hammer2_disk.h revision 1.3 1 1.3 tkusumi /* $NetBSD: hammer2_disk.h,v 1.3 2021/01/10 12:38:40 tkusumi Exp $ */
2 1.1 tkusumi
3 1.1 tkusumi /*
4 1.1 tkusumi * Copyright (c) 2011-2019 The DragonFly Project. All rights reserved.
5 1.1 tkusumi *
6 1.1 tkusumi * This code is derived from software contributed to The DragonFly Project
7 1.1 tkusumi * by Matthew Dillon <dillon (at) dragonflybsd.org>
8 1.1 tkusumi * by Venkatesh Srinivas <vsrinivas (at) dragonflybsd.org>
9 1.1 tkusumi *
10 1.1 tkusumi * Redistribution and use in source and binary forms, with or without
11 1.1 tkusumi * modification, are permitted provided that the following conditions
12 1.1 tkusumi * are met:
13 1.1 tkusumi *
14 1.1 tkusumi * 1. Redistributions of source code must retain the above copyright
15 1.1 tkusumi * notice, this list of conditions and the following disclaimer.
16 1.1 tkusumi * 2. Redistributions in binary form must reproduce the above copyright
17 1.1 tkusumi * notice, this list of conditions and the following disclaimer in
18 1.1 tkusumi * the documentation and/or other materials provided with the
19 1.1 tkusumi * distribution.
20 1.1 tkusumi * 3. Neither the name of The DragonFly Project nor the names of its
21 1.1 tkusumi * contributors may be used to endorse or promote products derived
22 1.1 tkusumi * from this software without specific, prior written permission.
23 1.1 tkusumi *
24 1.1 tkusumi * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 1.1 tkusumi * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 1.1 tkusumi * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27 1.1 tkusumi * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
28 1.1 tkusumi * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29 1.1 tkusumi * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
30 1.1 tkusumi * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31 1.1 tkusumi * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
32 1.1 tkusumi * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
33 1.1 tkusumi * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
34 1.1 tkusumi * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 1.1 tkusumi * SUCH DAMAGE.
36 1.1 tkusumi */
37 1.1 tkusumi #include <sys/cdefs.h>
38 1.3 tkusumi __KERNEL_RCSID(0, "$NetBSD: hammer2_disk.h,v 1.3 2021/01/10 12:38:40 tkusumi Exp $");
39 1.1 tkusumi
40 1.1 tkusumi #ifndef _VFS_HAMMER2_DISK_H_
41 1.1 tkusumi #define _VFS_HAMMER2_DISK_H_
42 1.1 tkusumi
43 1.1 tkusumi #ifndef _SYS_UUID_H_
44 1.1 tkusumi #include <sys/uuid.h>
45 1.1 tkusumi #endif
46 1.1 tkusumi #if 0
47 1.1 tkusumi #ifndef _SYS_DMSG_H_
48 1.1 tkusumi #include <sys/dmsg.h>
49 1.1 tkusumi #endif
50 1.1 tkusumi #endif
51 1.1 tkusumi
52 1.1 tkusumi /*
53 1.1 tkusumi * The structures below represent the on-disk media structures for the HAMMER2
54 1.1 tkusumi * filesystem. Note that all fields for on-disk structures are naturally
55 1.1 tkusumi * aligned. The host endian format is typically used - compatibility is
56 1.1 tkusumi * possible if the implementation detects reversed endian and adjusts accesses
57 1.1 tkusumi * accordingly.
58 1.1 tkusumi *
59 1.1 tkusumi * HAMMER2 primarily revolves around the directory topology: inodes,
60 1.1 tkusumi * directory entries, and block tables. Block device buffer cache buffers
61 1.1 tkusumi * are always 64KB. Logical file buffers are typically 16KB. All data
62 1.1 tkusumi * references utilize 64-bit byte offsets.
63 1.1 tkusumi *
64 1.1 tkusumi * Free block management is handled independently using blocks reserved by
65 1.1 tkusumi * the media topology.
66 1.1 tkusumi */
67 1.1 tkusumi
68 1.1 tkusumi /*
69 1.1 tkusumi * The data at the end of a file or directory may be a fragment in order
70 1.1 tkusumi * to optimize storage efficiency. The minimum fragment size is 1KB.
71 1.1 tkusumi * Since allocations are in powers of 2 fragments must also be sized in
72 1.1 tkusumi * powers of 2 (1024, 2048, ... 65536).
73 1.1 tkusumi *
74 1.1 tkusumi * For the moment the maximum allocation size is HAMMER2_PBUFSIZE (64K),
75 1.1 tkusumi * which is 2^16. Larger extents may be supported in the future. Smaller
76 1.1 tkusumi * fragments might be supported in the future (down to 64 bytes is possible),
77 1.1 tkusumi * but probably will not be.
78 1.1 tkusumi *
79 1.1 tkusumi * A full indirect block use supports 512 x 128-byte blockrefs in a 64KB
80 1.1 tkusumi * buffer. Indirect blocks down to 1KB are supported to keep small
81 1.1 tkusumi * directories small.
82 1.1 tkusumi *
83 1.1 tkusumi * A maximally sized file (2^64-1 bytes) requires ~6 indirect block levels
84 1.1 tkusumi * using 64KB indirect blocks (128 byte refs, 512 or radix 9 per indblk).
85 1.1 tkusumi *
86 1.1 tkusumi * 16(datablk) + 9 + 9 + 9 + 9 + 9 + 9 = ~70.
87 1.1 tkusumi * 16(datablk) + 7 + 9 + 9 + 9 + 9 + 9 = ~68. (smaller top level indblk)
88 1.1 tkusumi *
89 1.1 tkusumi * The actual depth depends on copies redundancy and whether the filesystem
90 1.1 tkusumi * has chosen to use a smaller indirect block size at the top level or not.
91 1.1 tkusumi */
92 1.1 tkusumi #define HAMMER2_ALLOC_MIN 1024 /* minimum allocation size */
93 1.1 tkusumi #define HAMMER2_RADIX_MIN 10 /* minimum allocation size 2^N */
94 1.1 tkusumi #define HAMMER2_ALLOC_MAX 65536 /* maximum allocation size */
95 1.1 tkusumi #define HAMMER2_RADIX_MAX 16 /* maximum allocation size 2^N */
96 1.1 tkusumi #define HAMMER2_RADIX_KEY 64 /* number of bits in key */
97 1.1 tkusumi
98 1.1 tkusumi /*
99 1.1 tkusumi * HAMMER2_LBUFSIZE - Nominal buffer size for I/O rollups.
100 1.1 tkusumi *
101 1.1 tkusumi * HAMMER2_PBUFSIZE - Topological block size used by files for all
102 1.1 tkusumi * blocks except the block straddling EOF.
103 1.1 tkusumi *
104 1.1 tkusumi * HAMMER2_SEGSIZE - Allocation map segment size, typically 4MB
105 1.1 tkusumi * (space represented by a level0 bitmap).
106 1.1 tkusumi */
107 1.1 tkusumi
108 1.1 tkusumi #define HAMMER2_SEGSIZE (1 << HAMMER2_FREEMAP_LEVEL0_RADIX)
109 1.1 tkusumi #define HAMMER2_SEGRADIX HAMMER2_FREEMAP_LEVEL0_RADIX
110 1.1 tkusumi
111 1.1 tkusumi #define HAMMER2_PBUFRADIX 16 /* physical buf (1<<16) bytes */
112 1.1 tkusumi #define HAMMER2_PBUFSIZE 65536
113 1.1 tkusumi #define HAMMER2_LBUFRADIX 14 /* logical buf (1<<14) bytes */
114 1.1 tkusumi #define HAMMER2_LBUFSIZE 16384
115 1.1 tkusumi
116 1.1 tkusumi #define HAMMER2_IND_BYTES_MIN 4096
117 1.1 tkusumi #define HAMMER2_IND_BYTES_NOM HAMMER2_LBUFSIZE
118 1.1 tkusumi #define HAMMER2_IND_BYTES_MAX HAMMER2_PBUFSIZE
119 1.1 tkusumi #define HAMMER2_IND_RADIX_MIN 12
120 1.1 tkusumi #define HAMMER2_IND_RADIX_NOM HAMMER2_LBUFRADIX
121 1.1 tkusumi #define HAMMER2_IND_RADIX_MAX HAMMER2_PBUFRADIX
122 1.1 tkusumi #define HAMMER2_IND_COUNT_MIN (HAMMER2_IND_BYTES_MIN / \
123 1.1 tkusumi sizeof(hammer2_blockref_t))
124 1.1 tkusumi #define HAMMER2_IND_COUNT_MAX (HAMMER2_IND_BYTES_MAX / \
125 1.1 tkusumi sizeof(hammer2_blockref_t))
126 1.1 tkusumi
127 1.1 tkusumi /*
128 1.1 tkusumi * In HAMMER2, arrays of blockrefs are fully set-associative, meaning that
129 1.3 tkusumi * any element can occur at any index and holes can be anywhere.
130 1.1 tkusumi *
131 1.1 tkusumi * Inodes embed either 512 bytes of direct data or an array of 4 blockrefs,
132 1.1 tkusumi * resulting in highly efficient storage for files <= 512 bytes and for files
133 1.1 tkusumi * <= 512KB. Up to 4 directory entries can be referenced from a directory
134 1.1 tkusumi * without requiring an indirect block.
135 1.1 tkusumi */
136 1.1 tkusumi #define HAMMER2_SET_RADIX 2 /* radix 2 = 4 entries */
137 1.1 tkusumi #define HAMMER2_SET_COUNT (1 << HAMMER2_SET_RADIX)
138 1.1 tkusumi #define HAMMER2_EMBEDDED_BYTES 512 /* inode blockset/dd size */
139 1.1 tkusumi #define HAMMER2_EMBEDDED_RADIX 9
140 1.1 tkusumi
141 1.1 tkusumi #define HAMMER2_PBUFMASK (HAMMER2_PBUFSIZE - 1)
142 1.1 tkusumi #define HAMMER2_LBUFMASK (HAMMER2_LBUFSIZE - 1)
143 1.1 tkusumi #define HAMMER2_SEGMASK (HAMMER2_SEGSIZE - 1)
144 1.1 tkusumi
145 1.1 tkusumi #define HAMMER2_LBUFMASK64 ((hammer2_off_t)HAMMER2_LBUFMASK)
146 1.1 tkusumi #define HAMMER2_PBUFSIZE64 ((hammer2_off_t)HAMMER2_PBUFSIZE)
147 1.1 tkusumi #define HAMMER2_PBUFMASK64 ((hammer2_off_t)HAMMER2_PBUFMASK)
148 1.1 tkusumi #define HAMMER2_SEGSIZE64 ((hammer2_off_t)HAMMER2_SEGSIZE)
149 1.1 tkusumi #define HAMMER2_SEGMASK64 ((hammer2_off_t)HAMMER2_SEGMASK)
150 1.1 tkusumi
151 1.1 tkusumi #define HAMMER2_UUID_STRING "5cbb9ad1-862d-11dc-a94d-01301bb8a9f5"
152 1.1 tkusumi
153 1.1 tkusumi /*
154 1.2 tkusumi * A 4MB segment is reserved at the beginning of each 1GB. This segment
155 1.1 tkusumi * contains the volume header (or backup volume header), the free block
156 1.2 tkusumi * table, and possibly other information in the future.
