Home | History | Annotate | Line # | Download | only in fstyp
hammer2_disk.h revision 1.1.4.2
      1 /*        $NetBSD: hammer2_disk.h,v 1.1.4.2 2020/04/08 14:09:20 martin Exp $      */
      2 
      3 /*
      4  * Copyright (c) 2011-2019 The DragonFly Project.  All rights reserved.
      5  *
      6  * This code is derived from software contributed to The DragonFly Project
      7  * by Matthew Dillon <dillon (at) dragonflybsd.org>
      8  * by Venkatesh Srinivas <vsrinivas (at) dragonflybsd.org>
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  *
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in
     18  *    the documentation and/or other materials provided with the
     19  *    distribution.
     20  * 3. Neither the name of The DragonFly Project nor the names of its
     21  *    contributors may be used to endorse or promote products derived
     22  *    from this software without specific, prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     26  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
     27  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
     28  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     29  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
     30  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     31  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     32  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     33  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     34  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     35  * SUCH DAMAGE.
     36  */
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: hammer2_disk.h,v 1.1.4.2 2020/04/08 14:09:20 martin Exp $");
     39 
     40 #ifndef _VFS_HAMMER2_DISK_H_
     41 #define _VFS_HAMMER2_DISK_H_
     42 
     43 #ifndef _SYS_UUID_H_
     44 #include <sys/uuid.h>
     45 #endif
     46 #if 0
     47 #ifndef _SYS_DMSG_H_
     48 #include <sys/dmsg.h>
     49 #endif
     50 #endif
     51 
     52 /*
     53  * The structures below represent the on-disk media structures for the HAMMER2
     54  * filesystem.  Note that all fields for on-disk structures are naturally
     55  * aligned.  The host endian format is typically used - compatibility is
     56  * possible if the implementation detects reversed endian and adjusts accesses
     57  * accordingly.
     58  *
     59  * HAMMER2 primarily revolves around the directory topology:  inodes,
     60  * directory entries, and block tables.  Block device buffer cache buffers
     61  * are always 64KB.  Logical file buffers are typically 16KB.  All data
     62  * references utilize 64-bit byte offsets.
     63  *
     64  * Free block management is handled independently using blocks reserved by
     65  * the media topology.
     66  */
     67 
     68 /*
     69  * The data at the end of a file or directory may be a fragment in order
     70  * to optimize storage efficiency.  The minimum fragment size is 1KB.
     71  * Since allocations are in powers of 2 fragments must also be sized in
     72  * powers of 2 (1024, 2048, ... 65536).
     73  *
     74  * For the moment the maximum allocation size is HAMMER2_PBUFSIZE (64K),
     75  * which is 2^16.  Larger extents may be supported in the future.  Smaller
     76  * fragments might be supported in the future (down to 64 bytes is possible),
     77  * but probably will not be.
     78  *
     79  * A full indirect block use supports 512 x 128-byte blockrefs in a 64KB
     80  * buffer.  Indirect blocks down to 1KB are supported to keep small
     81  * directories small.
     82  *
     83  * A maximally sized file (2^64-1 bytes) requires ~6 indirect block levels
     84  * using 64KB indirect blocks (128 byte refs, 512 or radix 9 per indblk).
     85  *
     86  *	16(datablk) + 9 + 9 + 9 + 9 + 9 + 9 = ~70.
     87  *	16(datablk) + 7 + 9 + 9 + 9 + 9 + 9 = ~68.  (smaller top level indblk)
     88  *
     89  * The actual depth depends on copies redundancy and whether the filesystem
     90  * has chosen to use a smaller indirect block size at the top level or not.
     91  */
     92 #define HAMMER2_ALLOC_MIN	1024	/* minimum allocation size */
     93 #define HAMMER2_RADIX_MIN	10	/* minimum allocation size 2^N */
     94 #define HAMMER2_ALLOC_MAX	65536	/* maximum allocation size */
     95 #define HAMMER2_RADIX_MAX	16	/* maximum allocation size 2^N */
     96 #define HAMMER2_RADIX_KEY	64	/* number of bits in key */
     97 
     98 /*
     99  * MINALLOCSIZE		- The minimum allocation size.  This can be smaller
    100  *		  	  or larger than the minimum physical IO size.
    101  *
    102  *			  NOTE: Should not be larger than 1K since inodes
    103  *				are 1K.
    104  *
    105  * MINIOSIZE		- The minimum IO size.  This must be less than
    106  *			  or equal to HAMMER2_LBUFSIZE.
    107  *
    108  * HAMMER2_LBUFSIZE	- Nominal buffer size for I/O rollups.
    109  *
    110  * HAMMER2_PBUFSIZE	- Topological block size used by files for all
    111  *			  blocks except the block straddling EOF.
    112  *
    113  * HAMMER2_SEGSIZE	- Allocation map segment size, typically 4MB
    114  *			  (space represented by a level0 bitmap).
    115  */
    116 
    117 #define HAMMER2_SEGSIZE		(1 << HAMMER2_FREEMAP_LEVEL0_RADIX)
    118 #define HAMMER2_SEGRADIX	HAMMER2_FREEMAP_LEVEL0_RADIX
    119 
    120 #define HAMMER2_PBUFRADIX	16	/* physical buf (1<<16) bytes */
    121 #define HAMMER2_PBUFSIZE	65536
    122 #define HAMMER2_LBUFRADIX	14	/* logical buf (1<<14) bytes */
    123 #define HAMMER2_LBUFSIZE	16384
    124 
    125 /*
    126  * Generally speaking we want to use 16K and 64K I/Os
    127  */
    128 #define HAMMER2_MINIORADIX	HAMMER2_LBUFRADIX
    129 #define HAMMER2_MINIOSIZE	HAMMER2_LBUFSIZE
    130 
    131 #define HAMMER2_IND_BYTES_MIN	4096
    132 #define HAMMER2_IND_BYTES_NOM	HAMMER2_LBUFSIZE
    133 #define HAMMER2_IND_BYTES_MAX	HAMMER2_PBUFSIZE
    134 #define HAMMER2_IND_RADIX_MIN	12
    135 #define HAMMER2_IND_RADIX_NOM	HAMMER2_LBUFRADIX
    136 #define HAMMER2_IND_RADIX_MAX	HAMMER2_PBUFRADIX
    137 #define HAMMER2_IND_COUNT_MIN	(HAMMER2_IND_BYTES_MIN / \
    138 				 sizeof(hammer2_blockref_t))
    139 #define HAMMER2_IND_COUNT_MAX	(HAMMER2_IND_BYTES_MAX / \
    140 				 sizeof(hammer2_blockref_t))
    141 
    142 /*
    143  * In HAMMER2, arrays of blockrefs are fully set-associative, meaning that
    144  * any element can occur at any index and holes can be anywhere.  As a
    145  * future optimization we will be able to flag that such arrays are sorted
    146  * and thus optimize lookups, but for now we don't.
    147  *
    148  * Inodes embed either 512 bytes of direct data or an array of 4 blockrefs,
    149  * resulting in highly efficient storage for files <= 512 bytes and for files
    150  * <= 512KB.  Up to 4 directory entries can be referenced from a directory
    151  * without requiring an indirect block.
    152  *
    153  * Indirect blocks are typically either 4KB (64 blockrefs / ~4MB represented),
    154  * or 64KB (1024 blockrefs / ~64MB represented).
    155  */
    156 #define HAMMER2_SET_RADIX		2	/* radix 2 = 4 entries */
    157 #define HAMMER2_SET_COUNT		(1 << HAMMER2_SET_RADIX)
    158 #define HAMMER2_EMBEDDED_BYTES		512	/* inode blockset/dd size */
    159 #define HAMMER2_EMBEDDED_RADIX		9
    160 
    161 #define HAMMER2_PBUFMASK	(HAMMER2_PBUFSIZE - 1)
    162 #define HAMMER2_LBUFMASK	(HAMMER2_LBUFSIZE - 1)
    163 #define HAMMER2_SEGMASK		(HAMMER2_SEGSIZE - 1)
    164 
    165 #define HAMMER2_LBUFMASK64	((hammer2_off_t)HAMMER2_LBUFMASK)
    166 #define HAMMER2_PBUFSIZE64	((hammer2_off_t)HAMMER2_PBUFSIZE)
    167 #define HAMMER2_PBUFMASK64	((hammer2_off_t)HAMMER2_PBUFMASK)
    168 #define HAMMER2_SEGSIZE64	((hammer2_off_t)HAMMER2_SEGSIZE)
    169 #define HAMMER2_SEGMASK64	((hammer2_off_t)HAMMER2_SEGMASK)
    170 
    171 #define HAMMER2_UUID_STRING	"5cbb9ad1-862d-11dc-a94d-01301bb8a9f5"
    172 
    173 /*
    174  * A 4MB segment is reserved at the beginning of each 2GB zone.  This segment
    175  * contains the volume header (or backup volume header), the free block
    176  * table, and possibly other information in the future.  A 4MB segment for
    177  * freemap is reserved at the beginning of every 1GB.
