hammer2_disk.h revision 1.1.4.2 1 /* $NetBSD: hammer2_disk.h,v 1.1.4.2 2020/04/08 14:09:20 martin Exp $ */
2
3 /*
4 * Copyright (c) 2011-2019 The DragonFly Project. All rights reserved.
5 *
6 * This code is derived from software contributed to The DragonFly Project
7 * by Matthew Dillon <dillon (at) dragonflybsd.org>
8 * by Venkatesh Srinivas <vsrinivas (at) dragonflybsd.org>
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 *
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in
18 * the documentation and/or other materials provided with the
19 * distribution.
20 * 3. Neither the name of The DragonFly Project nor the names of its
21 * contributors may be used to endorse or promote products derived
22 * from this software without specific, prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
28 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
30 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
32 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
33 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
34 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 */
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: hammer2_disk.h,v 1.1.4.2 2020/04/08 14:09:20 martin Exp $");
39
40 #ifndef _VFS_HAMMER2_DISK_H_
41 #define _VFS_HAMMER2_DISK_H_
42
43 #ifndef _SYS_UUID_H_
44 #include <sys/uuid.h>
45 #endif
46 #if 0
47 #ifndef _SYS_DMSG_H_
48 #include <sys/dmsg.h>
49 #endif
50 #endif
51
52 /*
53 * The structures below represent the on-disk media structures for the HAMMER2
54 * filesystem. Note that all fields for on-disk structures are naturally
55 * aligned. The host endian format is typically used - compatibility is
56 * possible if the implementation detects reversed endian and adjusts accesses
57 * accordingly.
58 *
59 * HAMMER2 primarily revolves around the directory topology: inodes,
60 * directory entries, and block tables. Block device buffer cache buffers
61 * are always 64KB. Logical file buffers are typically 16KB. All data
62 * references utilize 64-bit byte offsets.
63 *
64 * Free block management is handled independently using blocks reserved by
65 * the media topology.
66 */
67
68 /*
69 * The data at the end of a file or directory may be a fragment in order
70 * to optimize storage efficiency. The minimum fragment size is 1KB.
71 * Since allocations are in powers of 2 fragments must also be sized in
72 * powers of 2 (1024, 2048, ... 65536).
73 *
74 * For the moment the maximum allocation size is HAMMER2_PBUFSIZE (64K),
75 * which is 2^16. Larger extents may be supported in the future. Smaller
76 * fragments might be supported in the future (down to 64 bytes is possible),
77 * but probably will not be.
78 *
79 * A full indirect block use supports 512 x 128-byte blockrefs in a 64KB
80 * buffer. Indirect blocks down to 1KB are supported to keep small
81 * directories small.
82 *
83 * A maximally sized file (2^64-1 bytes) requires ~6 indirect block levels
84 * using 64KB indirect blocks (128 byte refs, 512 or radix 9 per indblk).
85 *
86 * 16(datablk) + 9 + 9 + 9 + 9 + 9 + 9 = ~70.
87 * 16(datablk) + 7 + 9 + 9 + 9 + 9 + 9 = ~68. (smaller top level indblk)
88 *
89 * The actual depth depends on copies redundancy and whether the filesystem
90 * has chosen to use a smaller indirect block size at the top level or not.
91 */
92 #define HAMMER2_ALLOC_MIN 1024 /* minimum allocation size */
93 #define HAMMER2_RADIX_MIN 10 /* minimum allocation size 2^N */
94 #define HAMMER2_ALLOC_MAX 65536 /* maximum allocation size */
95 #define HAMMER2_RADIX_MAX 16 /* maximum allocation size 2^N */
96 #define HAMMER2_RADIX_KEY 64 /* number of bits in key */
97
98 /*
99 * MINALLOCSIZE - The minimum allocation size. This can be smaller
100 * or larger than the minimum physical IO size.
101 *
102 * NOTE: Should not be larger than 1K since inodes
103 * are 1K.