157 1.1 tkusumi *
158 1.1 tkusumi * 4MB = 64 x 64K blocks. Each 4MB segment is broken down as follows:
159 1.1 tkusumi *
160 1.1 tkusumi * ==========
161 1.1 tkusumi * 0 volume header (for the first four 2GB zones)
162 1.1 tkusumi * 1 freemap00 level1 FREEMAP_LEAF (256 x 128B bitmap data per 1GB)
163 1.1 tkusumi * 2 level2 FREEMAP_NODE (256 x 128B indirect block per 256GB)
164 1.1 tkusumi * 3 level3 FREEMAP_NODE (256 x 128B indirect block per 64TB)
165 1.1 tkusumi * 4 level4 FREEMAP_NODE (256 x 128B indirect block per 16PB)
166 1.1 tkusumi * 5 level5 FREEMAP_NODE (256 x 128B indirect block per 4EB)
167 1.1 tkusumi * 6 freemap01 level1 (rotation)
168 1.1 tkusumi * 7 level2
169 1.1 tkusumi * 8 level3
170 1.1 tkusumi * 9 level4
171 1.1 tkusumi * 10 level5
172 1.1 tkusumi * 11 freemap02 level1 (rotation)
173 1.1 tkusumi * 12 level2
174 1.1 tkusumi * 13 level3
175 1.1 tkusumi * 14 level4
176 1.1 tkusumi * 15 level5
177 1.1 tkusumi * 16 freemap03 level1 (rotation)
178 1.1 tkusumi * 17 level2
179 1.1 tkusumi * 18 level3
180 1.1 tkusumi * 19 level4
181 1.1 tkusumi * 20 level5
182 1.1 tkusumi * 21 freemap04 level1 (rotation)
183 1.1 tkusumi * 22 level2
184 1.1 tkusumi * 23 level3
185 1.1 tkusumi * 24 level4
186 1.1 tkusumi * 25 level5
187 1.1 tkusumi * 26 freemap05 level1 (rotation)
188 1.1 tkusumi * 27 level2
189 1.1 tkusumi * 28 level3
190 1.1 tkusumi * 29 level4
191 1.1 tkusumi * 30 level5
192 1.1 tkusumi * 31 freemap06 level1 (rotation)
193 1.1 tkusumi * 32 level2
194 1.1 tkusumi * 33 level3
195 1.1 tkusumi * 34 level4
196 1.1 tkusumi * 35 level5
197 1.1 tkusumi * 36 freemap07 level1 (rotation)
198 1.1 tkusumi * 37 level2
199 1.1 tkusumi * 38 level3
200 1.1 tkusumi * 39 level4
201 1.1 tkusumi * 40 level5
202 1.1 tkusumi * 41 unused
203 1.1 tkusumi * .. unused
204 1.1 tkusumi * 63 unused
205 1.1 tkusumi * ==========
206 1.1 tkusumi *
207 1.1 tkusumi * The first four 2GB zones contain volume headers and volume header backups.
208 1.1 tkusumi * After that the volume header block# is reserved for future use. Similarly,
209 1.1 tkusumi * there are many blocks related to various Freemap levels which are not
210 1.1 tkusumi * used in every segment and those are also reserved for future use.
211 1.1 tkusumi * Note that each FREEMAP_LEAF or FREEMAP_NODE uses 32KB out of 64KB slot.
212 1.1 tkusumi *
213 1.1 tkusumi * Freemap (see the FREEMAP document)
214 1.1 tkusumi *
215 1.1 tkusumi * The freemap utilizes blocks #1-40 in 8 sets of 5 blocks. Each block in
216 1.1 tkusumi * a set represents a level of depth in the freemap topology. Eight sets
217 1.1 tkusumi * exist to prevent live updates from disturbing the state of the freemap
218 1.1 tkusumi * were a crash/reboot to occur. That is, a live update is not committed
219 1.1 tkusumi * until the update's flush reaches the volume root. There are FOUR volume
220 1.1 tkusumi * roots representing the last four synchronization points, so the freemap
221 1.1 tkusumi * must be consistent no matter which volume root is chosen by the mount
222 1.1 tkusumi * code.
223 1.1 tkusumi *
224 1.1 tkusumi * Each freemap set is 5 x 64K blocks and represents the 1GB, 256GB, 64TB,
225 1.1 tkusumi * 16PB and 4EB indirect map. The volume header itself has a set of 4 freemap
226 1.1 tkusumi * blockrefs representing another 2 bits, giving us a total 64 bits of
227 1.1 tkusumi * representable address space.
228 1.1 tkusumi *
229 1.1 tkusumi * The Level 0 64KB block represents 1GB of storage represented by 32KB
230 1.1 tkusumi * (256 x struct hammer2_bmap_data). Each structure represents 4MB of storage
231 1.1 tkusumi * and has a 512 bit bitmap, using 2 bits to represent a 16KB chunk of
232 1.1 tkusumi * storage. These 2 bits represent the following states:
233 1.1 tkusumi *
234 1.1 tkusumi * 00 Free
235 1.1 tkusumi * 01 (reserved) (Possibly partially allocated)
236 1.1 tkusumi * 10 Possibly free
237 1.1 tkusumi * 11 Allocated
238 1.1 tkusumi *
239 1.1 tkusumi * One important thing to note here is that the freemap resolution is 16KB,
240 1.1 tkusumi * but the minimum storage allocation size is 1KB. The hammer2 vfs keeps
241 1.1 tkusumi * track of sub-allocations in memory, which means that on a unmount or reboot
242 1.1 tkusumi * the entire 16KB of a partially allocated block will be considered fully
243 1.1 tkusumi * allocated. It is possible for fragmentation to build up over time, but
244 1.1 tkusumi * defragmentation is fairly easy to accomplish since all modifications
245 1.1 tkusumi * allocate a new block.
246 1.1 tkusumi *
247 1.1 tkusumi * The Second thing to note is that due to the way snapshots and inode
248 1.1 tkusumi * replication works, deleting a file cannot immediately free the related
249 1.1 tkusumi * space. Furthermore, deletions often do not bother to traverse the
250 1.1 tkusumi * block subhierarchy being deleted. And to go even further, whole
251 1.1 tkusumi * sub-directory trees can be deleted simply by deleting the directory inode
252 1.1 tkusumi * at the top. So even though we have a symbol to represent a 'possibly free'
253 1.1 tkusumi * block (binary 10), only the bulk free scanning code can actually use it.
254 1.1 tkusumi * Normal 'rm's or other deletions do not.
255 1.1 tkusumi *
256 1.1 tkusumi * WARNING! ZONE_SEG and VOLUME_ALIGN must be a multiple of 1<<LEVEL0_RADIX
257 1.1 tkusumi * (i.e. a multiple of 4MB). VOLUME_ALIGN must be >= ZONE_SEG.
258 1.1 tkusumi *
259 1.1 tkusumi * In Summary:
260 1.1 tkusumi *
261 1.1 tkusumi * (1) Modifications to freemap blocks 'allocate' a new copy (aka use a block
262 1.1 tkusumi * from the next set). The new copy is reused until a flush occurs at
263 1.1 tkusumi * which point the next modification will then rotate to the next set.
264 1.1 tkusumi */
265 1.1 tkusumi #define HAMMER2_VOLUME_ALIGN (8 * 1024 * 1024)
266 1.1 tkusumi #define HAMMER2_VOLUME_ALIGN64 ((hammer2_off_t)HAMMER2_VOLUME_ALIGN)
267 1.1 tkusumi #define HAMMER2_VOLUME_ALIGNMASK (HAMMER2_VOLUME_ALIGN - 1)
268 1.2 tkusumi #define HAMMER2_VOLUME_ALIGNMASK64 ((hammer2_off_t)HAMMER2_VOLUME_ALIGNMASK)
269 1.1 tkusumi
270 1.1 tkusumi #define HAMMER2_NEWFS_ALIGN (HAMMER2_VOLUME_ALIGN)
271 1.1 tkusumi #define HAMMER2_NEWFS_ALIGN64 ((hammer2_off_t)HAMMER2_VOLUME_ALIGN)
272 1.1 tkusumi #define HAMMER2_NEWFS_ALIGNMASK (HAMMER2_VOLUME_ALIGN - 1)
273 1.1 tkusumi #define HAMMER2_NEWFS_ALIGNMASK64 ((hammer2_off_t)HAMMER2_NEWFS_ALIGNMASK)
274 1.1 tkusumi
275 1.1 tkusumi #define HAMMER2_ZONE_BYTES64 (2LLU * 1024 * 1024 * 1024)
276 1.1 tkusumi #define HAMMER2_ZONE_MASK64 (HAMMER2_ZONE_BYTES64 - 1)
277 1.1 tkusumi #define HAMMER2_ZONE_SEG (4 * 1024 * 1024)
278 1.1 tkusumi #define HAMMER2_ZONE_SEG64 ((hammer2_off_t)HAMMER2_ZONE_SEG)
279 1.1 tkusumi #define HAMMER2_ZONE_BLOCKS_SEG (HAMMER2_ZONE_SEG / HAMMER2_PBUFSIZE)
280 1.1 tkusumi
281 1.1 tkusumi #define HAMMER2_ZONE_FREEMAP_INC 5 /* 5 deep */
282 1.1 tkusumi
283 1.1 tkusumi #define HAMMER2_ZONE_VOLHDR 0 /* volume header or backup */
284 1.1 tkusumi #define HAMMER2_ZONE_FREEMAP_00 1 /* normal freemap rotation */
285 1.1 tkusumi #define HAMMER2_ZONE_FREEMAP_01 6 /* normal freemap rotation */
286 1.1 tkusumi #define HAMMER2_ZONE_FREEMAP_02 11 /* normal freemap rotation */
287 1.1 tkusumi #define HAMMER2_ZONE_FREEMAP_03 16 /* normal freemap rotation */
288 1.1 tkusumi #define HAMMER2_ZONE_FREEMAP_04 21 /* normal freemap rotation */
289 1.1 tkusumi #define HAMMER2_ZONE_FREEMAP_05 26 /* normal freemap rotation */
290 1.1 tkusumi #define HAMMER2_ZONE_FREEMAP_06 31 /* normal freemap rotation */
291 1.1 tkusumi #define HAMMER2_ZONE_FREEMAP_07 36 /* normal freemap rotation */
292 1.1 tkusumi #define HAMMER2_ZONE_FREEMAP_END 41 /* (non-inclusive) */
293 1.1 tkusumi
294 1.1 tkusumi #define HAMMER2_ZONE_UNUSED41 41
295 1.1 tkusumi #define HAMMER2_ZONE_UNUSED42 42
296 1.1 tkusumi #define HAMMER2_ZONE_UNUSED43 43
297 1.1 tkusumi #define HAMMER2_ZONE_UNUSED44 44
298 1.1 tkusumi #define HAMMER2_ZONE_UNUSED45 45
299 1.1 tkusumi #define HAMMER2_ZONE_UNUSED46 46
300 1.1 tkusumi #define HAMMER2_ZONE_UNUSED47 47
301 1.1 tkusumi #define HAMMER2_ZONE_UNUSED48 48
302 1.1 tkusumi #define HAMMER2_ZONE_UNUSED49 49
303 1.1 tkusumi #define HAMMER2_ZONE_UNUSED50 50
304 1.1 tkusumi #define HAMMER2_ZONE_UNUSED51 51
305 1.1 tkusumi #define HAMMER2_ZONE_UNUSED52 52
306 1.1 tkusumi #define HAMMER2_ZONE_UNUSED53 53
307 1.1 tkusumi #define HAMMER2_ZONE_UNUSED54 54
308 1.1 tkusumi #define HAMMER2_ZONE_UNUSED55 55
309 1.1 tkusumi #define HAMMER2_ZONE_UNUSED56 56
310 1.1 tkusumi #define HAMMER2_ZONE_UNUSED57 57
311 1.1 tkusumi #define HAMMER2_ZONE_UNUSED58 58
312 1.1 tkusumi #define HAMMER2_ZONE_UNUSED59 59
313 1.1 tkusumi #define HAMMER2_ZONE_UNUSED60 60
314 1.1 tkusumi #define HAMMER2_ZONE_UNUSED61 61
315 1.1 tkusumi #define HAMMER2_ZONE_UNUSED62 62
316 1.1 tkusumi #define HAMMER2_ZONE_UNUSED63 63
317 1.1 tkusumi #define HAMMER2_ZONE_END 64 /* non-inclusive */
318 1.1 tkusumi
319 1.1 tkusumi #define HAMMER2_NFREEMAPS 8 /* FREEMAP_00 - FREEMAP_07 */
320 1.1 tkusumi
321 1.1 tkusumi /* relative to FREEMAP_x */
322 1.1 tkusumi #define HAMMER2_ZONEFM_LEVEL1 0 /* 1GB leafmap */
323 1.1 tkusumi #define HAMMER2_ZONEFM_LEVEL2 1 /* 256GB indmap */
324 1.1 tkusumi #define HAMMER2_ZONEFM_LEVEL3 2 /* 64TB indmap */
325 1.1 tkusumi #define HAMMER2_ZONEFM_LEVEL4 3 /* 16PB indmap */
326 1.1 tkusumi #define HAMMER2_ZONEFM_LEVEL5 4 /* 4EB indmap */
327 1.1 tkusumi /* LEVEL6 is a set of 4 blockrefs in the volume header 16EB */
328 1.1 tkusumi
329 1.1 tkusumi /*
330 1.1 tkusumi * Freemap radix. Assumes a set-count of 4, 128-byte blockrefs,
331 1.1 tkusumi * 32KB indirect block for freemap (LEVELN_PSIZE below).