    178  *
    179  * 4MB = 64 x 64K blocks.  Each 4MB segment is broken down as follows:
    180  *
    181  * ==========
    182  *  0 volume header (for the first four 2GB zones)
    183  *  1 freemap00 level1 FREEMAP_LEAF (256 x 128B bitmap data per 1GB)
    184  *  2           level2 FREEMAP_NODE (256 x 128B indirect block per 256GB)
    185  *  3           level3 FREEMAP_NODE (256 x 128B indirect block per 64TB)
    186  *  4           level4 FREEMAP_NODE (256 x 128B indirect block per 16PB)
    187  *  5           level5 FREEMAP_NODE (256 x 128B indirect block per 4EB)
    188  *  6 freemap01 level1 (rotation)
    189  *  7           level2
    190  *  8           level3
    191  *  9           level4
    192  * 10           level5
    193  * 11 freemap02 level1 (rotation)
    194  * 12           level2
    195  * 13           level3
    196  * 14           level4
    197  * 15           level5
    198  * 16 freemap03 level1 (rotation)
    199  * 17           level2
    200  * 18           level3
    201  * 19           level4
    202  * 20           level5
    203  * 21 freemap04 level1 (rotation)
    204  * 22           level2
    205  * 23           level3
    206  * 24           level4
    207  * 25           level5
    208  * 26 freemap05 level1 (rotation)
    209  * 27           level2
    210  * 28           level3
    211  * 29           level4
    212  * 30           level5
    213  * 31 freemap06 level1 (rotation)
    214  * 32           level2
    215  * 33           level3
    216  * 34           level4
    217  * 35           level5
    218  * 36 freemap07 level1 (rotation)
    219  * 37           level2
    220  * 38           level3
    221  * 39           level4
    222  * 40           level5
    223  * 41 unused
    224  * .. unused
    225  * 63 unused
    226  * ==========
    227  *
    228  * The first four 2GB zones contain volume headers and volume header backups.
    229  * After that the volume header block# is reserved for future use.  Similarly,
    230  * there are many blocks related to various Freemap levels which are not
    231  * used in every segment and those are also reserved for future use.
    232  * Note that each FREEMAP_LEAF or FREEMAP_NODE uses 32KB out of 64KB slot.
    233  *
    234  *			Freemap (see the FREEMAP document)
    235  *
    236  * The freemap utilizes blocks #1-40 in 8 sets of 5 blocks.  Each block in
    237  * a set represents a level of depth in the freemap topology.  Eight sets
    238  * exist to prevent live updates from disturbing the state of the freemap
    239  * were a crash/reboot to occur.  That is, a live update is not committed
    240  * until the update's flush reaches the volume root.  There are FOUR volume
    241  * roots representing the last four synchronization points, so the freemap
    242  * must be consistent no matter which volume root is chosen by the mount
    243  * code.
    244  *
    245  * Each freemap set is 5 x 64K blocks and represents the 1GB, 256GB, 64TB,
    246  * 16PB and 4EB indirect map.  The volume header itself has a set of 4 freemap
    247  * blockrefs representing another 2 bits, giving us a total 64 bits of
    248  * representable address space.
    249  *
    250  * The Level 0 64KB block represents 1GB of storage represented by 32KB
    251  * (256 x struct hammer2_bmap_data).  Each structure represents 4MB of storage
    252  * and has a 512 bit bitmap, using 2 bits to represent a 16KB chunk of
    253  * storage.  These 2 bits represent the following states:
    254  *
    255  *	00	Free
    256  *	01	(reserved) (Possibly partially allocated)
    257  *	10	Possibly free
    258  *	11	Allocated
    259  *
    260  * One important thing to note here is that the freemap resolution is 16KB,
    261  * but the minimum storage allocation size is 1KB.  The hammer2 vfs keeps
    262  * track of sub-allocations in memory, which means that on a unmount or reboot
    263  * the entire 16KB of a partially allocated block will be considered fully
    264  * allocated.  It is possible for fragmentation to build up over time, but
    265  * defragmentation is fairly easy to accomplish since all modifications
    266  * allocate a new block.
    267  *
    268  * The Second thing to note is that due to the way snapshots and inode
    269  * replication works, deleting a file cannot immediately free the related
    270  * space.  Furthermore, deletions often do not bother to traverse the
    271  * block subhierarchy being deleted.  And to go even further, whole
    272  * sub-directory trees can be deleted simply by deleting the directory inode
    273  * at the top.  So even though we have a symbol to represent a 'possibly free'
    274  * block (binary 10), only the bulk free scanning code can actually use it.
    275  * Normal 'rm's or other deletions do not.
    276  *
    277  * WARNING!  ZONE_SEG and VOLUME_ALIGN must be a multiple of 1<<LEVEL0_RADIX
    278  *	     (i.e. a multiple of 4MB).  VOLUME_ALIGN must be >= ZONE_SEG.
    279  *
    280  * In Summary:
    281  *
    282  * (1) Modifications to freemap blocks 'allocate' a new copy (aka use a block
    283  *     from the next set).  The new copy is reused until a flush occurs at
    284  *     which point the next modification will then rotate to the next set.
    285  */
    286 #define HAMMER2_VOLUME_ALIGN		(8 * 1024 * 1024)
    287 #define HAMMER2_VOLUME_ALIGN64		((hammer2_off_t)HAMMER2_VOLUME_ALIGN)
    288 #define HAMMER2_VOLUME_ALIGNMASK	(HAMMER2_VOLUME_ALIGN - 1)
    289 #define HAMMER2_VOLUME_ALIGNMASK64     ((hammer2_off_t)HAMMER2_VOLUME_ALIGNMASK)
    290 
    291 #define HAMMER2_NEWFS_ALIGN		(HAMMER2_VOLUME_ALIGN)
    292 #define HAMMER2_NEWFS_ALIGN64		((hammer2_off_t)HAMMER2_VOLUME_ALIGN)
    293 #define HAMMER2_NEWFS_ALIGNMASK		(HAMMER2_VOLUME_ALIGN - 1)
    294 #define HAMMER2_NEWFS_ALIGNMASK64	((hammer2_off_t)HAMMER2_NEWFS_ALIGNMASK)
    295 
    296 #define HAMMER2_ZONE_BYTES64		(2LLU * 1024 * 1024 * 1024)
    297 #define HAMMER2_ZONE_MASK64		(HAMMER2_ZONE_BYTES64 - 1)
    298 #define HAMMER2_ZONE_SEG		(4 * 1024 * 1024)
    299 #define HAMMER2_ZONE_SEG64		((hammer2_off_t)HAMMER2_ZONE_SEG)
    300 #define HAMMER2_ZONE_BLOCKS_SEG		(HAMMER2_ZONE_SEG / HAMMER2_PBUFSIZE)
    301 
    302 #define HAMMER2_ZONE_FREEMAP_INC	5	/* 5 deep */
    303 
    304 #define HAMMER2_ZONE_VOLHDR		0	/* volume header or backup */
    305 #define HAMMER2_ZONE_FREEMAP_00		1	/* normal freemap rotation */
    306 #define HAMMER2_ZONE_FREEMAP_01		6	/* normal freemap rotation */
    307 #define HAMMER2_ZONE_FREEMAP_02		11	/* normal freemap rotation */
    308 #define HAMMER2_ZONE_FREEMAP_03		16	/* normal freemap rotation */
    309 #define HAMMER2_ZONE_FREEMAP_04		21	/* normal freemap rotation */
    310 #define HAMMER2_ZONE_FREEMAP_05		26	/* normal freemap rotation */
    311 #define HAMMER2_ZONE_FREEMAP_06		31	/* normal freemap rotation */
    312 #define HAMMER2_ZONE_FREEMAP_07		36	/* normal freemap rotation */
    313 #define HAMMER2_ZONE_FREEMAP_END	41	/* (non-inclusive) */
    314 
    315 #define HAMMER2_ZONE_UNUSED41		41
    316 #define HAMMER2_ZONE_UNUSED42		42
    317 #define HAMMER2_ZONE_UNUSED43		43
    318 #define HAMMER2_ZONE_UNUSED44		44
    319 #define HAMMER2_ZONE_UNUSED45		45
    320 #define HAMMER2_ZONE_UNUSED46		46
    321 #define HAMMER2_ZONE_UNUSED47		47
    322 #define HAMMER2_ZONE_UNUSED48		48
    323 #define HAMMER2_ZONE_UNUSED49		49
    324 #define HAMMER2_ZONE_UNUSED50		50
    325 #define HAMMER2_ZONE_UNUSED51		51
    326 #define HAMMER2_ZONE_UNUSED52		52
    327 #define HAMMER2_ZONE_UNUSED53		53
    328 #define HAMMER2_ZONE_UNUSED54		54
    329 #define HAMMER2_ZONE_UNUSED55		55
    330 #define HAMMER2_ZONE_UNUSED56		56
    331 #define HAMMER2_ZONE_UNUSED57		57
    332 #define HAMMER2_ZONE_UNUSED58		58
    333 #define HAMMER2_ZONE_UNUSED59		59
    334 #define HAMMER2_ZONE_UNUSED60		60
    335 #define HAMMER2_ZONE_UNUSED61		61
    336 #define HAMMER2_ZONE_UNUSED62		62
    337 #define HAMMER2_ZONE_UNUSED63		63
    338 #define HAMMER2_ZONE_END		64	/* non-inclusive */
    339 
    340 #define HAMMER2_NFREEMAPS		8	/* FREEMAP_00 - FREEMAP_07 */
    341 
    342 						/* relative to FREEMAP_x */
    343 #define HAMMER2_ZONEFM_LEVEL1		0	/* 1GB leafmap */
    344 #define HAMMER2_ZONEFM_LEVEL2		1	/* 256GB indmap */
    345 #define HAMMER2_ZONEFM_LEVEL3		2	/* 64TB indmap */
    346 #define HAMMER2_ZONEFM_LEVEL4		3	/* 16PB indmap */
    347 #define HAMMER2_ZONEFM_LEVEL5		4	/* 4EB indmap */
    348 /* LEVEL6 is a set of 4 blockrefs in the volume header 16EB */
    349 
    350 /*
    351  * Freemap radix.  Assumes a set-count of 4, 128-byte blockrefs,
    352  * 32KB indirect block for freemap (LEVELN_PSIZE below).