104 *
105 * MINIOSIZE - The minimum IO size. This must be less than
106 * or equal to HAMMER2_LBUFSIZE.
107 *
108 * HAMMER2_LBUFSIZE - Nominal buffer size for I/O rollups.
109 *
110 * HAMMER2_PBUFSIZE - Topological block size used by files for all
111 * blocks except the block straddling EOF.
112 *
113 * HAMMER2_SEGSIZE - Allocation map segment size, typically 4MB
114 * (space represented by a level0 bitmap).
115 */
116
117 #define HAMMER2_SEGSIZE (1 << HAMMER2_FREEMAP_LEVEL0_RADIX)
118 #define HAMMER2_SEGRADIX HAMMER2_FREEMAP_LEVEL0_RADIX
119
120 #define HAMMER2_PBUFRADIX 16 /* physical buf (1<<16) bytes */
121 #define HAMMER2_PBUFSIZE 65536
122 #define HAMMER2_LBUFRADIX 14 /* logical buf (1<<14) bytes */
123 #define HAMMER2_LBUFSIZE 16384
124
125 /*
126 * Generally speaking we want to use 16K and 64K I/Os
127 */
128 #define HAMMER2_MINIORADIX HAMMER2_LBUFRADIX
129 #define HAMMER2_MINIOSIZE HAMMER2_LBUFSIZE
130
131 #define HAMMER2_IND_BYTES_MIN 4096
132 #define HAMMER2_IND_BYTES_NOM HAMMER2_LBUFSIZE
133 #define HAMMER2_IND_BYTES_MAX HAMMER2_PBUFSIZE
134 #define HAMMER2_IND_RADIX_MIN 12
135 #define HAMMER2_IND_RADIX_NOM HAMMER2_LBUFRADIX
136 #define HAMMER2_IND_RADIX_MAX HAMMER2_PBUFRADIX
137 #define HAMMER2_IND_COUNT_MIN (HAMMER2_IND_BYTES_MIN / \
138 sizeof(hammer2_blockref_t))
139 #define HAMMER2_IND_COUNT_MAX (HAMMER2_IND_BYTES_MAX / \
140 sizeof(hammer2_blockref_t))
141
142 /*
143 * In HAMMER2, arrays of blockrefs are fully set-associative, meaning that
144 * any element can occur at any index and holes can be anywhere. As a
145 * future optimization we will be able to flag that such arrays are sorted
146 * and thus optimize lookups, but for now we don't.
147 *
148 * Inodes embed either 512 bytes of direct data or an array of 4 blockrefs,
149 * resulting in highly efficient storage for files <= 512 bytes and for files
150 * <= 512KB. Up to 4 directory entries can be referenced from a directory
151 * without requiring an indirect block.
152 *
153 * Indirect blocks are typically either 4KB (64 blockrefs / ~4MB represented),
154 * or 64KB (1024 blockrefs / ~64MB represented).
155 */
156 #define HAMMER2_SET_RADIX 2 /* radix 2 = 4 entries */
157 #define HAMMER2_SET_COUNT (1 << HAMMER2_SET_RADIX)
158 #define HAMMER2_EMBEDDED_BYTES 512 /* inode blockset/dd size */
159 #define HAMMER2_EMBEDDED_RADIX 9
160
161 #define HAMMER2_PBUFMASK (HAMMER2_PBUFSIZE - 1)
162 #define HAMMER2_LBUFMASK (HAMMER2_LBUFSIZE - 1)
163 #define HAMMER2_SEGMASK (HAMMER2_SEGSIZE - 1)
164
165 #define HAMMER2_LBUFMASK64 ((hammer2_off_t)HAMMER2_LBUFMASK)
166 #define HAMMER2_PBUFSIZE64 ((hammer2_off_t)HAMMER2_PBUFSIZE)
167 #define HAMMER2_PBUFMASK64 ((hammer2_off_t)HAMMER2_PBUFMASK)
168 #define HAMMER2_SEGSIZE64 ((hammer2_off_t)HAMMER2_SEGSIZE)
169 #define HAMMER2_SEGMASK64 ((hammer2_off_t)HAMMER2_SEGMASK)
170
171 #define HAMMER2_UUID_STRING "5cbb9ad1-862d-11dc-a94d-01301bb8a9f5"
172
173 /*
174 * A 4MB segment is reserved at the beginning of each 2GB zone. This segment
175 * contains the volume header (or backup volume header), the free block
176 * table, and possibly other information in the future. A 4MB segment for
177 * freemap is reserved at the beginning of every 1GB.