332 1.1 tkusumi *
333 1.1 tkusumi * Leaf entry represents 4MB of storage broken down into a 512-bit
334 1.1 tkusumi * bitmap, 2-bits per entry. So course bitmap item represents 16KB.
335 1.1 tkusumi */
336 1.1 tkusumi #if HAMMER2_SET_COUNT != 4
337 1.1 tkusumi #error "hammer2_disk.h - freemap assumes SET_COUNT is 4"
338 1.1 tkusumi #endif
339 1.1 tkusumi #define HAMMER2_FREEMAP_LEVEL6_RADIX 64 /* 16EB (end) */
340 1.1 tkusumi #define HAMMER2_FREEMAP_LEVEL5_RADIX 62 /* 4EB */
341 1.1 tkusumi #define HAMMER2_FREEMAP_LEVEL4_RADIX 54 /* 16PB */
342 1.1 tkusumi #define HAMMER2_FREEMAP_LEVEL3_RADIX 46 /* 64TB */
343 1.1 tkusumi #define HAMMER2_FREEMAP_LEVEL2_RADIX 38 /* 256GB */
344 1.1 tkusumi #define HAMMER2_FREEMAP_LEVEL1_RADIX 30 /* 1GB */
345 1.3 tkusumi #define HAMMER2_FREEMAP_LEVEL0_RADIX 22 /* 4MB (x 256 in l-1 leaf) */
346 1.1 tkusumi
347 1.1 tkusumi #define HAMMER2_FREEMAP_LEVELN_PSIZE 32768 /* physical bytes */
348 1.1 tkusumi
349 1.1 tkusumi #define HAMMER2_FREEMAP_LEVEL5_SIZE ((hammer2_off_t)1 << \
350 1.1 tkusumi HAMMER2_FREEMAP_LEVEL5_RADIX)
351 1.1 tkusumi #define HAMMER2_FREEMAP_LEVEL4_SIZE ((hammer2_off_t)1 << \
352 1.1 tkusumi HAMMER2_FREEMAP_LEVEL4_RADIX)
353 1.1 tkusumi #define HAMMER2_FREEMAP_LEVEL3_SIZE ((hammer2_off_t)1 << \
354 1.1 tkusumi HAMMER2_FREEMAP_LEVEL3_RADIX)
355 1.1 tkusumi #define HAMMER2_FREEMAP_LEVEL2_SIZE ((hammer2_off_t)1 << \
356 1.1 tkusumi HAMMER2_FREEMAP_LEVEL2_RADIX)
357 1.1 tkusumi #define HAMMER2_FREEMAP_LEVEL1_SIZE ((hammer2_off_t)1 << \
358 1.1 tkusumi HAMMER2_FREEMAP_LEVEL1_RADIX)
359 1.1 tkusumi #define HAMMER2_FREEMAP_LEVEL0_SIZE ((hammer2_off_t)1 << \
360 1.1 tkusumi HAMMER2_FREEMAP_LEVEL0_RADIX)
361 1.1 tkusumi
362 1.1 tkusumi #define HAMMER2_FREEMAP_LEVEL5_MASK (HAMMER2_FREEMAP_LEVEL5_SIZE - 1)
363 1.1 tkusumi #define HAMMER2_FREEMAP_LEVEL4_MASK (HAMMER2_FREEMAP_LEVEL4_SIZE - 1)
364 1.1 tkusumi #define HAMMER2_FREEMAP_LEVEL3_MASK (HAMMER2_FREEMAP_LEVEL3_SIZE - 1)
365 1.1 tkusumi #define HAMMER2_FREEMAP_LEVEL2_MASK (HAMMER2_FREEMAP_LEVEL2_SIZE - 1)
366 1.1 tkusumi #define HAMMER2_FREEMAP_LEVEL1_MASK (HAMMER2_FREEMAP_LEVEL1_SIZE - 1)
367 1.1 tkusumi #define HAMMER2_FREEMAP_LEVEL0_MASK (HAMMER2_FREEMAP_LEVEL0_SIZE - 1)
368 1.1 tkusumi
369 1.1 tkusumi #define HAMMER2_FREEMAP_COUNT (int)(HAMMER2_FREEMAP_LEVELN_PSIZE / \
370 1.1 tkusumi sizeof(hammer2_bmap_data_t))
371 1.1 tkusumi
372 1.1 tkusumi /*
373 1.1 tkusumi * XXX I made a mistake and made the reserved area begin at each LEVEL1 zone,
374 1.1 tkusumi * which is on a 1GB demark. This will eat a little more space but for
375 1.1 tkusumi * now we retain compatibility and make FMZONEBASE every 1GB
376 1.1 tkusumi */
377 1.1 tkusumi #define H2FMZONEBASE(key) ((key) & ~HAMMER2_FREEMAP_LEVEL1_MASK)
378 1.1 tkusumi #define H2FMBASE(key, radix) rounddown2(key, (hammer2_off_t)1 << (radix))
379 1.1 tkusumi
380 1.1 tkusumi /*
381 1.1 tkusumi * 16KB bitmap granularity (x2 bits per entry).
382 1.1 tkusumi */
383 1.1 tkusumi #define HAMMER2_FREEMAP_BLOCK_RADIX 14
384 1.1 tkusumi #define HAMMER2_FREEMAP_BLOCK_SIZE (1 << HAMMER2_FREEMAP_BLOCK_RADIX)
385 1.1 tkusumi #define HAMMER2_FREEMAP_BLOCK_MASK (HAMMER2_FREEMAP_BLOCK_SIZE - 1)
386 1.1 tkusumi
387 1.1 tkusumi /*
388 1.1 tkusumi * bitmap[] structure. 2 bits per HAMMER2_FREEMAP_BLOCK_SIZE.
389 1.1 tkusumi *
390 1.1 tkusumi * 8 x 64-bit elements, 2 bits per block.
391 1.1 tkusumi * 32 blocks (radix 5) per element.
392 1.1 tkusumi * representing INDEX_SIZE bytes worth of storage per element.
393 1.1 tkusumi */
394 1.1 tkusumi
395 1.1 tkusumi typedef uint64_t hammer2_bitmap_t;
396 1.1 tkusumi
397 1.1 tkusumi #define HAMMER2_BMAP_ALLONES ((hammer2_bitmap_t)-1)
398 1.1 tkusumi #define HAMMER2_BMAP_ELEMENTS 8
399 1.1 tkusumi #define HAMMER2_BMAP_BITS_PER_ELEMENT 64
400 1.1 tkusumi #define HAMMER2_BMAP_INDEX_RADIX 5 /* 32 blocks per element */
401 1.1 tkusumi #define HAMMER2_BMAP_BLOCKS_PER_ELEMENT (1 << HAMMER2_BMAP_INDEX_RADIX)
402 1.1 tkusumi
403 1.1 tkusumi #define HAMMER2_BMAP_INDEX_SIZE (HAMMER2_FREEMAP_BLOCK_SIZE * \
404 1.1 tkusumi HAMMER2_BMAP_BLOCKS_PER_ELEMENT)
405 1.1 tkusumi #define HAMMER2_BMAP_INDEX_MASK (HAMMER2_BMAP_INDEX_SIZE - 1)
406 1.1 tkusumi
407 1.1 tkusumi #define HAMMER2_BMAP_SIZE (HAMMER2_BMAP_INDEX_SIZE * \
408 1.1 tkusumi HAMMER2_BMAP_ELEMENTS)
409 1.1 tkusumi #define HAMMER2_BMAP_MASK (HAMMER2_BMAP_SIZE - 1)
410 1.1 tkusumi
411 1.1 tkusumi /*
412 1.1 tkusumi * Two linear areas can be reserved after the initial 4MB segment in the base
413 1.1 tkusumi * zone (the one starting at offset 0). These areas are NOT managed by the
414 1.1 tkusumi * block allocator and do not fall under HAMMER2 crc checking rules based
415 1.1 tkusumi * at the volume header (but can be self-CRCd internally, depending).
416 1.1 tkusumi */
417 1.1 tkusumi #define HAMMER2_BOOT_MIN_BYTES HAMMER2_VOLUME_ALIGN
418 1.1 tkusumi #define HAMMER2_BOOT_NOM_BYTES (64*1024*1024)
419 1.1 tkusumi #define HAMMER2_BOOT_MAX_BYTES (256*1024*1024)
420 1.1 tkusumi
421 1.2 tkusumi #define HAMMER2_AUX_MIN_BYTES HAMMER2_VOLUME_ALIGN
422 1.2 tkusumi #define HAMMER2_AUX_NOM_BYTES (256*1024*1024)
423 1.2 tkusumi #define HAMMER2_AUX_MAX_BYTES (1024*1024*1024)
424 1.1 tkusumi
425 1.1 tkusumi /*
426 1.1 tkusumi * Most HAMMER2 types are implemented as unsigned 64-bit integers.
427 1.1 tkusumi * Transaction ids are monotonic.
428 1.1 tkusumi *
429 1.1 tkusumi * We utilize 32-bit iSCSI CRCs.
430 1.1 tkusumi */
431 1.1 tkusumi typedef uint64_t hammer2_tid_t;
432 1.1 tkusumi typedef uint64_t hammer2_off_t;
433 1.1 tkusumi typedef uint64_t hammer2_key_t;
434 1.1 tkusumi typedef uint32_t hammer2_crc32_t;
435 1.1 tkusumi
436 1.1 tkusumi /*
437 1.1 tkusumi * Miscellanious ranges (all are unsigned).
438 1.1 tkusumi */
439 1.1 tkusumi #define HAMMER2_TID_MIN 1ULL
440 1.1 tkusumi #define HAMMER2_TID_MAX 0xFFFFFFFFFFFFFFFFULL
441 1.1 tkusumi #define HAMMER2_KEY_MIN 0ULL
442 1.1 tkusumi #define HAMMER2_KEY_MAX 0xFFFFFFFFFFFFFFFFULL
443 1.1 tkusumi #define HAMMER2_OFFSET_MIN 0ULL
444 1.1 tkusumi #define HAMMER2_OFFSET_MAX 0xFFFFFFFFFFFFFFFFULL
445 1.1 tkusumi
446 1.1 tkusumi /*
447 1.1 tkusumi * HAMMER2 data offset special cases and masking.
448 1.1 tkusumi *
449 1.1 tkusumi * All HAMMER2 data offsets have to be broken down into a 64K buffer base
450 1.1 tkusumi * offset (HAMMER2_OFF_MASK_HI) and a 64K buffer index (HAMMER2_OFF_MASK_LO).
451 1.1 tkusumi *
452 1.1 tkusumi * Indexes into physical buffers are always 64-byte aligned. The low 6 bits
453 1.1 tkusumi * of the data offset field specifies how large the data chunk being pointed
454 1.1 tkusumi * to as a power of 2. The theoretical minimum radix is thus 6 (The space
455 1.1 tkusumi * needed in the low bits of the data offset field). However, the practical
456 1.1 tkusumi * minimum allocation chunk size is 1KB (a radix of 10), so HAMMER2 sets
457 1.1 tkusumi * HAMMER2_RADIX_MIN to 10. The maximum radix is currently 16 (64KB), but
458 1.1 tkusumi * we fully intend to support larger extents in the future.
459 1.1 tkusumi *
460 1.1 tkusumi * WARNING! A radix of 0 (such as when data_off is all 0's) is a special
461 1.1 tkusumi * case which means no data associated with the blockref, and
462 1.1 tkusumi * not the '1 byte' it would otherwise calculate to.