    353  *
    354  * Leaf entry represents 4MB of storage broken down into a 512-bit
    355  * bitmap, 2-bits per entry.  So course bitmap item represents 16KB.
    356  */
    357 #if HAMMER2_SET_COUNT != 4
    358 #error "hammer2_disk.h - freemap assumes SET_COUNT is 4"
    359 #endif
    360 #define HAMMER2_FREEMAP_LEVEL6_RADIX	64	/* 16EB (end) */
    361 #define HAMMER2_FREEMAP_LEVEL5_RADIX	62	/* 4EB */
    362 #define HAMMER2_FREEMAP_LEVEL4_RADIX	54	/* 16PB */
    363 #define HAMMER2_FREEMAP_LEVEL3_RADIX	46	/* 64TB */
    364 #define HAMMER2_FREEMAP_LEVEL2_RADIX	38	/* 256GB */
    365 #define HAMMER2_FREEMAP_LEVEL1_RADIX	30	/* 1GB */
    366 #define HAMMER2_FREEMAP_LEVEL0_RADIX	22	/* 4MB (128by in l-1 leaf) */
    367 
    368 #define HAMMER2_FREEMAP_LEVELN_PSIZE	32768	/* physical bytes */
    369 
    370 #define HAMMER2_FREEMAP_LEVEL5_SIZE	((hammer2_off_t)1 <<		\
    371 					 HAMMER2_FREEMAP_LEVEL5_RADIX)
    372 #define HAMMER2_FREEMAP_LEVEL4_SIZE	((hammer2_off_t)1 <<		\
    373 					 HAMMER2_FREEMAP_LEVEL4_RADIX)
    374 #define HAMMER2_FREEMAP_LEVEL3_SIZE	((hammer2_off_t)1 <<		\
    375 					 HAMMER2_FREEMAP_LEVEL3_RADIX)
    376 #define HAMMER2_FREEMAP_LEVEL2_SIZE	((hammer2_off_t)1 <<		\
    377 					 HAMMER2_FREEMAP_LEVEL2_RADIX)
    378 #define HAMMER2_FREEMAP_LEVEL1_SIZE	((hammer2_off_t)1 <<		\
    379 					 HAMMER2_FREEMAP_LEVEL1_RADIX)
    380 #define HAMMER2_FREEMAP_LEVEL0_SIZE	((hammer2_off_t)1 <<		\
    381 					 HAMMER2_FREEMAP_LEVEL0_RADIX)
    382 
    383 #define HAMMER2_FREEMAP_LEVEL5_MASK	(HAMMER2_FREEMAP_LEVEL5_SIZE - 1)
    384 #define HAMMER2_FREEMAP_LEVEL4_MASK	(HAMMER2_FREEMAP_LEVEL4_SIZE - 1)
    385 #define HAMMER2_FREEMAP_LEVEL3_MASK	(HAMMER2_FREEMAP_LEVEL3_SIZE - 1)
    386 #define HAMMER2_FREEMAP_LEVEL2_MASK	(HAMMER2_FREEMAP_LEVEL2_SIZE - 1)
    387 #define HAMMER2_FREEMAP_LEVEL1_MASK	(HAMMER2_FREEMAP_LEVEL1_SIZE - 1)
    388 #define HAMMER2_FREEMAP_LEVEL0_MASK	(HAMMER2_FREEMAP_LEVEL0_SIZE - 1)
    389 
    390 #define HAMMER2_FREEMAP_COUNT		(int)(HAMMER2_FREEMAP_LEVELN_PSIZE / \
    391 					 sizeof(hammer2_bmap_data_t))
    392 
    393 /*
    394  * XXX I made a mistake and made the reserved area begin at each LEVEL1 zone,
    395  *     which is on a 1GB demark.  This will eat a little more space but for
    396  *     now we retain compatibility and make FMZONEBASE every 1GB
    397  */
    398 #define H2FMZONEBASE(key)	((key) & ~HAMMER2_FREEMAP_LEVEL1_MASK)
    399 #define H2FMBASE(key, radix)	rounddown2(key, (hammer2_off_t)1 << (radix))
    400 
    401 /*
    402  * 16KB bitmap granularity (x2 bits per entry).
    403  */
    404 #define HAMMER2_FREEMAP_BLOCK_RADIX	14
    405 #define HAMMER2_FREEMAP_BLOCK_SIZE	(1 << HAMMER2_FREEMAP_BLOCK_RADIX)
    406 #define HAMMER2_FREEMAP_BLOCK_MASK	(HAMMER2_FREEMAP_BLOCK_SIZE - 1)
    407 
    408 /*
    409  * bitmap[] structure.  2 bits per HAMMER2_FREEMAP_BLOCK_SIZE.
    410  *
    411  * 8 x 64-bit elements, 2 bits per block.
    412  * 32 blocks (radix 5) per element.
    413  * representing INDEX_SIZE bytes worth of storage per element.
    414  */
    415 
    416 typedef uint64_t			hammer2_bitmap_t;
    417 
    418 #define HAMMER2_BMAP_ALLONES		((hammer2_bitmap_t)-1)
    419 #define HAMMER2_BMAP_ELEMENTS		8
    420 #define HAMMER2_BMAP_BITS_PER_ELEMENT	64
    421 #define HAMMER2_BMAP_INDEX_RADIX	5	/* 32 blocks per element */
    422 #define HAMMER2_BMAP_BLOCKS_PER_ELEMENT	(1 << HAMMER2_BMAP_INDEX_RADIX)
    423 
    424 #define HAMMER2_BMAP_INDEX_SIZE		(HAMMER2_FREEMAP_BLOCK_SIZE * \
    425 					 HAMMER2_BMAP_BLOCKS_PER_ELEMENT)
    426 #define HAMMER2_BMAP_INDEX_MASK		(HAMMER2_BMAP_INDEX_SIZE - 1)
    427 
    428 #define HAMMER2_BMAP_SIZE		(HAMMER2_BMAP_INDEX_SIZE * \
    429 					 HAMMER2_BMAP_ELEMENTS)
    430 #define HAMMER2_BMAP_MASK		(HAMMER2_BMAP_SIZE - 1)
    431 
    432 /*
    433  * Two linear areas can be reserved after the initial 4MB segment in the base
    434  * zone (the one starting at offset 0).  These areas are NOT managed by the
    435  * block allocator and do not fall under HAMMER2 crc checking rules based
    436  * at the volume header (but can be self-CRCd internally, depending).
    437  */
    438 #define HAMMER2_BOOT_MIN_BYTES		HAMMER2_VOLUME_ALIGN
    439 #define HAMMER2_BOOT_NOM_BYTES		(64*1024*1024)
    440 #define HAMMER2_BOOT_MAX_BYTES		(256*1024*1024)
    441 
    442 #define HAMMER2_REDO_MIN_BYTES		HAMMER2_VOLUME_ALIGN
    443 #define HAMMER2_REDO_NOM_BYTES		(256*1024*1024)
    444 #define HAMMER2_REDO_MAX_BYTES		(1024*1024*1024)
    445 
    446 /*
    447  * Most HAMMER2 types are implemented as unsigned 64-bit integers.
    448  * Transaction ids are monotonic.
    449  *
    450  * We utilize 32-bit iSCSI CRCs.
    451  */
    452 typedef uint64_t hammer2_tid_t;
    453 typedef uint64_t hammer2_off_t;
    454 typedef uint64_t hammer2_key_t;
    455 typedef uint32_t hammer2_crc32_t;
    456 
    457 /*
    458  * Miscellanious ranges (all are unsigned).
    459  */
    460 #define HAMMER2_TID_MIN		1ULL
    461 #define HAMMER2_TID_MAX		0xFFFFFFFFFFFFFFFFULL
    462 #define HAMMER2_KEY_MIN		0ULL
    463 #define HAMMER2_KEY_MAX		0xFFFFFFFFFFFFFFFFULL
    464 #define HAMMER2_OFFSET_MIN	0ULL
    465 #define HAMMER2_OFFSET_MAX	0xFFFFFFFFFFFFFFFFULL
    466 
    467 /*
    468  * HAMMER2 data offset special cases and masking.
    469  *
    470  * All HAMMER2 data offsets have to be broken down into a 64K buffer base
    471  * offset (HAMMER2_OFF_MASK_HI) and a 64K buffer index (HAMMER2_OFF_MASK_LO).
    472  *
    473  * Indexes into physical buffers are always 64-byte aligned.  The low 6 bits
    474  * of the data offset field specifies how large the data chunk being pointed
    475  * to as a power of 2.  The theoretical minimum radix is thus 6 (The space
    476  * needed in the low bits of the data offset field).  However, the practical
    477  * minimum allocation chunk size is 1KB (a radix of 10), so HAMMER2 sets
    478  * HAMMER2_RADIX_MIN to 10.  The maximum radix is currently 16 (64KB), but
    479  * we fully intend to support larger extents in the future.
    480  *
    481  * WARNING! A radix of 0 (such as when data_off is all 0's) is a special
    482  *	    case which means no data associated with the blockref, and
    483  *	    not the '1 byte' it would otherwise calculate to.