178 *
179 * 4MB = 64 x 64K blocks. Each 4MB segment is broken down as follows:
180 *
181 * ==========
182 * 0 volume header (for the first four 2GB zones)
183 * 1 freemap00 level1 FREEMAP_LEAF (256 x 128B bitmap data per 1GB)
184 * 2 level2 FREEMAP_NODE (256 x 128B indirect block per 256GB)
185 * 3 level3 FREEMAP_NODE (256 x 128B indirect block per 64TB)
186 * 4 level4 FREEMAP_NODE (256 x 128B indirect block per 16PB)
187 * 5 level5 FREEMAP_NODE (256 x 128B indirect block per 4EB)
188 * 6 freemap01 level1 (rotation)
189 * 7 level2
190 * 8 level3
191 * 9 level4
192 * 10 level5
193 * 11 freemap02 level1 (rotation)
194 * 12 level2
195 * 13 level3
196 * 14 level4
197 * 15 level5
198 * 16 freemap03 level1 (rotation)
199 * 17 level2
200 * 18 level3
201 * 19 level4
202 * 20 level5
203 * 21 freemap04 level1 (rotation)
204 * 22 level2
205 * 23 level3
206 * 24 level4
207 * 25 level5
208 * 26 freemap05 level1 (rotation)
209 * 27 level2
210 * 28 level3
211 * 29 level4
212 * 30 level5
213 * 31 freemap06 level1 (rotation)
214 * 32 level2
215 * 33 level3
216 * 34 level4
217 * 35 level5
218 * 36 freemap07 level1 (rotation)
219 * 37 level2
220 * 38 level3
221 * 39 level4
222 * 40 level5
223 * 41 unused
224 * .. unused
225 * 63 unused
226 * ==========
227 *
228 * The first four 2GB zones contain volume headers and volume header backups.
229 * After that the volume header block# is reserved for future use. Similarly,
230 * there are many blocks related to various Freemap levels which are not
231 * used in every segment and those are also reserved for future use.
232 * Note that each FREEMAP_LEAF or FREEMAP_NODE uses 32KB out of 64KB slot.
233 *
234 * Freemap (see the FREEMAP document)
235 *
236 * The freemap utilizes blocks #1-40 in 8 sets of 5 blocks. Each block in
237 * a set represents a level of depth in the freemap topology. Eight sets
238 * exist to prevent live updates from disturbing the state of the freemap
239 * were a crash/reboot to occur. That is, a live update is not committed
240 * until the update's flush reaches the volume root. There are FOUR volume
241 * roots representing the last four synchronization points, so the freemap
242 * must be consistent no matter which volume root is chosen by the mount
243 * code.
244 *
245 * Each freemap set is 5 x 64K blocks and represents the 1GB, 256GB, 64TB,
246 * 16PB and 4EB indirect map. The volume header itself has a set of 4 freemap
247 * blockrefs representing another 2 bits, giving us a total 64 bits of
248 * representable address space.