463 1.1 tkusumi */
464 1.1 tkusumi #define HAMMER2_OFF_MASK 0xFFFFFFFFFFFFFFC0ULL
465 1.1 tkusumi #define HAMMER2_OFF_MASK_LO (HAMMER2_OFF_MASK & HAMMER2_PBUFMASK64)
466 1.1 tkusumi #define HAMMER2_OFF_MASK_HI (~HAMMER2_PBUFMASK64)
467 1.1 tkusumi #define HAMMER2_OFF_MASK_RADIX 0x000000000000003FULL
468 1.1 tkusumi
469 1.1 tkusumi /*
470 1.1 tkusumi * HAMMER2 directory support and pre-defined keys
471 1.1 tkusumi */
472 1.1 tkusumi #define HAMMER2_DIRHASH_VISIBLE 0x8000000000000000ULL
473 1.1 tkusumi #define HAMMER2_DIRHASH_USERMSK 0x7FFFFFFFFFFFFFFFULL
474 1.1 tkusumi #define HAMMER2_DIRHASH_LOMASK 0x0000000000007FFFULL
475 1.1 tkusumi #define HAMMER2_DIRHASH_HIMASK 0xFFFFFFFFFFFF0000ULL
476 1.1 tkusumi #define HAMMER2_DIRHASH_FORCED 0x0000000000008000ULL /* bit forced on */
477 1.1 tkusumi
478 1.1 tkusumi #define HAMMER2_SROOT_KEY 0x0000000000000000ULL /* volume to sroot */
479 1.1 tkusumi #define HAMMER2_BOOT_KEY 0xd9b36ce135528000ULL /* sroot to BOOT PFS */
480 1.1 tkusumi
481 1.1 tkusumi /************************************************************************
482 1.1 tkusumi * DMSG SUPPORT *
483 1.1 tkusumi ************************************************************************
484 1.1 tkusumi * LNK_VOLCONF
485 1.1 tkusumi *
486 1.1 tkusumi * All HAMMER2 directories directly under the super-root on your local
487 1.1 tkusumi * media can be mounted separately, even if they share the same physical
488 1.1 tkusumi * device.
489 1.1 tkusumi *
490 1.1 tkusumi * When you do a HAMMER2 mount you are effectively tying into a HAMMER2
491 1.1 tkusumi * cluster via local media. The local media does not have to participate
492 1.1 tkusumi * in the cluster, other than to provide the hammer2_volconf[] array and
493 1.1 tkusumi * root inode for the mount.
494 1.1 tkusumi *
495 1.1 tkusumi * This is important: The mount device path you specify serves to bootstrap
496 1.1 tkusumi * your entry into the cluster, but your mount will make active connections
497 1.1 tkusumi * to ALL copy elements in the hammer2_volconf[] array which match the
498 1.1 tkusumi * PFSID of the directory in the super-root that you specified. The local
499 1.1 tkusumi * media path does not have to be mentioned in this array but becomes part
500 1.1 tkusumi * of the cluster based on its type and access rights. ALL ELEMENTS ARE
501 1.1 tkusumi * TREATED ACCORDING TO TYPE NO MATTER WHICH ONE YOU MOUNT FROM.
502 1.1 tkusumi *
503 1.1 tkusumi * The actual cluster may be far larger than the elements you list in the
504 1.1 tkusumi * hammer2_volconf[] array. You list only the elements you wish to
505 1.1 tkusumi * directly connect to and you are able to access the rest of the cluster
506 1.1 tkusumi * indirectly through those connections.
507 1.1 tkusumi *
508 1.1 tkusumi * WARNING! This structure must be exactly 128 bytes long for its config
509 1.1 tkusumi * array to fit in the volume header.
510 1.1 tkusumi */
511 1.1 tkusumi struct hammer2_volconf {
512 1.1 tkusumi uint8_t copyid; /* 00 copyid 0-255 (must match slot) */
513 1.1 tkusumi uint8_t inprog; /* 01 operation in progress, or 0 */
514 1.1 tkusumi uint8_t chain_to; /* 02 operation chaining to, or 0 */
515 1.1 tkusumi uint8_t chain_from; /* 03 operation chaining from, or 0 */
516 1.1 tkusumi uint16_t flags; /* 04-05 flags field */
517 1.1 tkusumi uint8_t error; /* 06 last operational error */
518 1.1 tkusumi uint8_t priority; /* 07 priority and round-robin flag */
519 1.1 tkusumi uint8_t remote_pfs_type;/* 08 probed direct remote PFS type */
520 1.1 tkusumi uint8_t reserved08[23]; /* 09-1F */
521 1.1 tkusumi uuid_t pfs_clid; /* 20-2F copy target must match this uuid */
522 1.1 tkusumi uint8_t label[16]; /* 30-3F import/export label */
523 1.1 tkusumi uint8_t path[64]; /* 40-7F target specification string or key */
524 1.1 tkusumi } __packed;
525 1.1 tkusumi
526 1.1 tkusumi typedef struct hammer2_volconf hammer2_volconf_t;
527 1.1 tkusumi
528 1.1 tkusumi #define DMSG_VOLF_ENABLED 0x0001
529 1.1 tkusumi #define DMSG_VOLF_INPROG 0x0002
530 1.1 tkusumi #define DMSG_VOLF_CONN_RR 0x80 /* round-robin at same priority */
531 1.1 tkusumi #define DMSG_VOLF_CONN_EF 0x40 /* media errors flagged */
532 1.1 tkusumi #define DMSG_VOLF_CONN_PRI 0x0F /* select priority 0-15 (15=best) */
533 1.1 tkusumi
534 1.1 tkusumi #if 0
535 1.1 tkusumi struct dmsg_lnk_hammer2_volconf {
536 1.1 tkusumi dmsg_hdr_t head;
537 1.1 tkusumi hammer2_volconf_t copy; /* copy spec */
538 1.1 tkusumi int32_t index;
539 1.1 tkusumi int32_t unused01;
540 1.1 tkusumi uuid_t mediaid;
541 1.1 tkusumi int64_t reserved02[32];
542 1.1 tkusumi } __packed;
543 1.1 tkusumi #endif
544 1.1 tkusumi
545 1.1 tkusumi typedef struct dmsg_lnk_hammer2_volconf dmsg_lnk_hammer2_volconf_t;
546 1.1 tkusumi
547 1.1 tkusumi #define DMSG_LNK_HAMMER2_VOLCONF DMSG_LNK(DMSG_LNK_CMD_HAMMER2_VOLCONF, \
548 1.1 tkusumi dmsg_lnk_hammer2_volconf)
549 1.1 tkusumi
550 1.1 tkusumi #define H2_LNK_VOLCONF(msg) ((dmsg_lnk_hammer2_volconf_t *)(msg)->any.buf)
551 1.1 tkusumi
552 1.1 tkusumi /*
553 1.1 tkusumi * HAMMER2 directory entry header (embedded in blockref) exactly 16 bytes
554 1.1 tkusumi */
555 1.1 tkusumi struct hammer2_dirent_head {
556 1.1 tkusumi hammer2_tid_t inum; /* inode number */
557 1.1 tkusumi uint16_t namlen; /* name length */
558 1.1 tkusumi uint8_t type; /* OBJTYPE_* */
559 1.1 tkusumi uint8_t unused0B;
560 1.1 tkusumi uint8_t unused0C[4];
561 1.1 tkusumi } __packed;
562 1.1 tkusumi
563 1.1 tkusumi typedef struct hammer2_dirent_head hammer2_dirent_head_t;
564 1.1 tkusumi
565 1.1 tkusumi /*
566 1.1 tkusumi * The media block reference structure. This forms the core of the HAMMER2
567 1.1 tkusumi * media topology recursion. This 128-byte data structure is embedded in the
568 1.1 tkusumi * volume header, in inodes (which are also directory entries), and in
569 1.1 tkusumi * indirect blocks.
570 1.1 tkusumi *
571 1.1 tkusumi * A blockref references a single media item, which typically can be a
572 1.1 tkusumi * directory entry (aka inode), indirect block, or data block.
573 1.1 tkusumi *
574 1.1 tkusumi * The primary feature a blockref represents is the ability to validate
575 1.1 tkusumi * the entire tree underneath it via its check code. Any modification to
576 1.1 tkusumi * anything propagates up the blockref tree all the way to the root, replacing
577 1.1 tkusumi * the related blocks and compounding the generated check code.
578 1.1 tkusumi *
579 1.1 tkusumi * The check code can be a simple 32-bit iscsi code, a 64-bit crc, or as
580 1.1 tkusumi * complex as a 512 bit cryptographic hash. I originally used a 64-byte
581 1.1 tkusumi * blockref but later expanded it to 128 bytes to be able to support the
582 1.1 tkusumi * larger check code as well as to embed statistics for quota operation.
583 1.1 tkusumi *
584 1.1 tkusumi * Simple check codes are not sufficient for unverified dedup. Even with
585 1.1 tkusumi * a maximally-sized check code unverified dedup should only be used in
586 1.1 tkusumi * in subdirectory trees where you do not need 100% data integrity.
587 1.1 tkusumi *
588 1.1 tkusumi * Unverified dedup is deduping based on meta-data only without verifying
589 1.1 tkusumi * that the data blocks are actually identical. Verified dedup guarantees
590 1.1 tkusumi * integrity but is a far more I/O-expensive operation.
591 1.1 tkusumi *
592 1.1 tkusumi * --
593 1.1 tkusumi *
594 1.1 tkusumi * mirror_tid - per cluster node modified (propagated upward by flush)
595 1.1 tkusumi * modify_tid - clc record modified (not propagated).
596 1.1 tkusumi * update_tid - clc record updated (propagated upward on verification)
597 1.1 tkusumi *
598 1.1 tkusumi * CLC - Stands for 'Cluster Level Change', identifiers which are identical
599 1.1 tkusumi * within the topology across all cluster nodes (when fully
600 1.1 tkusumi * synchronized).
601 1.1 tkusumi *
602 1.1 tkusumi * NOTE: The range of keys represented by the blockref is (key) to
603 1.1 tkusumi * ((key) + (1LL << keybits) - 1). HAMMER2 usually populates
604 1.1 tkusumi * blocks bottom-up, inserting a new root when radix expansion
605 1.1 tkusumi * is required.
606 1.1 tkusumi *
607 1.1 tkusumi * leaf_count - Helps manage leaf collapse calculations when indirect
608 1.1 tkusumi * blocks become mostly empty. This value caps out at
609 1.1 tkusumi * HAMMER2_BLOCKREF_LEAF_MAX (65535).
610 1.1 tkusumi *
611 1.1 tkusumi * Used by the chain code to determine when to pull leafs up
612 1.1 tkusumi * from nearly empty indirect blocks. For the purposes of this
613 1.1 tkusumi * calculation, BREF_TYPE_INODE is considered a leaf, along
614 1.1 tkusumi * with DIRENT and DATA.
615 1.1 tkusumi *
616 1.1 tkusumi * RESERVED FIELDS
617 1.1 tkusumi *
618 1.1 tkusumi * A number of blockref fields are reserved and should generally be set to
619 1.1 tkusumi * 0 for future compatibility.
620 1.1 tkusumi *
621 1.1 tkusumi * FUTURE BLOCKREF EXPANSION
622 1.1 tkusumi *
623 1.1 tkusumi * CONTENT ADDRESSABLE INDEXING (future) - Using a 256 or 512-bit check code.
624 1.1 tkusumi */
625 1.1 tkusumi struct hammer2_blockref { /* MUST BE EXACTLY 64 BYTES */
626 1.1 tkusumi uint8_t type; /* type of underlying item */
627 1.1 tkusumi uint8_t methods; /* check method & compression method */
628 1.1 tkusumi uint8_t copyid; /* specify which copy this is */
629 1.1 tkusumi uint8_t keybits; /* #of keybits masked off 0=leaf */
630 1.1 tkusumi uint8_t vradix; /* virtual data/meta-data size */
631 1.1 tkusumi uint8_t flags; /* blockref flags */
632 1.1 tkusumi uint16_t leaf_count; /* leaf aggregation count */
633 1.1 tkusumi hammer2_key_t key; /* key specification */
634 1.1 tkusumi hammer2_tid_t mirror_tid; /* media flush topology & freemap */
635 1.1 tkusumi hammer2_tid_t modify_tid; /* clc modify (not propagated) */
636 1.1 tkusumi hammer2_off_t data_off; /* low 6 bits is phys size (radix)*/
637 1.1 tkusumi hammer2_tid_t update_tid; /* clc modify (propagated upward) */
638 1.1 tkusumi union {
639 1.1 tkusumi char buf[16];
640 1.1 tkusumi
641 1.1 tkusumi /*
642 1.1 tkusumi * Directory entry header (BREF_TYPE_DIRENT)
643 1.1 tkusumi *
644 1.1 tkusumi * NOTE: check.buf contains filename if <= 64 bytes. Longer
645 1.1 tkusumi * filenames are stored in a data reference of size
646 1.1 tkusumi * HAMMER2_ALLOC_MIN (at least 256, typically 1024).