    484  */
    485 #define HAMMER2_OFF_BAD		((hammer2_off_t)-1)
    486 #define HAMMER2_OFF_MASK	0xFFFFFFFFFFFFFFC0ULL
    487 #define HAMMER2_OFF_MASK_LO	(HAMMER2_OFF_MASK & HAMMER2_PBUFMASK64)
    488 #define HAMMER2_OFF_MASK_HI	(~HAMMER2_PBUFMASK64)
    489 #define HAMMER2_OFF_MASK_RADIX	0x000000000000003FULL
    490 #define HAMMER2_MAX_COPIES	6
    491 
    492 /*
    493  * HAMMER2 directory support and pre-defined keys
    494  */
    495 #define HAMMER2_DIRHASH_VISIBLE	0x8000000000000000ULL
    496 #define HAMMER2_DIRHASH_USERMSK	0x7FFFFFFFFFFFFFFFULL
    497 #define HAMMER2_DIRHASH_LOMASK	0x0000000000007FFFULL
    498 #define HAMMER2_DIRHASH_HIMASK	0xFFFFFFFFFFFF0000ULL
    499 #define HAMMER2_DIRHASH_FORCED	0x0000000000008000ULL	/* bit forced on */
    500 
    501 #define HAMMER2_SROOT_KEY	0x0000000000000000ULL	/* volume to sroot */
    502 #define HAMMER2_BOOT_KEY	0xd9b36ce135528000ULL	/* sroot to BOOT PFS */
    503 
    504 /************************************************************************
    505  *				DMSG SUPPORT				*
    506  ************************************************************************
    507  * LNK_VOLCONF
    508  *
    509  * All HAMMER2 directories directly under the super-root on your local
    510  * media can be mounted separately, even if they share the same physical
    511  * device.
    512  *
    513  * When you do a HAMMER2 mount you are effectively tying into a HAMMER2
    514  * cluster via local media.  The local media does not have to participate
    515  * in the cluster, other than to provide the hammer2_volconf[] array and
    516  * root inode for the mount.
    517  *
    518  * This is important: The mount device path you specify serves to bootstrap
    519  * your entry into the cluster, but your mount will make active connections
    520  * to ALL copy elements in the hammer2_volconf[] array which match the
    521  * PFSID of the directory in the super-root that you specified.  The local
    522  * media path does not have to be mentioned in this array but becomes part
    523  * of the cluster based on its type and access rights.  ALL ELEMENTS ARE
    524  * TREATED ACCORDING TO TYPE NO MATTER WHICH ONE YOU MOUNT FROM.
    525  *
    526  * The actual cluster may be far larger than the elements you list in the
    527  * hammer2_volconf[] array.  You list only the elements you wish to
    528  * directly connect to and you are able to access the rest of the cluster
    529  * indirectly through those connections.
    530  *
    531  * WARNING!  This structure must be exactly 128 bytes long for its config
    532  *	     array to fit in the volume header.
    533  */
    534 struct hammer2_volconf {
    535 	uint8_t	copyid;		/* 00	 copyid 0-255 (must match slot) */
    536 	uint8_t inprog;		/* 01	 operation in progress, or 0 */
    537 	uint8_t chain_to;	/* 02	 operation chaining to, or 0 */
    538 	uint8_t chain_from;	/* 03	 operation chaining from, or 0 */
    539 	uint16_t flags;		/* 04-05 flags field */
    540 	uint8_t error;		/* 06	 last operational error */
    541 	uint8_t priority;	/* 07	 priority and round-robin flag */
    542 	uint8_t remote_pfs_type;/* 08	 probed direct remote PFS type */
    543 	uint8_t reserved08[23];	/* 09-1F */
    544 	uuid_t	pfs_clid;	/* 20-2F copy target must match this uuid */
    545 	uint8_t label[16];	/* 30-3F import/export label */
    546 	uint8_t path[64];	/* 40-7F target specification string or key */
    547 } __packed;
    548 
    549 typedef struct hammer2_volconf hammer2_volconf_t;
    550 
    551 #define DMSG_VOLF_ENABLED	0x0001
    552 #define DMSG_VOLF_INPROG	0x0002
    553 #define DMSG_VOLF_CONN_RR	0x80	/* round-robin at same priority */
    554 #define DMSG_VOLF_CONN_EF	0x40	/* media errors flagged */
    555 #define DMSG_VOLF_CONN_PRI	0x0F	/* select priority 0-15 (15=best) */
    556 
    557 #if 0
    558 struct dmsg_lnk_hammer2_volconf {
    559 	dmsg_hdr_t		head;
    560 	hammer2_volconf_t	copy;	/* copy spec */
    561 	int32_t			index;
    562 	int32_t			unused01;
    563 	uuid_t			mediaid;
    564 	int64_t			reserved02[32];
    565 } __packed;
    566 #endif
    567 
    568 typedef struct dmsg_lnk_hammer2_volconf dmsg_lnk_hammer2_volconf_t;
    569 
    570 #define DMSG_LNK_HAMMER2_VOLCONF DMSG_LNK(DMSG_LNK_CMD_HAMMER2_VOLCONF, \
    571 					  dmsg_lnk_hammer2_volconf)
    572 
    573 #define H2_LNK_VOLCONF(msg)	((dmsg_lnk_hammer2_volconf_t *)(msg)->any.buf)
    574 
    575 /*
    576  * HAMMER2 directory entry header (embedded in blockref)  exactly 16 bytes
    577  */
    578 struct hammer2_dirent_head {
    579 	hammer2_tid_t		inum;		/* inode number */
    580 	uint16_t		namlen;		/* name length */
    581 	uint8_t			type;		/* OBJTYPE_*	*/
    582 	uint8_t			unused0B;
    583 	uint8_t			unused0C[4];
    584 } __packed;
    585 
    586 typedef struct hammer2_dirent_head hammer2_dirent_head_t;
    587 
    588 /*
    589  * The media block reference structure.  This forms the core of the HAMMER2
    590  * media topology recursion.  This 128-byte data structure is embedded in the
    591  * volume header, in inodes (which are also directory entries), and in
    592  * indirect blocks.
    593  *
    594  * A blockref references a single media item, which typically can be a
    595  * directory entry (aka inode), indirect block, or data block.
    596  *
    597  * The primary feature a blockref represents is the ability to validate
    598  * the entire tree underneath it via its check code.  Any modification to
    599  * anything propagates up the blockref tree all the way to the root, replacing
    600  * the related blocks and compounding the generated check code.
    601  *
    602  * The check code can be a simple 32-bit iscsi code, a 64-bit crc, or as
    603  * complex as a 512 bit cryptographic hash.  I originally used a 64-byte
    604  * blockref but later expanded it to 128 bytes to be able to support the
    605  * larger check code as well as to embed statistics for quota operation.
    606  *
    607  * Simple check codes are not sufficient for unverified dedup.  Even with
    608  * a maximally-sized check code unverified dedup should only be used in
    609  * in subdirectory trees where you do not need 100% data integrity.
    610  *
    611  * Unverified dedup is deduping based on meta-data only without verifying
    612  * that the data blocks are actually identical.  Verified dedup guarantees
    613  * integrity but is a far more I/O-expensive operation.
    614  *
    615  * --
    616  *
    617  * mirror_tid - per cluster node modified (propagated upward by flush)
    618  * modify_tid - clc record modified (not propagated).
    619  * update_tid - clc record updated (propagated upward on verification)
    620  *
    621  * CLC - Stands for 'Cluster Level Change', identifiers which are identical
    622  *	 within the topology across all cluster nodes (when fully
    623  *	 synchronized).
    624  *
    625  * NOTE: The range of keys represented by the blockref is (key) to
    626  *	 ((key) + (1LL << keybits) - 1).  HAMMER2 usually populates
    627  *	 blocks bottom-up, inserting a new root when radix expansion
    628  *	 is required.
    629  *
    630  * leaf_count  - Helps manage leaf collapse calculations when indirect
    631  *		 blocks become mostly empty.  This value caps out at
    632  *		 HAMMER2_BLOCKREF_LEAF_MAX (65535).
    633  *
    634  *		 Used by the chain code to determine when to pull leafs up
    635  *		 from nearly empty indirect blocks.  For the purposes of this
    636  *		 calculation, BREF_TYPE_INODE is considered a leaf, along
    637  *		 with DIRENT and DATA.
    638  *
    639  *				    RESERVED FIELDS
    640  *
    641  * A number of blockref fields are reserved and should generally be set to
    642  * 0 for future compatibility.
    643  *
    644  *				FUTURE BLOCKREF EXPANSION
    645  *
    646  * CONTENT ADDRESSABLE INDEXING (future) - Using a 256 or 512-bit check code.
    647  */
    648 struct hammer2_blockref {		/* MUST BE EXACTLY 64 BYTES */
    649 	uint8_t		type;		/* type of underlying item */
    650 	uint8_t		methods;	/* check method & compression method */
    651 	uint8_t		copyid;		/* specify which copy this is */
    652 	uint8_t		keybits;	/* #of keybits masked off 0=leaf */
    653 	uint8_t		vradix;		/* virtual data/meta-data size */
    654 	uint8_t		flags;		/* blockref flags */
    655 	uint16_t	leaf_count;	/* leaf aggregation count */
    656 	hammer2_key_t	key;		/* key specification */
    657 	hammer2_tid_t	mirror_tid;	/* media flush topology & freemap */
    658 	hammer2_tid_t	modify_tid;	/* clc modify (not propagated) */
    659 	hammer2_off_t	data_off;	/* low 6 bits is phys size (radix)*/
    660 	hammer2_tid_t	update_tid;	/* clc modify (propagated upward) */
    661 	union {
    662 		char	buf[16];
    663 
    664 		/*
    665 		 * Directory entry header (BREF_TYPE_DIRENT)
    666 		 *
    667 		 * NOTE: check.buf contains filename if <= 64 bytes.  Longer
    668 		 *	 filenames are stored in a data reference of size
    669 		 *	 HAMMER2_ALLOC_MIN (at least 256, typically 1024).
