' %s '%s'",
1496 sym->s_name, symt_name(sym->s_kind),
1497 type_name(sym->s_type));
1498 symtab_remove(sym);
1499 sym->s_symtab_ref = NULL;
1500 }
1501 }
1502 }
1503
1504 /*
1505 * Put a symbol into the symbol table.
1506 */
1507 void
1508 inssym(int level, sym_t *sym)
1509 {
1510
1511 debug_step("inssym '%s' %s '%s'",
1512 sym->s_name, symt_name(sym->s_kind), type_name(sym->s_type));
1513 symtab_add(sym);
1514 sym->s_block_level = level;
1515
1516 /*
1517 * Placing the inner symbols to the beginning of the list ensures
1518 * that these symbols are preferred over symbols from the outer
1519 * blocks that happen to have the same name.
1520 */
1521 lint_assert(sym->s_symtab_next != NULL
1522 ? sym->s_block_level >= sym->s_symtab_next->s_block_level
1523 : true);
1524 }
1525
1526 /*
1527 * Called at level 0 after syntax errors.
1528 *
1529 * Removes all symbols which are not declared at level 0 from the
1530 * symbol table. Also frees all memory which is not associated with
1531 * level 0.
1532 */
1533 void
1534 clean_up_after_error(void)
1535 {
1536
1537 symtab_remove_locals();
1538
1539 for (size_t i = mem_block_level; i > 0; i--)
1540 level_free_all(i);
1541 }
1542
1543 /* Create a new symbol with the same name as an existing symbol. */
1544 sym_t *
1545 pushdown(const sym_t *sym)
1546 {
1547 sym_t *nsym;
1548
1549 debug_step("pushdown '%s' %s '%s'",
1550 sym->s_name, symt_name(sym->s_kind), type_name(sym->s_type));
1551 nsym = block_zero_alloc(sizeof(*nsym));
1552 lint_assert(sym->s_block_level <= block_level);
1553 nsym->s_name = sym->s_name;
1554 UNIQUE_CURR_POS(nsym->s_def_pos);
1555 nsym->s_kind = sym->s_kind;
1556 nsym->s_block_level = block_level;
1557
1558 symtab_add(nsym);
1559
1560 *dcs->d_ldlsym = nsym;
1561 dcs->d_ldlsym = &nsym->s_level_next;
1562
1563 return nsym;
1564 }
1565
1566 /*
1567 * Free any dynamically allocated memory referenced by
1568 * the value stack or yylval.
1569 * The type of information in yylval is described by tok.
1570 */
1571 void
1572 freeyyv(void *sp, int tok)
1573 {
1574 if (tok == T_NAME || tok == T_TYPENAME) {
1575 sbuf_t *sb = *(sbuf_t **)sp;
1576 free(sb);
1577 } else if (tok == T_CON) {
1578 val_t *val = *(val_t **)sp;
1579 free(val);
1580 } else if (tok == T_STRING) {
1581 strg_t *strg = *(strg_t **)sp;
1582 free(strg->st_mem);
1583 free(strg);
1584 }
1585 }
1586