647 1.1 tkusumi *
648 1.1 tkusumi * NOTE: inode structure may contain a copy of a recently
649 1.1 tkusumi * associated filename, for recovery purposes.
650 1.1 tkusumi *
651 1.1 tkusumi * NOTE: Superroot entries are INODEs, not DIRENTs. Code
652 1.1 tkusumi * allows both cases.
653 1.1 tkusumi */
654 1.1 tkusumi hammer2_dirent_head_t dirent;
655 1.1 tkusumi
656 1.1 tkusumi /*
657 1.1 tkusumi * Statistics aggregation (BREF_TYPE_INODE, BREF_TYPE_INDIRECT)
658 1.1 tkusumi */
659 1.1 tkusumi struct {
660 1.1 tkusumi hammer2_key_t data_count;
661 1.1 tkusumi hammer2_key_t inode_count;
662 1.1 tkusumi } stats;
663 1.1 tkusumi } embed;
664 1.1 tkusumi union { /* check info */
665 1.1 tkusumi char buf[64];
666 1.1 tkusumi struct {
667 1.1 tkusumi uint32_t value;
668 1.1 tkusumi uint32_t reserved[15];
669 1.1 tkusumi } iscsi32;
670 1.1 tkusumi struct {
671 1.1 tkusumi uint64_t value;
672 1.1 tkusumi uint64_t reserved[7];
673 1.1 tkusumi } xxhash64;
674 1.1 tkusumi struct {
675 1.1 tkusumi char data[24];
676 1.1 tkusumi char reserved[40];
677 1.1 tkusumi } sha192;
678 1.1 tkusumi struct {
679 1.1 tkusumi char data[32];
680 1.1 tkusumi char reserved[32];
681 1.1 tkusumi } sha256;
682 1.1 tkusumi struct {
683 1.1 tkusumi char data[64];
684 1.1 tkusumi } sha512;
685 1.1 tkusumi
686 1.1 tkusumi /*
687 1.1 tkusumi * Freemap hints are embedded in addition to the icrc32.
688 1.1 tkusumi *
689 1.1 tkusumi * bigmask - Radixes available for allocation (0-31).
690 1.1 tkusumi * Heuristical (may be permissive but not
691 1.1 tkusumi * restrictive). Typically only radix values
692 1.1 tkusumi * 10-16 are used (i.e. (1<<10) through (1<<16)).
693 1.1 tkusumi *
694 1.1 tkusumi * avail - Total available space remaining, in bytes
695 1.1 tkusumi */
696 1.1 tkusumi struct {
697 1.1 tkusumi uint32_t icrc32;
698 1.1 tkusumi uint32_t bigmask; /* available radixes */
699 1.1 tkusumi uint64_t avail; /* total available bytes */
700 1.1 tkusumi char reserved[48];
701 1.1 tkusumi } freemap;
702 1.1 tkusumi } check;
703 1.1 tkusumi } __packed;
704 1.1 tkusumi
705 1.1 tkusumi typedef struct hammer2_blockref hammer2_blockref_t;
706 1.1 tkusumi
707 1.1 tkusumi #define HAMMER2_BLOCKREF_BYTES 128 /* blockref struct in bytes */
708 1.1 tkusumi #define HAMMER2_BLOCKREF_RADIX 7
709 1.1 tkusumi
710 1.1 tkusumi #define HAMMER2_BLOCKREF_LEAF_MAX 65535
711 1.1 tkusumi
712 1.1 tkusumi /*
713 1.1 tkusumi * On-media and off-media blockref types.
714 1.1 tkusumi *
715 1.1 tkusumi * types >= 128 are pseudo values that should never be present on-media.
716 1.1 tkusumi */
717 1.1 tkusumi #define HAMMER2_BREF_TYPE_EMPTY 0
718 1.1 tkusumi #define HAMMER2_BREF_TYPE_INODE 1
719 1.1 tkusumi #define HAMMER2_BREF_TYPE_INDIRECT 2
720 1.1 tkusumi #define HAMMER2_BREF_TYPE_DATA 3
721 1.1 tkusumi #define HAMMER2_BREF_TYPE_DIRENT 4
722 1.1 tkusumi #define HAMMER2_BREF_TYPE_FREEMAP_NODE 5
723 1.1 tkusumi #define HAMMER2_BREF_TYPE_FREEMAP_LEAF 6
724 1.3 tkusumi #define HAMMER2_BREF_TYPE_INVALID 7
725 1.1 tkusumi #define HAMMER2_BREF_TYPE_FREEMAP 254 /* pseudo-type */
726 1.1 tkusumi #define HAMMER2_BREF_TYPE_VOLUME 255 /* pseudo-type */
727 1.1 tkusumi
728 1.1 tkusumi #define HAMMER2_BREF_FLAG_PFSROOT 0x01 /* see also related opflag */
729 1.2 tkusumi #define HAMMER2_BREF_FLAG_ZERO 0x02 /* NO LONGER USED */
730 1.1 tkusumi #define HAMMER2_BREF_FLAG_EMERG_MIP 0x04 /* emerg modified-in-place */
731 1.1 tkusumi
732 1.1 tkusumi /*
733 1.1 tkusumi * Encode/decode check mode and compression mode for
734 1.1 tkusumi * bref.methods. The compression level is not encoded in
735 1.1 tkusumi * bref.methods.
736 1.1 tkusumi */
737 1.1 tkusumi #define HAMMER2_ENC_CHECK(n) (((n) & 15) << 4)
738 1.1 tkusumi #define HAMMER2_DEC_CHECK(n) (((n) >> 4) & 15)
739 1.1 tkusumi #define HAMMER2_ENC_COMP(n) ((n) & 15)
740 1.1 tkusumi #define HAMMER2_DEC_COMP(n) ((n) & 15)
741 1.1 tkusumi
742 1.1 tkusumi #define HAMMER2_CHECK_NONE 0
743 1.1 tkusumi #define HAMMER2_CHECK_DISABLED 1
744 1.1 tkusumi #define HAMMER2_CHECK_ISCSI32 2
745 1.1 tkusumi #define HAMMER2_CHECK_XXHASH64 3
746 1.1 tkusumi #define HAMMER2_CHECK_SHA192 4
747 1.1 tkusumi #define HAMMER2_CHECK_FREEMAP 5
748 1.1 tkusumi
749 1.1 tkusumi #define HAMMER2_CHECK_DEFAULT HAMMER2_CHECK_XXHASH64
750 1.1 tkusumi
751 1.1 tkusumi /* user-specifiable check modes only */
752 1.1 tkusumi #define HAMMER2_CHECK_STRINGS { "none", "disabled", "crc32", \
753 1.1 tkusumi "xxhash64", "sha192" }
754 1.1 tkusumi #define HAMMER2_CHECK_STRINGS_COUNT 5
755 1.1 tkusumi
756 1.1 tkusumi /*
757 1.1 tkusumi * Encode/decode check or compression algorithm request in
758 1.1 tkusumi * ipdata->meta.check_algo and ipdata->meta.comp_algo.
759 1.1 tkusumi */
760 1.1 tkusumi #define HAMMER2_ENC_ALGO(n) (n)
761 1.1 tkusumi #define HAMMER2_DEC_ALGO(n) ((n) & 15)
762 1.1 tkusumi #define HAMMER2_ENC_LEVEL(n) ((n) << 4)
763 1.1 tkusumi #define HAMMER2_DEC_LEVEL(n) (((n) >> 4) & 15)
764 1.1 tkusumi
765 1.1 tkusumi #define HAMMER2_COMP_NONE 0
766 1.1 tkusumi #define HAMMER2_COMP_AUTOZERO 1
767 1.1 tkusumi #define HAMMER2_COMP_LZ4 2
768 1.1 tkusumi #define HAMMER2_COMP_ZLIB 3
769 1.1 tkusumi
770 1.1 tkusumi #define HAMMER2_COMP_NEWFS_DEFAULT HAMMER2_COMP_LZ4
771 1.1 tkusumi #define HAMMER2_COMP_STRINGS { "none", "autozero", "lz4", "zlib" }
772 1.1 tkusumi #define HAMMER2_COMP_STRINGS_COUNT 4
773 1.1 tkusumi
774 1.1 tkusumi /*
775 1.1 tkusumi * Passed to hammer2_chain_create(), causes methods to be inherited from
776 1.1 tkusumi * parent.
777 1.1 tkusumi */
778 1.1 tkusumi #define HAMMER2_METH_DEFAULT -1
779 1.1 tkusumi
780 1.1 tkusumi /*
781 1.1 tkusumi * HAMMER2 block references are collected into sets of 4 blockrefs. These
782 1.3 tkusumi * sets are fully associative, meaning the elements making up a set may
783 1.3 tkusumi * contain duplicate entries, holes, but valid elements are always sorted.
784 1.1 tkusumi *
785 1.3 tkusumi * When redundancy is desired a set may contain several duplicate
786 1.3 tkusumi * entries pointing to different copies of the same data. Up to 4 copies
787 1.3 tkusumi * are supported. Not implemented.
788 1.1 tkusumi *
789 1.1 tkusumi * When a set fills up another level of indirection is inserted, moving
790 1.1 tkusumi * some or all of the set's contents into indirect blocks placed under the
791 1.1 tkusumi * set. This is a top-down approach in that indirect blocks are not created
792 1.1 tkusumi * until the set actually becomes full (that is, the entries in the set can
793 1.1 tkusumi * shortcut the indirect blocks when the set is not full). Depending on how
794 1.1 tkusumi * things are filled multiple indirect blocks will eventually be created.
795 1.1 tkusumi */
796 1.1 tkusumi struct hammer2_blockset {
797 1.1 tkusumi hammer2_blockref_t blockref[HAMMER2_SET_COUNT];
798 1.1 tkusumi };
799 1.1 tkusumi
800 1.1 tkusumi typedef struct hammer2_blockset hammer2_blockset_t;
801 1.1 tkusumi
802 1.1 tkusumi /*
803 1.1 tkusumi * Catch programmer snafus
804 1.1 tkusumi */
805 1.1 tkusumi #if (1 << HAMMER2_SET_RADIX) != HAMMER2_SET_COUNT
806 1.1 tkusumi #error "hammer2 direct radix is incorrect"
807 1.1 tkusumi #endif
808 1.1 tkusumi #if (1 << HAMMER2_PBUFRADIX) != HAMMER2_PBUFSIZE
809 1.1 tkusumi #error "HAMMER2_PBUFRADIX and HAMMER2_PBUFSIZE are inconsistent"
810 1.1 tkusumi #endif
811 1.1 tkusumi #if (1 << HAMMER2_RADIX_MIN) != HAMMER2_ALLOC_MIN
812 1.1 tkusumi #error "HAMMER2_RADIX_MIN and HAMMER2_ALLOC_MIN are inconsistent"
813 1.1 tkusumi #endif
814 1.1 tkusumi
815 1.1 tkusumi /*
816 1.1 tkusumi * hammer2_bmap_data - A freemap entry in the LEVEL1 block.
817 1.1 tkusumi *
818 1.1 tkusumi * Each 128-byte entry contains the bitmap and meta-data required to manage
819 1.1 tkusumi * a LEVEL0 (4MB) block of storage. The storage is managed in 256 x 16KB
820 1.1 tkusumi * chunks.
821 1.1 tkusumi *
822 1.1 tkusumi * A smaller allocation granularity is supported via a linear iterator and/or
823 1.1 tkusumi * must otherwise be tracked in ram.
824 1.1 tkusumi *
825 1.1 tkusumi * (data structure must be 128 bytes exactly)
826 1.1 tkusumi *
827 1.1 tkusumi * linear - A BYTE linear allocation offset used for sub-16KB allocations
828 1.1 tkusumi * only. May contain values between 0 and 4MB. Must be ignored
829 1.1 tkusumi * if 16KB-aligned (i.e. force bitmap scan), otherwise may be
830 1.1 tkusumi * used to sub-allocate within the 16KB block (which is already
831 1.1 tkusumi * marked as allocated in the bitmap).