    670 		 *
    671 		 * NOTE: inode structure may contain a copy of a recently
    672 		 *	 associated filename, for recovery purposes.
    673 		 *
    674 		 * NOTE: Superroot entries are INODEs, not DIRENTs.  Code
    675 		 *	 allows both cases.
    676 		 */
    677 		hammer2_dirent_head_t dirent;
    678 
    679 		/*
    680 		 * Statistics aggregation (BREF_TYPE_INODE, BREF_TYPE_INDIRECT)
    681 		 */
    682 		struct {
    683 			hammer2_key_t	data_count;
    684 			hammer2_key_t	inode_count;
    685 		} stats;
    686 	} embed;
    687 	union {				/* check info */
    688 		char	buf[64];
    689 		struct {
    690 			uint32_t value;
    691 			uint32_t reserved[15];
    692 		} iscsi32;
    693 		struct {
    694 			uint64_t value;
    695 			uint64_t reserved[7];
    696 		} xxhash64;
    697 		struct {
    698 			char data[24];
    699 			char reserved[40];
    700 		} sha192;
    701 		struct {
    702 			char data[32];
    703 			char reserved[32];
    704 		} sha256;
    705 		struct {
    706 			char data[64];
    707 		} sha512;
    708 
    709 		/*
    710 		 * Freemap hints are embedded in addition to the icrc32.
    711 		 *
    712 		 * bigmask - Radixes available for allocation (0-31).
    713 		 *	     Heuristical (may be permissive but not
    714 		 *	     restrictive).  Typically only radix values
    715 		 *	     10-16 are used (i.e. (1<<10) through (1<<16)).
    716 		 *
    717 		 * avail   - Total available space remaining, in bytes
    718 		 */
    719 		struct {
    720 			uint32_t icrc32;
    721 			uint32_t bigmask;	/* available radixes */
    722 			uint64_t avail;		/* total available bytes */
    723 			char reserved[48];
    724 		} freemap;
    725 	} check;
    726 } __packed;
    727 
    728 typedef struct hammer2_blockref hammer2_blockref_t;
    729 
    730 #define HAMMER2_BLOCKREF_BYTES		128	/* blockref struct in bytes */
    731 #define HAMMER2_BLOCKREF_RADIX		7
    732 
    733 #define HAMMER2_BLOCKREF_LEAF_MAX	65535
    734 
    735 /*
    736  * On-media and off-media blockref types.
    737  *
    738  * types >= 128 are pseudo values that should never be present on-media.
    739  */
    740 #define HAMMER2_BREF_TYPE_EMPTY		0
    741 #define HAMMER2_BREF_TYPE_INODE		1
    742 #define HAMMER2_BREF_TYPE_INDIRECT	2
    743 #define HAMMER2_BREF_TYPE_DATA		3
    744 #define HAMMER2_BREF_TYPE_DIRENT	4
    745 #define HAMMER2_BREF_TYPE_FREEMAP_NODE	5
    746 #define HAMMER2_BREF_TYPE_FREEMAP_LEAF	6
    747 #define HAMMER2_BREF_TYPE_FREEMAP	254	/* pseudo-type */
    748 #define HAMMER2_BREF_TYPE_VOLUME	255	/* pseudo-type */
    749 
    750 #define HAMMER2_BREF_FLAG_PFSROOT	0x01	/* see also related opflag */
    751 #define HAMMER2_BREF_FLAG_ZERO		0x02
    752 #define HAMMER2_BREF_FLAG_EMERG_MIP	0x04	/* emerg modified-in-place */
    753 
    754 /*
    755  * Encode/decode check mode and compression mode for
    756  * bref.methods.  The compression level is not encoded in
    757  * bref.methods.
    758  */
    759 #define HAMMER2_ENC_CHECK(n)		(((n) & 15) << 4)
    760 #define HAMMER2_DEC_CHECK(n)		(((n) >> 4) & 15)
    761 #define HAMMER2_ENC_COMP(n)		((n) & 15)
    762 #define HAMMER2_DEC_COMP(n)		((n) & 15)
    763 
    764 #define HAMMER2_CHECK_NONE		0
    765 #define HAMMER2_CHECK_DISABLED		1
    766 #define HAMMER2_CHECK_ISCSI32		2
    767 #define HAMMER2_CHECK_XXHASH64		3
    768 #define HAMMER2_CHECK_SHA192		4
    769 #define HAMMER2_CHECK_FREEMAP		5
    770 
    771 #define HAMMER2_CHECK_DEFAULT		HAMMER2_CHECK_XXHASH64
    772 
    773 /* user-specifiable check modes only */
    774 #define HAMMER2_CHECK_STRINGS		{ "none", "disabled", "crc32", \
    775 					  "xxhash64", "sha192" }
    776 #define HAMMER2_CHECK_STRINGS_COUNT	5
    777 
    778 /*
    779  * Encode/decode check or compression algorithm request in
    780  * ipdata->meta.check_algo and ipdata->meta.comp_algo.
    781  */
    782 #define HAMMER2_ENC_ALGO(n)		(n)
    783 #define HAMMER2_DEC_ALGO(n)		((n) & 15)
    784 #define HAMMER2_ENC_LEVEL(n)		((n) << 4)
    785 #define HAMMER2_DEC_LEVEL(n)		(((n) >> 4) & 15)
    786 
    787 #define HAMMER2_COMP_NONE		0
    788 #define HAMMER2_COMP_AUTOZERO		1
    789 #define HAMMER2_COMP_LZ4		2
    790 #define HAMMER2_COMP_ZLIB		3
    791 
    792 #define HAMMER2_COMP_NEWFS_DEFAULT	HAMMER2_COMP_LZ4
    793 #define HAMMER2_COMP_STRINGS		{ "none", "autozero", "lz4", "zlib" }
    794 #define HAMMER2_COMP_STRINGS_COUNT	4
    795 
    796 /*
    797  * Passed to hammer2_chain_create(), causes methods to be inherited from
    798  * parent.
    799  */
    800 #define HAMMER2_METH_DEFAULT		-1
    801 
    802 /*
    803  * HAMMER2 block references are collected into sets of 4 blockrefs.  These
    804  * sets are fully associative, meaning the elements making up a set are
    805  * not sorted in any way and may contain duplicate entries, holes, or
    806  * entries which shortcut multiple levels of indirection.  Sets are used
    807  * in various ways:
    808  *
    809  * (1) When redundancy is desired a set may contain several duplicate
    810  *     entries pointing to different copies of the same data.  Up to 4 copies
    811  *     are supported.
    812  *
    813  * (2) The blockrefs in a set can shortcut multiple levels of indirections
    814  *     within the bounds imposed by the parent of set.
    815  *
    816  * When a set fills up another level of indirection is inserted, moving
    817  * some or all of the set's contents into indirect blocks placed under the
    818  * set.  This is a top-down approach in that indirect blocks are not created
    819  * until the set actually becomes full (that is, the entries in the set can
    820  * shortcut the indirect blocks when the set is not full).  Depending on how
    821  * things are filled multiple indirect blocks will eventually be created.
    822  *
    823  * Indirect blocks are typically 4KB (64 entres) or 64KB (1024 entries) and
    824  * are also treated as fully set-associative.
    825  */
    826 struct hammer2_blockset {
    827 	hammer2_blockref_t	blockref[HAMMER2_SET_COUNT];
    828 };
    829 
    830 typedef struct hammer2_blockset hammer2_blockset_t;
    831 
    832 /*
    833  * Catch programmer snafus
    834  */
    835 #if (1 << HAMMER2_SET_RADIX) != HAMMER2_SET_COUNT
    836 #error "hammer2 direct radix is incorrect"
    837 #endif
    838 #if (1 << HAMMER2_PBUFRADIX) != HAMMER2_PBUFSIZE
    839 #error "HAMMER2_PBUFRADIX and HAMMER2_PBUFSIZE are inconsistent"
    840 #endif
    841 #if (1 << HAMMER2_RADIX_MIN) != HAMMER2_ALLOC_MIN
    842 #error "HAMMER2_RADIX_MIN and HAMMER2_ALLOC_MIN are inconsistent"
    843 #endif
    844 
    845 /*
    846  * hammer2_bmap_data - A freemap entry in the LEVEL1 block.
    847  *
    848  * Each 128-byte entry contains the bitmap and meta-data required to manage
    849  * a LEVEL0 (4MB) block of storage.  The storage is managed in 256 x 16KB
    850  * chunks.
    851  *
    852  * A smaller allocation granularity is supported via a linear iterator and/or
    853  * must otherwise be tracked in ram.
    854  *
    855  * (data structure must be 128 bytes exactly)
    856  *
    857  * linear  - A BYTE linear allocation offset used for sub-16KB allocations
    858  *	     only.  May contain values between 0 and 4MB.  Must be ignored
    859  *	     if 16KB-aligned (i.e. force bitmap scan), otherwise may be
    860  *	     used to sub-allocate within the 16KB block (which is already
    861  *	     marked as allocated in the bitmap).
    862  *
    863  *	     Sub-allocations need only be 1KB-aligned and do not have to be
    864  *	     size-aligned, and 16KB or larger allocations do not update this
    865  *	     field, resulting in pretty good packing.
    866  *
    867  *	     Please note that file data granularity may be limited by
    868  *	     other issues such as buffer cache direct-mapping and the
    869  *	     desire to support sector sizes up to 16KB (so H2 only issues
    870  *	     I/O's in multiples of 16KB anyway).
    871  *
    872  * class   - Clustering class.  Cleared to 0 only if the entire leaf becomes
    873  *	     free.  Used to cluster device buffers so all elements must have
    874  *	     the same device block size, but may mix logical sizes.
    875  *
    876  *	     Typically integrated with the blockref type in the upper 8 bits
    877  *	     to localize inodes and indrect blocks, improving bulk free scans
    878  *	     and directory scans.
    879  *
    880  * bitmap  - Two bits per 16KB allocation block arranged in arrays of
    881  *	     64-bit elements, 256x2 bits representing ~4MB worth of media
    882  *	     storage.  Bit patterns are as follows:
    883  *
    884  *	     00	Unallocated
    885  *	     01 (reserved)
    886  *	     10 Possibly free
    887  *           11 Allocated
    888  */
    889 struct hammer2_bmap_data {
    890 	int32_t linear;		/* 00 linear sub-granular allocation offset */
    891 	uint16_t class;		/* 04-05 clustering class ((type<<8)|radix) */
    892 	uint8_t reserved06;	/* 06 */
    893 	uint8_t reserved07;	/* 07 */
    894 	uint32_t reserved08;	/* 08 */
    895 	uint32_t reserved0C;	/* 0C */
    896 	uint32_t reserved10;	/* 10 */
    897 	uint32_t reserved14;	/* 14 */
    898 	uint32_t reserved18;	/* 18 */
    899 	uint32_t avail;		/* 1C */
    900 	uint32_t reserved20[8];	/* 20-3F 256 bits manages 128K/1KB/2-bits */
    901 				/* 40-7F 512 bits manages 4MB of storage */
    902 	hammer2_bitmap_t bitmapq[HAMMER2_BMAP_ELEMENTS];
    903 } __packed;
    904 
    905 typedef struct hammer2_bmap_data hammer2_bmap_data_t;
    906 
    907 /*
    908  * XXX "Inodes ARE directory entries" is no longer the case.  Hardlinks are
    909  * dirents which refer to the same inode#, which is how filesystems usually
    910  * implement hardlink.  The following comments need to be updated.
    911  *
    912  * In HAMMER2 inodes ARE directory entries, with a special exception for
    913  * hardlinks.  The inode number is stored in the inode rather than being
    914  * based on the location of the inode (since the location moves every time
    915  * the inode or anything underneath the inode is modified).
    916  *
    917  * The inode is 1024 bytes, made up of 256 bytes of meta-data, 256 bytes
    918  * for the filename, and 512 bytes worth of direct file data OR an embedded
    919  * blockset.  The in-memory hammer2_inode structure contains only the mostly-
    920  * node-independent meta-data portion (some flags are node-specific and will
    921  * not be synchronized).  The rest of the inode is node-specific and chain I/O
    922  * is required to obtain it.
    923  *
    924  * Directories represent one inode per blockref.  Inodes are not laid out
    925  * as a file but instead are represented by the related blockrefs.  The
    926  * blockrefs, in turn, are indexed by the 64-bit directory hash key.  Remember
    927  * that blocksets are fully associative, so a certain degree efficiency is
    928  * achieved just from that.
    929  *
    930  * Up to 512 bytes of direct data can be embedded in an inode, and since
    931  * inodes are essentially directory entries this also means that small data
    932  * files end up simply being laid out linearly in the directory, resulting
    933  * in fewer seeks and highly optimal access.
    934  *
    935  * The compression mode can be changed at any time in the inode and is
    936  * recorded on a blockref-by-blockref basis.
    937  *
    938  * Hardlinks are supported via the inode map.  Essentially the way a hardlink
    939  * works is that all individual directory entries representing the same file
    940  * are special cased and specify the same inode number.  The actual file
    941  * is placed in the nearest parent directory that is parent to all instances
    942  * of the hardlink.  If all hardlinks to a file are in the same directory
    943  * the actual file will also be placed in that directory.  This file uses
    944  * the inode number as the directory entry key and is invisible to normal
    945  * directory scans.  Real directory entry keys are differentiated from the
    946  * inode number key via bit 63.  Access to the hardlink silently looks up
    947  * the real file and forwards all operations to that file.  Removal of the
    948  * last hardlink also removes the real file.
    949  */
    950 #define HAMMER2_INODE_BYTES		1024	/* (asserted by code) */
    951 #define HAMMER2_INODE_MAXNAME		256	/* maximum name in bytes */
    952 #define HAMMER2_INODE_VERSION_ONE	1
    953 
    954 #define HAMMER2_INODE_START		1024	/* dynamically allocated */
    955 
    956 struct hammer2_inode_meta {
    957 	uint16_t	version;	/* 0000 inode data version */
    958 	uint8_t		reserved02;	/* 0002 */
    959 	uint8_t		pfs_subtype;	/* 0003 pfs sub-type */
    960 
    961 	/*
    962 	 * core inode attributes, inode type, misc flags
    963 	 */
    964 	uint32_t	uflags;		/* 0004 chflags */
    965 	uint32_t	rmajor;		/* 0008 available for device nodes */
    966 	uint32_t	rminor;		/* 000C available for device nodes */
    967 	uint64_t	ctime;		/* 0010 inode change time */
    968 	uint64_t	mtime;		/* 0018 modified time */
    969 	uint64_t	atime;		/* 0020 access time (unsupported) */
    970 	uint64_t	btime;		/* 0028 birth time */
    971 	uuid_t		uid;		/* 0030 uid / degenerate unix uid */
    972 	uuid_t		gid;		/* 0040 gid / degenerate unix gid */
    973 
    974 	uint8_t		type;		/* 0050 object type */
    975 	uint8_t		op_flags;	/* 0051 operational flags */
    976 	uint16_t	cap_flags;	/* 0052 capability flags */
    977 	uint32_t	mode;		/* 0054 unix modes (typ low 16 bits) */
    978 
    979 	/*
    980 	 * inode size, identification, localized recursive configuration
    981 	 * for compression and backup copies.
    982 	 *
    983 	 * NOTE: Nominal parent inode number (iparent) is only applicable
    984 	 *	 for directories but can also help for files during
    985 	 *	 catastrophic recovery.
    986 	 */
    987 	hammer2_tid_t	inum;		/* 0058 inode number */
    988 	hammer2_off_t	size;		/* 0060 size of file */
    989 	uint64_t	nlinks;		/* 0068 hard links (typ only dirs) */
    990 	hammer2_tid_t	iparent;	/* 0070 nominal parent inum */
    991 	hammer2_key_t	name_key;	/* 0078 full filename key */
    992 	uint16_t	name_len;	/* 0080 filename length */
    993 	uint8_t		ncopies;	/* 0082 ncopies to local media */
    994 	uint8_t		comp_algo;	/* 0083 compression request & algo */
    995 
    996 	/*
    997 	 * These fields are currently only applicable to PFSROOTs.
    998 	 *
    999 	 * NOTE: We can't use {volume_data->fsid, pfs_clid} to uniquely
   1000 	 *	 identify an instance of a PFS in the cluster because
   1001 	 *	 a mount may contain more than one copy of the PFS as
   1002 	 *	 a separate node.  {pfs_clid, pfs_fsid} must be used for
   1003 	 *	 registration in the cluster.
   1004 	 */
   1005 	uint8_t		target_type;	/* 0084 hardlink target type */
   1006 	uint8_t		check_algo;	/* 0085 check code request & algo */
   1007 	uint8_t		pfs_nmasters;	/* 0086 (if PFSROOT) if multi-master */
   1008 	uint8_t		pfs_type;	/* 0087 (if PFSROOT) node type */
   1009 	hammer2_tid_t	pfs_inum;	/* 0088 (if PFSROOT) inum allocator */
   1010 	uuid_t		pfs_clid;	/* 0090 (if PFSROOT) cluster uuid */
   1011 	uuid_t		pfs_fsid;	/* 00A0 (if PFSROOT) unique uuid */
   1012 
   1013 	/*
   1014 	 * Quotas and aggregate sub-tree inode and data counters.  Note that
   1015 	 * quotas are not replicated downward, they are explicitly set by
   1016 	 * the sysop and in-memory structures keep track of inheritance.
   1017 	 */
   1018 	hammer2_key_t	data_quota;	/* 00B0 subtree quota in bytes */
   1019 	hammer2_key_t	unusedB8;	/* 00B8 subtree byte count */
   1020 	hammer2_key_t	inode_quota;	/* 00C0 subtree quota inode count */
   1021 	hammer2_key_t	unusedC8;	/* 00C8 subtree inode count */
   1022 
   1023 	/*
   1024 	 * The last snapshot tid is tested against modify_tid to determine
   1025 	 * when a copy must be made of a data block whos check mode has been
   1026 	 * disabled (a disabled check mode allows data blocks to be updated
   1027 	 * in place instead of copy-on-write).
   1028 	 */
   1029 	hammer2_tid_t	pfs_lsnap_tid;	/* 00D0 last snapshot tid */
   1030 	hammer2_tid_t	reservedD8;	/* 00D8 (avail) */
   1031 
   1032 	/*
   1033 	 * Tracks (possibly degenerate) free areas covering all sub-tree
   1034 	 * allocations under inode, not counting the inode itself.