832 1.1 tkusumi *
833 1.1 tkusumi * Sub-allocations need only be 1KB-aligned and do not have to be
834 1.1 tkusumi * size-aligned, and 16KB or larger allocations do not update this
835 1.1 tkusumi * field, resulting in pretty good packing.
836 1.1 tkusumi *
837 1.1 tkusumi * Please note that file data granularity may be limited by
838 1.1 tkusumi * other issues such as buffer cache direct-mapping and the
839 1.1 tkusumi * desire to support sector sizes up to 16KB (so H2 only issues
840 1.1 tkusumi * I/O's in multiples of 16KB anyway).
841 1.1 tkusumi *
842 1.1 tkusumi * class - Clustering class. Cleared to 0 only if the entire leaf becomes
843 1.1 tkusumi * free. Used to cluster device buffers so all elements must have
844 1.1 tkusumi * the same device block size, but may mix logical sizes.
845 1.1 tkusumi *
846 1.1 tkusumi * Typically integrated with the blockref type in the upper 8 bits
847 1.1 tkusumi * to localize inodes and indrect blocks, improving bulk free scans
848 1.1 tkusumi * and directory scans.
849 1.1 tkusumi *
850 1.1 tkusumi * bitmap - Two bits per 16KB allocation block arranged in arrays of
851 1.1 tkusumi * 64-bit elements, 256x2 bits representing ~4MB worth of media
852 1.1 tkusumi * storage. Bit patterns are as follows:
853 1.1 tkusumi *
854 1.1 tkusumi * 00 Unallocated
855 1.1 tkusumi * 01 (reserved)
856 1.1 tkusumi * 10 Possibly free
857 1.1 tkusumi * 11 Allocated
858 1.3 tkusumi *
859 1.3 tkusumi * ==========
860 1.3 tkusumi * level6 freemap
861 1.3 tkusumi * blockref[0] : 4EB
862 1.3 tkusumi * blockref[1] : 4EB
863 1.3 tkusumi * blockref[2] : 4EB
864 1.3 tkusumi * blockref[3] : 4EB
865 1.3 tkusumi * -----------------------------------------------------------------------
866 1.3 tkusumi * 4 x 128B = 512B : 4 x 4EB = 16EB
867 1.3 tkusumi *
868 1.3 tkusumi * level2-5 FREEMAP_NODE
869 1.3 tkusumi * blockref[0] : 1GB,256GB,64TB,16PB
870 1.3 tkusumi * blockref[1] : 1GB,256GB,64TB,16PB
871 1.3 tkusumi * ...
872 1.3 tkusumi * blockref[255] : 1GB,256GB,64TB,16PB
873 1.3 tkusumi * -----------------------------------------------------------------------
874 1.3 tkusumi * 256 x 128B = 32KB : 256 x 1GB,256GB,64TB,16PB = 256GB,64TB,16PB,4EB
875 1.3 tkusumi *
876 1.3 tkusumi * level1 FREEMAP_LEAF
877 1.3 tkusumi * bmap_data[0] : 8 x 8B = 512bits = 256 x 2bits -> 256 x 16KB = 4MB
878 1.3 tkusumi * bmap_data[1] : 8 x 8B = 512bits = 256 x 2bits -> 256 x 16KB = 4MB
879 1.3 tkusumi * ...
880 1.3 tkusumi * bmap_data[255] : 8 x 8B = 512bits = 256 x 2bits -> 256 x 16KB = 4MB
881 1.3 tkusumi * -----------------------------------------------------------------------
882 1.3 tkusumi * 256 x 128B = 32KB : 256 x 4MB = 1GB
883 1.3 tkusumi * ==========
884 1.1 tkusumi */
885 1.1 tkusumi struct hammer2_bmap_data {
886 1.1 tkusumi int32_t linear; /* 00 linear sub-granular allocation offset */
887 1.1 tkusumi uint16_t class; /* 04-05 clustering class ((type<<8)|radix) */
888 1.1 tkusumi uint8_t reserved06; /* 06 */
889 1.1 tkusumi uint8_t reserved07; /* 07 */
890 1.1 tkusumi uint32_t reserved08; /* 08 */
891 1.1 tkusumi uint32_t reserved0C; /* 0C */
892 1.1 tkusumi uint32_t reserved10; /* 10 */
893 1.1 tkusumi uint32_t reserved14; /* 14 */
894 1.1 tkusumi uint32_t reserved18; /* 18 */
895 1.1 tkusumi uint32_t avail; /* 1C */
896 1.1 tkusumi uint32_t reserved20[8]; /* 20-3F 256 bits manages 128K/1KB/2-bits */
897 1.1 tkusumi /* 40-7F 512 bits manages 4MB of storage */
898 1.1 tkusumi hammer2_bitmap_t bitmapq[HAMMER2_BMAP_ELEMENTS];
899 1.1 tkusumi } __packed;
900 1.1 tkusumi
901 1.1 tkusumi typedef struct hammer2_bmap_data hammer2_bmap_data_t;
902 1.1 tkusumi
903 1.1 tkusumi /*
904 1.2 tkusumi * The inode number is stored in the inode rather than being
905 1.1 tkusumi * based on the location of the inode (since the location moves every time
906 1.1 tkusumi * the inode or anything underneath the inode is modified).
907 1.1 tkusumi *
908 1.1 tkusumi * The inode is 1024 bytes, made up of 256 bytes of meta-data, 256 bytes
909 1.1 tkusumi * for the filename, and 512 bytes worth of direct file data OR an embedded
910 1.1 tkusumi * blockset. The in-memory hammer2_inode structure contains only the mostly-
911 1.1 tkusumi * node-independent meta-data portion (some flags are node-specific and will
912 1.1 tkusumi * not be synchronized). The rest of the inode is node-specific and chain I/O
913 1.1 tkusumi * is required to obtain it.
914 1.1 tkusumi *
915 1.1 tkusumi * Directories represent one inode per blockref. Inodes are not laid out
916 1.1 tkusumi * as a file but instead are represented by the related blockrefs. The
917 1.1 tkusumi * blockrefs, in turn, are indexed by the 64-bit directory hash key. Remember
918 1.1 tkusumi * that blocksets are fully associative, so a certain degree efficiency is
919 1.1 tkusumi * achieved just from that.
920 1.1 tkusumi *
921 1.1 tkusumi * Up to 512 bytes of direct data can be embedded in an inode, and since
922 1.1 tkusumi * inodes are essentially directory entries this also means that small data
923 1.1 tkusumi * files end up simply being laid out linearly in the directory, resulting
924 1.1 tkusumi * in fewer seeks and highly optimal access.
925 1.1 tkusumi *
926 1.1 tkusumi * The compression mode can be changed at any time in the inode and is
927 1.1 tkusumi * recorded on a blockref-by-blockref basis.
928 1.1 tkusumi */
929 1.1 tkusumi #define HAMMER2_INODE_BYTES 1024 /* (asserted by code) */
930 1.1 tkusumi #define HAMMER2_INODE_MAXNAME 256 /* maximum name in bytes */
931 1.1 tkusumi #define HAMMER2_INODE_VERSION_ONE 1
932 1.1 tkusumi
933 1.1 tkusumi #define HAMMER2_INODE_START 1024 /* dynamically allocated */
934 1.1 tkusumi
935 1.1 tkusumi struct hammer2_inode_meta {
936 1.1 tkusumi uint16_t version; /* 0000 inode data version */
937 1.1 tkusumi uint8_t reserved02; /* 0002 */
938 1.1 tkusumi uint8_t pfs_subtype; /* 0003 pfs sub-type */
939 1.1 tkusumi
940 1.1 tkusumi /*
941 1.1 tkusumi * core inode attributes, inode type, misc flags
942 1.1 tkusumi */
943 1.1 tkusumi uint32_t uflags; /* 0004 chflags */
944 1.1 tkusumi uint32_t rmajor; /* 0008 available for device nodes */
945 1.1 tkusumi uint32_t rminor; /* 000C available for device nodes */
946 1.1 tkusumi uint64_t ctime; /* 0010 inode change time */
947 1.1 tkusumi uint64_t mtime; /* 0018 modified time */
948 1.1 tkusumi uint64_t atime; /* 0020 access time (unsupported) */
949 1.1 tkusumi uint64_t btime; /* 0028 birth time */
950 1.1 tkusumi uuid_t uid; /* 0030 uid / degenerate unix uid */
951 1.1 tkusumi uuid_t gid; /* 0040 gid / degenerate unix gid */
952 1.1 tkusumi
953 1.1 tkusumi uint8_t type; /* 0050 object type */
954 1.1 tkusumi uint8_t op_flags; /* 0051 operational flags */
955 1.1 tkusumi uint16_t cap_flags; /* 0052 capability flags */
956 1.1 tkusumi uint32_t mode; /* 0054 unix modes (typ low 16 bits) */
957 1.1 tkusumi
958 1.1 tkusumi /*
959 1.1 tkusumi * inode size, identification, localized recursive configuration
960 1.1 tkusumi * for compression and backup copies.
961 1.1 tkusumi *
962 1.1 tkusumi * NOTE: Nominal parent inode number (iparent) is only applicable
963 1.1 tkusumi * for directories but can also help for files during
964 1.1 tkusumi * catastrophic recovery.
965 1.1 tkusumi */
966 1.1 tkusumi hammer2_tid_t inum; /* 0058 inode number */
967 1.1 tkusumi hammer2_off_t size; /* 0060 size of file */
968 1.1 tkusumi uint64_t nlinks; /* 0068 hard links (typ only dirs) */
969 1.1 tkusumi hammer2_tid_t iparent; /* 0070 nominal parent inum */
970 1.1 tkusumi hammer2_key_t name_key; /* 0078 full filename key */
971 1.1 tkusumi uint16_t name_len; /* 0080 filename length */
972 1.1 tkusumi uint8_t ncopies; /* 0082 ncopies to local media */
973 1.1 tkusumi uint8_t comp_algo; /* 0083 compression request & algo */
974 1.1 tkusumi
975 1.1 tkusumi /*
976 1.1 tkusumi * These fields are currently only applicable to PFSROOTs.
977 1.1 tkusumi *
978 1.1 tkusumi * NOTE: We can't use {volume_data->fsid, pfs_clid} to uniquely
979 1.1 tkusumi * identify an instance of a PFS in the cluster because
980 1.1 tkusumi * a mount may contain more than one copy of the PFS as
981 1.1 tkusumi * a separate node. {pfs_clid, pfs_fsid} must be used for
982 1.1 tkusumi * registration in the cluster.
983 1.1 tkusumi */
984 1.1 tkusumi uint8_t target_type; /* 0084 hardlink target type */
985 1.1 tkusumi uint8_t check_algo; /* 0085 check code request & algo */
986 1.1 tkusumi uint8_t pfs_nmasters; /* 0086 (if PFSROOT) if multi-master */
987 1.1 tkusumi uint8_t pfs_type; /* 0087 (if PFSROOT) node type */
988 1.1 tkusumi hammer2_tid_t pfs_inum; /* 0088 (if PFSROOT) inum allocator */
989 1.1 tkusumi uuid_t pfs_clid; /* 0090 (if PFSROOT) cluster uuid */
990 1.1 tkusumi uuid_t pfs_fsid; /* 00A0 (if PFSROOT) unique uuid */
991 1.1 tkusumi
992 1.1 tkusumi /*
993 1.1 tkusumi * Quotas and aggregate sub-tree inode and data counters. Note that
994 1.1 tkusumi * quotas are not replicated downward, they are explicitly set by
995 1.1 tkusumi * the sysop and in-memory structures keep track of inheritance.