   1035 	 * 0/0 indicates empty entry.  fully set-associative.
   1036 	 *
   1037 	 * (not yet implemented)
   1038 	 */
   1039 	uint64_t	decrypt_check;	/* 00E0 decryption validator */
   1040 	hammer2_off_t	reservedE0[3];	/* 00E8/F0/F8 */
   1041 } __packed;
   1042 
   1043 typedef struct hammer2_inode_meta hammer2_inode_meta_t;
   1044 
   1045 struct hammer2_inode_data {
   1046 	hammer2_inode_meta_t	meta;	/* 0000-00FF */
   1047 	unsigned char	filename[HAMMER2_INODE_MAXNAME];
   1048 					/* 0100-01FF (256 char, unterminated) */
   1049 	union {				/* 0200-03FF (64x8 = 512 bytes) */
   1050 		hammer2_blockset_t blockset;
   1051 		char data[HAMMER2_EMBEDDED_BYTES];
   1052 	} u;
   1053 } __packed;
   1054 
   1055 typedef struct hammer2_inode_data hammer2_inode_data_t;
   1056 
   1057 #define HAMMER2_OPFLAG_DIRECTDATA	0x01
   1058 #define HAMMER2_OPFLAG_PFSROOT		0x02	/* (see also bref flag) */
   1059 #define HAMMER2_OPFLAG_COPYIDS		0x04	/* copyids override parent */
   1060 
   1061 #define HAMMER2_OBJTYPE_UNKNOWN		0
   1062 #define HAMMER2_OBJTYPE_DIRECTORY	1
   1063 #define HAMMER2_OBJTYPE_REGFILE		2
   1064 #define HAMMER2_OBJTYPE_FIFO		4
   1065 #define HAMMER2_OBJTYPE_CDEV		5
   1066 #define HAMMER2_OBJTYPE_BDEV		6
   1067 #define HAMMER2_OBJTYPE_SOFTLINK	7
   1068 #define HAMMER2_OBJTYPE_UNUSED08	8
   1069 #define HAMMER2_OBJTYPE_SOCKET		9
   1070 #define HAMMER2_OBJTYPE_WHITEOUT	10
   1071 
   1072 #define HAMMER2_COPYID_NONE		0
   1073 #define HAMMER2_COPYID_LOCAL		((uint8_t)-1)
   1074 
   1075 #define HAMMER2_COPYID_COUNT		256
   1076 
   1077 /*
   1078  * PFS types identify the role of a PFS within a cluster.  The PFS types
   1079  * is stored on media and in LNK_SPAN messages and used in other places.
   1080  *
   1081  * The low 4 bits specify the current active type while the high 4 bits
   1082  * specify the transition target if the PFS is being upgraded or downgraded,
   1083  * If the upper 4 bits are not zero it may effect how a PFS is used during
   1084  * the transition.
   1085  *
   1086  * Generally speaking, downgrading a MASTER to a SLAVE cannot complete until
   1087  * at least all MASTERs have updated their pfs_nmasters field.  And upgrading
   1088  * a SLAVE to a MASTER cannot complete until the new prospective master has
   1089  * been fully synchronized (though theoretically full synchronization is
   1090  * not required if a (new) quorum of other masters are fully synchronized).
   1091  *
   1092  * It generally does not matter which PFS element you actually mount, you
   1093  * are mounting 'the cluster'.  So, for example, a network mount will mount
   1094  * a DUMMY PFS type on a memory filesystem.  However, there are two exceptions.
   1095  * In order to gain the benefits of a SOFT_MASTER or SOFT_SLAVE, those PFSs
   1096  * must be directly mounted.
   1097  */
   1098 #define HAMMER2_PFSTYPE_NONE		0x00
   1099 #define HAMMER2_PFSTYPE_CACHE		0x01
   1100 #define HAMMER2_PFSTYPE_UNUSED02	0x02
   1101 #define HAMMER2_PFSTYPE_SLAVE		0x03
   1102 #define HAMMER2_PFSTYPE_SOFT_SLAVE	0x04
   1103 #define HAMMER2_PFSTYPE_SOFT_MASTER	0x05
   1104 #define HAMMER2_PFSTYPE_MASTER		0x06
   1105 #define HAMMER2_PFSTYPE_UNUSED07	0x07
   1106 #define HAMMER2_PFSTYPE_SUPROOT		0x08
   1107 #define HAMMER2_PFSTYPE_DUMMY		0x09
   1108 #define HAMMER2_PFSTYPE_MAX		16
   1109 
   1110 #define HAMMER2_PFSTRAN_NONE		0x00	/* no transition in progress */
   1111 #define HAMMER2_PFSTRAN_CACHE		0x10
   1112 #define HAMMER2_PFSTRAN_UNMUSED20	0x20
   1113 #define HAMMER2_PFSTRAN_SLAVE		0x30
   1114 #define HAMMER2_PFSTRAN_SOFT_SLAVE	0x40
   1115 #define HAMMER2_PFSTRAN_SOFT_MASTER	0x50
   1116 #define HAMMER2_PFSTRAN_MASTER		0x60
   1117 #define HAMMER2_PFSTRAN_UNUSED70	0x70
   1118 #define HAMMER2_PFSTRAN_SUPROOT		0x80
   1119 #define HAMMER2_PFSTRAN_DUMMY		0x90
   1120 
   1121 #define HAMMER2_PFS_DEC(n)		((n) & 0x0F)
   1122 #define HAMMER2_PFS_DEC_TRANSITION(n)	(((n) >> 4) & 0x0F)
   1123 #define HAMMER2_PFS_ENC_TRANSITION(n)	(((n) & 0x0F) << 4)
   1124 
   1125 #define HAMMER2_PFSSUBTYPE_NONE		0
   1126 #define HAMMER2_PFSSUBTYPE_SNAPSHOT	1	/* manual/managed snapshot */
   1127 #define HAMMER2_PFSSUBTYPE_AUTOSNAP	2	/* automatic snapshot */
   1128 
   1129 /*
   1130  * PFS mode of operation is a bitmask.  This is typically not stored
   1131  * on-media, but defined here because the field may be used in dmsgs.
   1132  */
   1133 #define HAMMER2_PFSMODE_QUORUM		0x01
   1134 #define HAMMER2_PFSMODE_RW		0x02
   1135 
   1136 /*
   1137  *				Allocation Table
   1138  *
   1139  */
   1140 
   1141 
   1142 /*
   1143  * Flags (8 bits) - blockref, for freemap only
   1144  *
   1145  * Note that the minimum chunk size is 1KB so we could theoretically have
   1146  * 10 bits here, but we might have some future extension that allows a
   1147  * chunk size down to 256 bytes and if so we will need bits 8 and 9.
   1148  */
   1149 #define HAMMER2_AVF_SELMASK		0x03	/* select group */
   1150 #define HAMMER2_AVF_ALL_ALLOC		0x04	/* indicate all allocated */
   1151 #define HAMMER2_AVF_ALL_FREE		0x08	/* indicate all free */
   1152 #define HAMMER2_AVF_RESERVED10		0x10
   1153 #define HAMMER2_AVF_RESERVED20		0x20
   1154 #define HAMMER2_AVF_RESERVED40		0x40
   1155 #define HAMMER2_AVF_RESERVED80		0x80
   1156 #define HAMMER2_AVF_AVMASK32		((uint32_t)0xFFFFFF00LU)
   1157 #define HAMMER2_AVF_AVMASK64		((uint64_t)0xFFFFFFFFFFFFFF00LLU)
   1158 
   1159 #define HAMMER2_AV_SELECT_A		0x00
   1160 #define HAMMER2_AV_SELECT_B		0x01
   1161 #define HAMMER2_AV_SELECT_C		0x02
   1162 #define HAMMER2_AV_SELECT_D		0x03
   1163 
   1164 /*
   1165  * The volume header eats a 64K block.  There is currently an issue where
   1166  * we want to try to fit all nominal filesystem updates in a 512-byte section
   1167  * but it may be a lost cause due to the need for a blockset.
   1168  *
   1169  * All information is stored in host byte order.  The volume header's magic
   1170  * number may be checked to determine the byte order.  If you wish to mount
   1171  * between machines w/ different endian modes you'll need filesystem code
   1172  * which acts on the media data consistently (either all one way or all the
   1173  * other).  Our code currently does not do that.
   1174  *
   1175  * A read-write mount may have to recover missing allocations by doing an
   1176  * incremental mirror scan looking for modifications made after alloc_tid.
   1177  * If alloc_tid == last_tid then no recovery operation is needed.  Recovery
   1178  * operations are usually very, very fast.
   1179  *
   1180  * Read-only mounts do not need to do any recovery, access to the filesystem
   1181  * topology is always consistent after a crash (is always consistent, period).
   1182  * However, there may be shortcutted blockref updates present from deep in
   1183  * the tree which are stored in the volumeh eader and must be tracked on
   1184  * the fly.
   1185  *
   1186  * NOTE: The copyinfo[] array contains the configuration for both the
   1187  *	 cluster connections and any local media copies.  The volume
   1188  *	 header will be replicated for each local media copy.
   1189  *
   1190  *	 The mount command may specify multiple medias or just one and
   1191  *	 allow HAMMER2 to pick up the others when it checks the copyinfo[]
   1192  *	 array on mount.
   1193  *
   1194  * NOTE: root_blockref points to the super-root directory, not the root
   1195  *	 directory.  The root directory will be a subdirectory under the
   1196  *	 super-root.
   1197  *
   1198  *	 The super-root directory contains all root directories and all
   1199  *	 snapshots (readonly or writable).  It is possible to do a
   1200  *	 null-mount of the super-root using special path constructions
   1201  *	 relative to your mounted root.
   1202  *
   1203  * NOTE: HAMMER2 allows any subdirectory tree to be managed as if it were
   1204  *	 a PFS, including mirroring and storage quota operations, and this is
   1205  *	 prefered over creating discrete PFSs in the super-root.  Instead
   1206  *	 the super-root is most typically used to create writable snapshots,
   1207  *	 alternative roots, and so forth.  The super-root is also used by
   1208  *	 the automatic snapshotting mechanism.
   1209  */
   1210 #define HAMMER2_VOLUME_ID_HBO	0x48414d3205172011LLU
   1211 #define HAMMER2_VOLUME_ID_ABO	0x11201705324d4148LLU
   1212 
   1213 struct hammer2_volume_data {
   1214 	/*
   1215 	 * sector #0 - 512 bytes
   1216 	 */
   1217 	uint64_t	magic;			/* 0000 Signature */
   1218 	hammer2_off_t	boot_beg;		/* 0008 Boot area (future) */
   1219 	hammer2_off_t	boot_end;		/* 0010 (size = end - beg) */
   1220 	hammer2_off_t	aux_beg;		/* 0018 Aux area (future) */
   1221 	hammer2_off_t	aux_end;		/* 0020 (size = end - beg) */
   1222 	hammer2_off_t	volu_size;		/* 0028 Volume size, bytes */
   1223 
   1224 	uint32_t	version;		/* 0030 */
   1225 	uint32_t	flags;			/* 0034 */
   1226 	uint8_t		copyid;			/* 0038 copyid of phys vol */
   1227 	uint8_t		freemap_version;	/* 0039 freemap algorithm */
   1228 	uint8_t		peer_type;		/* 003A HAMMER2_PEER_xxx */
   1229 	uint8_t		reserved003B;		/* 003B */
   1230 	uint32_t	reserved003C;		/* 003C */
   1231 
   1232 	uuid_t		fsid;			/* 0040 */
   1233 	uuid_t		fstype;			/* 0050 */
   1234 
   1235 	/*
   1236 	 * allocator_size is precalculated at newfs time and does not include
   1237 	 * reserved blocks, boot, or redo areas.
   1238 	 *
   1239 	 * Initial non-reserved-area allocations do not use the freemap
   1240 	 * but instead adjust alloc_iterator.  Dynamic allocations take
   1241 	 * over starting at (allocator_beg).  This makes newfs_hammer2's
   1242 	 * job a lot easier and can also serve as a testing jig.
   1243 	 */
   1244 	hammer2_off_t	allocator_size;		/* 0060 Total data space */
   1245 	hammer2_off_t   allocator_free;		/* 0068	Free space */
   1246 	hammer2_off_t	allocator_beg;		/* 0070 Initial allocations */
   1247 
   1248 	/*
   1249 	 * mirror_tid reflects the highest committed change for this
   1250 	 * block device regardless of whether it is to the super-root
   1251 	 * or to a PFS or whatever.
   1252 	 *
   1253 	 * freemap_tid reflects the highest committed freemap change for
   1254 	 * this block device.
   1255 	 */
   1256 	hammer2_tid_t	mirror_tid;		/* 0078 committed tid (vol) */
   1257 	hammer2_tid_t	reserved0080;		/* 0080 */
   1258 	hammer2_tid_t	reserved0088;		/* 0088 */
   1259 	hammer2_tid_t	freemap_tid;		/* 0090 committed tid (fmap) */
   1260 	hammer2_tid_t	bulkfree_tid;		/* 0098 bulkfree incremental */
   1261 	hammer2_tid_t	reserved00A0[5];	/* 00A0-00C7 */
   1262 
   1263 	/*
   1264 	 * Copyids are allocated dynamically from the copyexists bitmap.
   1265 	 * An id from the active copies set (up to 8, see copyinfo later on)
   1266 	 * may still exist after the copy set has been removed from the
   1267 	 * volume header and its bit will remain active in the bitmap and
   1268 	 * cannot be reused until it is 100% removed from the hierarchy.
   1269 	 */
   1270 	uint32_t	copyexists[8];		/* 00C8-00E7 copy exists bmap */
   1271 	char		reserved0140[248];	/* 00E8-01DF */
   1272 
   1273 	/*
   1274 	 * 32 bit CRC array at the end of the first 512 byte sector.
   1275 	 *
   1276 	 * icrc_sects[7] - First 512-4 bytes of volume header (including all
   1277 	 *		   the other icrc's except this one).
   1278 	 *
   1279 	 * icrc_sects[6] - Sector 1 (512 bytes) of volume header, which is
   1280 	 *		   the blockset for the root.
   1281 	 *
   1282 	 * icrc_sects[5] - Sector 2
   1283 	 * icrc_sects[4] - Sector 3
   1284 	 * icrc_sects[3] - Sector 4 (the freemap blockset)
   1285 	 */
   1286 	hammer2_crc32_t	icrc_sects[8];		/* 01E0-01FF */
   1287 
   1288 	/*
   1289 	 * sector #1 - 512 bytes
   1290 	 *
   1291 	 * The entire sector is used by a blockset.
   1292 	 */
   1293 	hammer2_blockset_t sroot_blockset;	/* 0200-03FF Superroot dir */
   1294 
   1295 	/*
   1296 	 * sector #2-7
   1297 	 */
   1298 	char	sector2[512];			/* 0400-05FF reserved */
   1299 	char	sector3[512];			/* 0600-07FF reserved */
   1300 	hammer2_blockset_t freemap_blockset;	/* 0800-09FF freemap  */
   1301 	char	sector5[512];			/* 0A00-0BFF reserved */
   1302 	char	sector6[512];			/* 0C00-0DFF reserved */
   1303 	char	sector7[512];			/* 0E00-0FFF reserved */
   1304 
   1305 	/*
   1306 	 * sector #8-71	- 32768 bytes
   1307 	 *
   1308 	 * Contains the configuration for up to 256 copyinfo targets.  These
   1309 	 * specify local and remote copies operating as masters or slaves.
   1310 	 * copyid's 0 and 255 are reserved (0 indicates an empty slot and 255
   1311 	 * indicates the local media).
   1312 	 *
   1313 	 * Each inode contains a set of up to 8 copyids, either inherited
   1314 	 * from its parent or explicitly specified in the inode, which
   1315 	 * indexes into this array.
   1316 	 */
   1317 						/* 1000-8FFF copyinfo config */
   1318 	hammer2_volconf_t copyinfo[HAMMER2_COPYID_COUNT];
   1319 
   1320 	/*
   1321 	 * Remaining sections are reserved for future use.
   1322 	 */
   1323 	char		reserved0400[0x6FFC];	/* 9000-FFFB reserved */
   1324 
   1325 	/*
   1326 	 * icrc on entire volume header
   1327 	 */
   1328 	hammer2_crc32_t	icrc_volheader;		/* FFFC-FFFF full volume icrc*/
   1329 } __packed;
   1330 
   1331 typedef struct hammer2_volume_data hammer2_volume_data_t;
   1332 
   1333 /*
   1334  * Various parts of the volume header have their own iCRCs.
   1335  *
   1336  * The first 512 bytes has its own iCRC stored at the end of the 512 bytes
   1337  * and not included the icrc calculation.
   1338  *
   1339  * The second 512 bytes also has its own iCRC but it is stored in the first
   1340  * 512 bytes so it covers the entire second 512 bytes.
   1341  *
   1342  * The whole volume block (64KB) has an iCRC covering all but the last 4 bytes,
   1343  * which is where the iCRC for the whole volume is stored.  This is currently
   1344  * a catch-all for anything not individually iCRCd.
   1345  */
   1346 #define HAMMER2_VOL_ICRC_SECT0		7
   1347 #define HAMMER2_VOL_ICRC_SECT1		6
   1348 
   1349 #define HAMMER2_VOLUME_BYTES		65536
   1350 
   1351 #define HAMMER2_VOLUME_ICRC0_OFF	0
   1352 #define HAMMER2_VOLUME_ICRC1_OFF	512
   1353 #define HAMMER2_VOLUME_ICRCVH_OFF	0
   1354 
   1355 #define HAMMER2_VOLUME_ICRC0_SIZE	(512 - 4)
   1356 #define HAMMER2_VOLUME_ICRC1_SIZE	(512)
   1357 #define HAMMER2_VOLUME_ICRCVH_SIZE	(65536 - 4)
   1358 
   1359 #define HAMMER2_VOL_VERSION_MIN		1
   1360 #define HAMMER2_VOL_VERSION_DEFAULT	1
   1361 #define HAMMER2_VOL_VERSION_WIP 	2
   1362 
   1363 #define HAMMER2_NUM_VOLHDRS		4
   1364 
   1365 union hammer2_media_data {
   1366 	hammer2_volume_data_t	voldata;
   1367         hammer2_inode_data_t    ipdata;
   1368 	hammer2_blockset_t	blkset;
   1369 	hammer2_blockref_t	npdata[HAMMER2_IND_COUNT_MAX];
   1370 	hammer2_bmap_data_t	bmdata[HAMMER2_FREEMAP_COUNT];
   1371 	char			buf[HAMMER2_PBUFSIZE];
   1372 } __packed;
   1373 
   1374 typedef union hammer2_media_data hammer2_media_data_t;
   1375 
   1376 #endif /* !_VFS_HAMMER2_DISK_H_ */
   1377