996 1.1 tkusumi */
997 1.1 tkusumi hammer2_key_t data_quota; /* 00B0 subtree quota in bytes */
998 1.1 tkusumi hammer2_key_t unusedB8; /* 00B8 subtree byte count */
999 1.1 tkusumi hammer2_key_t inode_quota; /* 00C0 subtree quota inode count */
1000 1.1 tkusumi hammer2_key_t unusedC8; /* 00C8 subtree inode count */
1001 1.1 tkusumi
1002 1.1 tkusumi /*
1003 1.1 tkusumi * The last snapshot tid is tested against modify_tid to determine
1004 1.1 tkusumi * when a copy must be made of a data block whos check mode has been
1005 1.1 tkusumi * disabled (a disabled check mode allows data blocks to be updated
1006 1.1 tkusumi * in place instead of copy-on-write).
1007 1.1 tkusumi */
1008 1.1 tkusumi hammer2_tid_t pfs_lsnap_tid; /* 00D0 last snapshot tid */
1009 1.1 tkusumi hammer2_tid_t reservedD8; /* 00D8 (avail) */
1010 1.1 tkusumi
1011 1.1 tkusumi /*
1012 1.1 tkusumi * Tracks (possibly degenerate) free areas covering all sub-tree
1013 1.1 tkusumi * allocations under inode, not counting the inode itself.
1014 1.1 tkusumi * 0/0 indicates empty entry. fully set-associative.
1015 1.1 tkusumi *
1016 1.1 tkusumi * (not yet implemented)
1017 1.1 tkusumi */
1018 1.1 tkusumi uint64_t decrypt_check; /* 00E0 decryption validator */
1019 1.1 tkusumi hammer2_off_t reservedE0[3]; /* 00E8/F0/F8 */
1020 1.1 tkusumi } __packed;
1021 1.1 tkusumi
1022 1.1 tkusumi typedef struct hammer2_inode_meta hammer2_inode_meta_t;
1023 1.1 tkusumi
1024 1.1 tkusumi struct hammer2_inode_data {
1025 1.1 tkusumi hammer2_inode_meta_t meta; /* 0000-00FF */
1026 1.1 tkusumi unsigned char filename[HAMMER2_INODE_MAXNAME];
1027 1.1 tkusumi /* 0100-01FF (256 char, unterminated) */
1028 1.1 tkusumi union { /* 0200-03FF (64x8 = 512 bytes) */
1029 1.1 tkusumi hammer2_blockset_t blockset;
1030 1.1 tkusumi char data[HAMMER2_EMBEDDED_BYTES];
1031 1.1 tkusumi } u;
1032 1.1 tkusumi } __packed;
1033 1.1 tkusumi
1034 1.1 tkusumi typedef struct hammer2_inode_data hammer2_inode_data_t;
1035 1.1 tkusumi
1036 1.1 tkusumi #define HAMMER2_OPFLAG_DIRECTDATA 0x01
1037 1.1 tkusumi #define HAMMER2_OPFLAG_PFSROOT 0x02 /* (see also bref flag) */
1038 1.1 tkusumi #define HAMMER2_OPFLAG_COPYIDS 0x04 /* copyids override parent */
1039 1.1 tkusumi
1040 1.1 tkusumi #define HAMMER2_OBJTYPE_UNKNOWN 0
1041 1.1 tkusumi #define HAMMER2_OBJTYPE_DIRECTORY 1
1042 1.1 tkusumi #define HAMMER2_OBJTYPE_REGFILE 2
1043 1.1 tkusumi #define HAMMER2_OBJTYPE_FIFO 4
1044 1.1 tkusumi #define HAMMER2_OBJTYPE_CDEV 5
1045 1.1 tkusumi #define HAMMER2_OBJTYPE_BDEV 6
1046 1.1 tkusumi #define HAMMER2_OBJTYPE_SOFTLINK 7
1047 1.1 tkusumi #define HAMMER2_OBJTYPE_UNUSED08 8
1048 1.1 tkusumi #define HAMMER2_OBJTYPE_SOCKET 9
1049 1.1 tkusumi #define HAMMER2_OBJTYPE_WHITEOUT 10
1050 1.1 tkusumi
1051 1.1 tkusumi #define HAMMER2_COPYID_NONE 0
1052 1.1 tkusumi #define HAMMER2_COPYID_LOCAL ((uint8_t)-1)
1053 1.1 tkusumi
1054 1.1 tkusumi #define HAMMER2_COPYID_COUNT 256
1055 1.1 tkusumi
1056 1.1 tkusumi /*
1057 1.1 tkusumi * PFS types identify the role of a PFS within a cluster. The PFS types
1058 1.1 tkusumi * is stored on media and in LNK_SPAN messages and used in other places.
1059 1.1 tkusumi *
1060 1.1 tkusumi * The low 4 bits specify the current active type while the high 4 bits
1061 1.1 tkusumi * specify the transition target if the PFS is being upgraded or downgraded,
1062 1.1 tkusumi * If the upper 4 bits are not zero it may effect how a PFS is used during
1063 1.1 tkusumi * the transition.
1064 1.1 tkusumi *
1065 1.1 tkusumi * Generally speaking, downgrading a MASTER to a SLAVE cannot complete until
1066 1.1 tkusumi * at least all MASTERs have updated their pfs_nmasters field. And upgrading
1067 1.1 tkusumi * a SLAVE to a MASTER cannot complete until the new prospective master has
1068 1.1 tkusumi * been fully synchronized (though theoretically full synchronization is
1069 1.1 tkusumi * not required if a (new) quorum of other masters are fully synchronized).
1070 1.1 tkusumi *
1071 1.1 tkusumi * It generally does not matter which PFS element you actually mount, you
1072 1.1 tkusumi * are mounting 'the cluster'. So, for example, a network mount will mount
1073 1.1 tkusumi * a DUMMY PFS type on a memory filesystem. However, there are two exceptions.
1074 1.1 tkusumi * In order to gain the benefits of a SOFT_MASTER or SOFT_SLAVE, those PFSs
1075 1.1 tkusumi * must be directly mounted.
1076 1.1 tkusumi */
1077 1.1 tkusumi #define HAMMER2_PFSTYPE_NONE 0x00
1078 1.1 tkusumi #define HAMMER2_PFSTYPE_CACHE 0x01
1079 1.1 tkusumi #define HAMMER2_PFSTYPE_UNUSED02 0x02
1080 1.1 tkusumi #define HAMMER2_PFSTYPE_SLAVE 0x03
1081 1.1 tkusumi #define HAMMER2_PFSTYPE_SOFT_SLAVE 0x04
1082 1.1 tkusumi #define HAMMER2_PFSTYPE_SOFT_MASTER 0x05
1083 1.1 tkusumi #define HAMMER2_PFSTYPE_MASTER 0x06
1084 1.1 tkusumi #define HAMMER2_PFSTYPE_UNUSED07 0x07
1085 1.1 tkusumi #define HAMMER2_PFSTYPE_SUPROOT 0x08
1086 1.1 tkusumi #define HAMMER2_PFSTYPE_DUMMY 0x09
1087 1.1 tkusumi #define HAMMER2_PFSTYPE_MAX 16
1088 1.1 tkusumi
1089 1.1 tkusumi #define HAMMER2_PFSTRAN_NONE 0x00 /* no transition in progress */
1090 1.1 tkusumi #define HAMMER2_PFSTRAN_CACHE 0x10
1091 1.1 tkusumi #define HAMMER2_PFSTRAN_UNMUSED20 0x20
1092 1.1 tkusumi #define HAMMER2_PFSTRAN_SLAVE 0x30
1093 1.1 tkusumi #define HAMMER2_PFSTRAN_SOFT_SLAVE 0x40
1094 1.1 tkusumi #define HAMMER2_PFSTRAN_SOFT_MASTER 0x50
1095 1.1 tkusumi #define HAMMER2_PFSTRAN_MASTER 0x60
1096 1.1 tkusumi #define HAMMER2_PFSTRAN_UNUSED70 0x70
1097 1.1 tkusumi #define HAMMER2_PFSTRAN_SUPROOT 0x80
1098 1.1 tkusumi #define HAMMER2_PFSTRAN_DUMMY 0x90
1099 1.1 tkusumi
1100 1.1 tkusumi #define HAMMER2_PFS_DEC(n) ((n) & 0x0F)
1101 1.1 tkusumi #define HAMMER2_PFS_DEC_TRANSITION(n) (((n) >> 4) & 0x0F)
1102 1.1 tkusumi #define HAMMER2_PFS_ENC_TRANSITION(n) (((n) & 0x0F) << 4)
1103 1.1 tkusumi
1104 1.1 tkusumi #define HAMMER2_PFSSUBTYPE_NONE 0
1105 1.1 tkusumi #define HAMMER2_PFSSUBTYPE_SNAPSHOT 1 /* manual/managed snapshot */
1106 1.1 tkusumi #define HAMMER2_PFSSUBTYPE_AUTOSNAP 2 /* automatic snapshot */
1107 1.1 tkusumi
1108 1.1 tkusumi /*
1109 1.1 tkusumi * PFS mode of operation is a bitmask. This is typically not stored
1110 1.1 tkusumi * on-media, but defined here because the field may be used in dmsgs.
1111 1.1 tkusumi */
1112 1.1 tkusumi #define HAMMER2_PFSMODE_QUORUM 0x01
1113 1.1 tkusumi #define HAMMER2_PFSMODE_RW 0x02
1114 1.1 tkusumi
1115 1.1 tkusumi /*
1116 1.2 tkusumi * The volume header eats a 64K block at the beginning of each 2GB zone
1117 1.2 tkusumi * up to four copies.
1118 1.1 tkusumi *
1119 1.1 tkusumi * All information is stored in host byte order. The volume header's magic
1120 1.1 tkusumi * number may be checked to determine the byte order. If you wish to mount
1121 1.1 tkusumi * between machines w/ different endian modes you'll need filesystem code
1122 1.1 tkusumi * which acts on the media data consistently (either all one way or all the
1123 1.1 tkusumi * other). Our code currently does not do that.
1124 1.1 tkusumi *
1125 1.1 tkusumi * A read-write mount may have to recover missing allocations by doing an
1126 1.1 tkusumi * incremental mirror scan looking for modifications made after alloc_tid.
1127 1.1 tkusumi * If alloc_tid == last_tid then no recovery operation is needed. Recovery
1128 1.1 tkusumi * operations are usually very, very fast.
1129 1.1 tkusumi *
1130 1.1 tkusumi * Read-only mounts do not need to do any recovery, access to the filesystem
1131 1.1 tkusumi * topology is always consistent after a crash (is always consistent, period).
1132 1.1 tkusumi * However, there may be shortcutted blockref updates present from deep in
1133 1.1 tkusumi * the tree which are stored in the volumeh eader and must be tracked on
1134 1.1 tkusumi * the fly.
1135 1.1 tkusumi *
1136 1.1 tkusumi * NOTE: The copyinfo[] array contains the configuration for both the
1137 1.1 tkusumi * cluster connections and any local media copies. The volume
1138 1.1 tkusumi * header will be replicated for each local media copy.
1139 1.1 tkusumi *
1140 1.1 tkusumi * The mount command may specify multiple medias or just one and
1141 1.1 tkusumi * allow HAMMER2 to pick up the others when it checks the copyinfo[]
1142 1.1 tkusumi * array on mount.
1143 1.1 tkusumi *
1144 1.2 tkusumi * NOTE: sroot_blockset points to the super-root directory, not the root
1145 1.1 tkusumi * directory. The root directory will be a subdirectory under the
1146 1.1 tkusumi * super-root.
1147 1.1 tkusumi *
1148 1.1 tkusumi * The super-root directory contains all root directories and all
1149 1.1 tkusumi * snapshots (readonly or writable). It is possible to do a
1150 1.1 tkusumi * null-mount of the super-root using special path constructions
1151 1.1 tkusumi * relative to your mounted root.
1152 1.1 tkusumi */
1153 1.1 tkusumi #define HAMMER2_VOLUME_ID_HBO 0x48414d3205172011LLU
1154 1.1 tkusumi #define HAMMER2_VOLUME_ID_ABO 0x11201705324d4148LLU
1155 1.1 tkusumi
1156 1.3 tkusumi /*
1157 1.3 tkusumi * If volume version is HAMMER2_VOL_VERSION_MULTI_VOLUMES or above, max
1158 1.3 tkusumi * HAMMER2_MAX_VOLUMES volumes are supported. There must be 1 (and only 1)
1159 1.3 tkusumi * volume with volume id HAMMER2_ROOT_VOLUME.
1160 1.3 tkusumi * Otherwise filesystem only supports 1 volume, and that volume must have
1161 1.3 tkusumi * volume id HAMMER2_ROOT_VOLUME(0) which was a reserved field then.
1162 1.3 tkusumi */
1163 1.3 tkusumi #define HAMMER2_MAX_VOLUMES 64
1164 1.3 tkusumi #define HAMMER2_ROOT_VOLUME 0
1165 1.3 tkusumi
1166 1.1 tkusumi struct hammer2_volume_data {
1167 1.1 tkusumi /*
1168 1.1 tkusumi * sector #0 - 512 bytes
1169 1.1 tkusumi */
1170 1.1 tkusumi uint64_t magic; /* 0000 Signature */
1171 1.1 tkusumi hammer2_off_t boot_beg; /* 0008 Boot area (future) */
1172 1.1 tkusumi hammer2_off_t boot_end; /* 0010 (size = end - beg) */
1173 1.1 tkusumi hammer2_off_t aux_beg; /* 0018 Aux area (future) */
1174 1.1 tkusumi hammer2_off_t aux_end; /* 0020 (size = end - beg) */
1175 1.1 tkusumi hammer2_off_t volu_size; /* 0028 Volume size, bytes */
1176 1.1 tkusumi
1177 1.1 tkusumi uint32_t version; /* 0030 */
1178 1.1 tkusumi uint32_t flags; /* 0034 */
1179 1.1 tkusumi uint8_t copyid; /* 0038 copyid of phys vol */
1180 1.1 tkusumi uint8_t freemap_version; /* 0039 freemap algorithm */
1181 1.1 tkusumi uint8_t peer_type; /* 003A HAMMER2_PEER_xxx */
1182 1.3 tkusumi uint8_t volu_id; /* 003B */
1183 1.3 tkusumi uint8_t nvolumes; /* 003C */
1184 1.3 tkusumi uint8_t reserved003D; /* 003D */
1185 1.3 tkusumi uint16_t reserved003E; /* 003E */
1186 1.1 tkusumi
1187 1.1 tkusumi uuid_t fsid; /* 0040 */
1188 1.1 tkusumi uuid_t fstype; /* 0050 */
1189 1.1 tkusumi
1190 1.1 tkusumi /*
1191 1.1 tkusumi * allocator_size is precalculated at newfs time and does not include
1192 1.2 tkusumi * reserved blocks, boot, or aux areas.
1193 1.1 tkusumi *
1194 1.1 tkusumi * Initial non-reserved-area allocations do not use the freemap
1195 1.1 tkusumi * but instead adjust alloc_iterator. Dynamic allocations take
1196 1.1 tkusumi * over starting at (allocator_beg). This makes newfs_hammer2's
1197 1.1 tkusumi * job a lot easier and can also serve as a testing jig.
1198 1.1 tkusumi */
1199 1.1 tkusumi hammer2_off_t allocator_size; /* 0060 Total data space */
1200 1.1 tkusumi hammer2_off_t allocator_free; /* 0068 Free space */
1201 1.1 tkusumi hammer2_off_t allocator_beg; /* 0070 Initial allocations */
1202 1.1 tkusumi
1203 1.1 tkusumi /*
1204 1.1 tkusumi * mirror_tid reflects the highest committed change for this
1205 1.1 tkusumi * block device regardless of whether it is to the super-root
1206 1.1 tkusumi * or to a PFS or whatever.
1207 1.1 tkusumi *
1208 1.1 tkusumi * freemap_tid reflects the highest committed freemap change for
1209 1.1 tkusumi * this block device.
1210 1.1 tkusumi */
1211 1.1 tkusumi hammer2_tid_t mirror_tid; /* 0078 committed tid (vol) */
1212 1.1 tkusumi hammer2_tid_t reserved0080; /* 0080 */
1213 1.1 tkusumi hammer2_tid_t reserved0088; /* 0088 */
1214 1.1 tkusumi hammer2_tid_t freemap_tid; /* 0090 committed tid (fmap) */
1215 1.1 tkusumi hammer2_tid_t bulkfree_tid; /* 0098 bulkfree incremental */
1216 1.3 tkusumi hammer2_tid_t reserved00A0[4]; /* 00A0-00BF */
1217 1.3 tkusumi
1218 1.3 tkusumi hammer2_off_t total_size; /* 00C0 Total volume size, bytes */
1219 1.1 tkusumi
1220 1.1 tkusumi /*
1221 1.1 tkusumi * Copyids are allocated dynamically from the copyexists bitmap.
1222 1.1 tkusumi * An id from the active copies set (up to 8, see copyinfo later on)
1223 1.1 tkusumi * may still exist after the copy set has been removed from the
1224 1.1 tkusumi * volume header and its bit will remain active in the bitmap and
1225 1.1 tkusumi * cannot be reused until it is 100% removed from the hierarchy.
1226 1.1 tkusumi */
1227 1.1 tkusumi uint32_t copyexists[8]; /* 00C8-00E7 copy exists bmap */
1228 1.1 tkusumi char reserved0140[248]; /* 00E8-01DF */
1229 1.1 tkusumi
1230 1.1 tkusumi /*
1231 1.1 tkusumi * 32 bit CRC array at the end of the first 512 byte sector.
1232 1.1 tkusumi *
1233 1.1 tkusumi * icrc_sects[7] - First 512-4 bytes of volume header (including all
1234 1.1 tkusumi * the other icrc's except this one).
1235 1.1 tkusumi *
1236 1.1 tkusumi * icrc_sects[6] - Sector 1 (512 bytes) of volume header, which is
1237 1.1 tkusumi * the blockset for the root.
1238 1.1 tkusumi *
1239 1.1 tkusumi * icrc_sects[5] - Sector 2
1240 1.1 tkusumi * icrc_sects[4] - Sector 3
1241 1.1 tkusumi * icrc_sects[3] - Sector 4 (the freemap blockset)
1242 1.1 tkusumi */
1243 1.1 tkusumi hammer2_crc32_t icrc_sects[8]; /* 01E0-01FF */
1244 1.1 tkusumi
1245 1.1 tkusumi /*
1246 1.1 tkusumi * sector #1 - 512 bytes
1247 1.1 tkusumi *
1248 1.3 tkusumi * The entire sector is used by a blockset, but currently only first
1249 1.3 tkusumi * blockref is used.
1250 1.1 tkusumi */
1251 1.1 tkusumi hammer2_blockset_t sroot_blockset; /* 0200-03FF Superroot dir */
1252 1.1 tkusumi
1253 1.1 tkusumi /*
1254 1.3 tkusumi * sector #2-6
1255 1.1 tkusumi */
1256 1.1 tkusumi char sector2[512]; /* 0400-05FF reserved */
1257 1.1 tkusumi char sector3[512]; /* 0600-07FF reserved */
1258 1.1 tkusumi hammer2_blockset_t freemap_blockset; /* 0800-09FF freemap */
1259 1.1 tkusumi char sector5[512]; /* 0A00-0BFF reserved */
1260 1.1 tkusumi char sector6[512]; /* 0C00-0DFF reserved */
1261 1.3 tkusumi
1262 1.3 tkusumi /*
1263 1.3 tkusumi * sector #7 - 512 bytes
1264 1.3 tkusumi * Maximum 64 volume offsets within logical offset.
1265 1.3 tkusumi */
1266 1.3 tkusumi hammer2_off_t volu_loff[HAMMER2_MAX_VOLUMES];
1267 1.1 tkusumi
1268 1.1 tkusumi /*
1269 1.1 tkusumi * sector #8-71 - 32768 bytes
1270 1.1 tkusumi *
1271 1.1 tkusumi * Contains the configuration for up to 256 copyinfo targets. These
1272 1.1 tkusumi * specify local and remote copies operating as masters or slaves.
1273 1.1 tkusumi * copyid's 0 and 255 are reserved (0 indicates an empty slot and 255
1274 1.1 tkusumi * indicates the local media).
1275 1.1 tkusumi */
1276 1.1 tkusumi /* 1000-8FFF copyinfo config */
1277 1.1 tkusumi hammer2_volconf_t copyinfo[HAMMER2_COPYID_COUNT];
1278 1.1 tkusumi
1279 1.1 tkusumi /*
1280 1.1 tkusumi * Remaining sections are reserved for future use.
1281 1.1 tkusumi */
1282 1.1 tkusumi char reserved0400[0x6FFC]; /* 9000-FFFB reserved */
1283 1.1 tkusumi
1284 1.1 tkusumi /*
1285 1.1 tkusumi * icrc on entire volume header
1286 1.1 tkusumi */
1287 1.1 tkusumi hammer2_crc32_t icrc_volheader; /* FFFC-FFFF full volume icrc*/
1288 1.1 tkusumi } __packed;
1289 1.1 tkusumi
1290 1.1 tkusumi typedef struct hammer2_volume_data hammer2_volume_data_t;
1291 1.1 tkusumi
1292 1.1 tkusumi /*
1293 1.1 tkusumi * Various parts of the volume header have their own iCRCs.
1294 1.1 tkusumi *
1295 1.1 tkusumi * The first 512 bytes has its own iCRC stored at the end of the 512 bytes
1296 1.1 tkusumi * and not included the icrc calculation.
1297 1.1 tkusumi *
1298 1.1 tkusumi * The second 512 bytes also has its own iCRC but it is stored in the first
1299 1.1 tkusumi * 512 bytes so it covers the entire second 512 bytes.
1300 1.1 tkusumi *
1301 1.1 tkusumi * The whole volume block (64KB) has an iCRC covering all but the last 4 bytes,
1302 1.1 tkusumi * which is where the iCRC for the whole volume is stored. This is currently
1303 1.1 tkusumi * a catch-all for anything not individually iCRCd.
1304 1.1 tkusumi */
1305 1.1 tkusumi #define HAMMER2_VOL_ICRC_SECT0 7
1306 1.1 tkusumi #define HAMMER2_VOL_ICRC_SECT1 6
1307 1.1 tkusumi
1308 1.1 tkusumi #define HAMMER2_VOLUME_BYTES 65536
1309 1.1 tkusumi
1310 1.1 tkusumi #define HAMMER2_VOLUME_ICRC0_OFF 0
1311 1.1 tkusumi #define HAMMER2_VOLUME_ICRC1_OFF 512
1312 1.1 tkusumi #define HAMMER2_VOLUME_ICRCVH_OFF 0
1313 1.1 tkusumi
1314 1.1 tkusumi #define HAMMER2_VOLUME_ICRC0_SIZE (512 - 4)
1315 1.1 tkusumi #define HAMMER2_VOLUME_ICRC1_SIZE (512)
1316 1.1 tkusumi #define HAMMER2_VOLUME_ICRCVH_SIZE (65536 - 4)
1317 1.1 tkusumi
1318 1.3 tkusumi #define HAMMER2_VOL_VERSION_MULTI_VOLUMES 2
1319 1.3 tkusumi
1320 1.1 tkusumi #define HAMMER2_VOL_VERSION_MIN 1
1321 1.3 tkusumi #define HAMMER2_VOL_VERSION_DEFAULT HAMMER2_VOL_VERSION_MULTI_VOLUMES
1322 1.3 tkusumi #define HAMMER2_VOL_VERSION_WIP (HAMMER2_VOL_VERSION_MULTI_VOLUMES + 1)
1323 1.1 tkusumi
1324 1.1 tkusumi #define HAMMER2_NUM_VOLHDRS 4
1325 1.1 tkusumi
1326 1.1 tkusumi union hammer2_media_data {
1327 1.1 tkusumi hammer2_volume_data_t voldata;
1328 1.1 tkusumi hammer2_inode_data_t ipdata;
1329 1.1 tkusumi hammer2_blockset_t blkset;
1330 1.1 tkusumi hammer2_blockref_t npdata[HAMMER2_IND_COUNT_MAX];
1331 1.1 tkusumi hammer2_bmap_data_t bmdata[HAMMER2_FREEMAP_COUNT];
1332 1.1 tkusumi char buf[HAMMER2_PBUFSIZE];
1333 1.1 tkusumi } __packed;
1334 1.1 tkusumi
1335 1.1 tkusumi typedef union hammer2_media_data hammer2_media_data_t;
1336 1.1 tkusumi
1337 1.1 tkusumi #endif /* !_VFS_HAMMER2_DISK_H_ */
1338