249 *
250 * The Level 0 64KB block represents 1GB of storage represented by 32KB
251 * (256 x struct hammer2_bmap_data). Each structure represents 4MB of storage
252 * and has a 512 bit bitmap, using 2 bits to represent a 16KB chunk of
253 * storage. These 2 bits represent the following states:
254 *
255 * 00 Free
256 * 01 (reserved) (Possibly partially allocated)
257 * 10 Possibly free
258 * 11 Allocated
259 *
260 * One important thing to note here is that the freemap resolution is 16KB,
261 * but the minimum storage allocation size is 1KB. The hammer2 vfs keeps
262 * track of sub-allocations in memory, which means that on a unmount or reboot
263 * the entire 16KB of a partially allocated block will be considered fully
264 * allocated. It is possible for fragmentation to build up over time, but
265 * defragmentation is fairly easy to accomplish since all modifications
266 * allocate a new block.
267 *
268 * The Second thing to note is that due to the way snapshots and inode
269 * replication works, deleting a file cannot immediately free the related
270 * space. Furthermore, deletions often do not bother to traverse the
271 * block subhierarchy being deleted. And to go even further, whole
272 * sub-directory trees can be deleted simply by deleting the directory inode
273 * at the top. So even though we have a symbol to represent a 'possibly free'
274 * block (binary 10), only the bulk free scanning code can actually use it.
275 * Normal 'rm's or other deletions do not.
276 *
277 * WARNING! ZONE_SEG and VOLUME_ALIGN must be a multiple of 1<<LEVEL0_RADIX
278 * (i.e. a multiple of 4MB). VOLUME_ALIGN must be >= ZONE_SEG.
279 *
280 * In Summary:
281 *
282 * (1) Modifications to freemap blocks 'allocate' a new copy (aka use a block
283 * from the next set). The new copy is reused until a flush occurs at
284 * which point the next modification will then rotate to the next set.
285 */
286 #define HAMMER2_VOLUME_ALIGN (8 * 1024 * 1024)
287 #define HAMMER2_VOLUME_ALIGN64 ((hammer2_off_t)HAMMER2_VOLUME_ALIGN)
288 #define HAMMER2_VOLUME_ALIGNMASK (HAMMER2_VOLUME_ALIGN - 1)
289 #define HAMMER2_VOLUME_ALIGNMASK64 ((hammer2_off_t)HAMMER2_VOLUME_ALIGNMASK)
290
291 #define HAMMER2_NEWFS_ALIGN (HAMMER2_VOLUME_ALIGN)
292 #define HAMMER2_NEWFS_ALIGN64 ((hammer2_off_t)HAMMER2_VOLUME_ALIGN)
293 #define HAMMER2_NEWFS_ALIGNMASK (HAMMER2_VOLUME_ALIGN - 1)
294 #define HAMMER2_NEWFS_ALIGNMASK64 ((hammer2_off_t)HAMMER2_NEWFS_ALIGNMASK)
295
296 #define HAMMER2_ZONE_BYTES64 (2LLU * 1024 * 1024 * 1024)
297 #define HAMMER2_ZONE_MASK64 (HAMMER2_ZONE_BYTES64 - 1)
298 #define HAMMER2_ZONE_SEG (4 * 1024 * 1024)
299 #define HAMMER2_ZONE_SEG64 ((hammer2_off_t)HAMMER2_ZONE_SEG)
300 #define HAMMER2_ZONE_BLOCKS_SEG (HAMMER2_ZONE_SEG / HAMMER2_PBUFSIZE)
301
302 #define HAMMER2_ZONE_FREEMAP_INC 5 /* 5 deep */
303
304 #define HAMMER2_ZONE_VOLHDR 0 /* volume header or backup */
305 #define HAMMER2_ZONE_FREEMAP_00 1 /* normal freemap rotation */
306 #define HAMMER2_ZONE_FREEMAP_01 6 /* normal freemap rotation */
307 #define HAMMER2_ZONE_FREEMAP_02 11 /* normal freemap rotation */
308 #define HAMMER2_ZONE_FREEMAP_03 16 /* normal freemap rotation */
309 #define HAMMER2_ZONE_FREEMAP_04 21 /* normal freemap rotation */
310 #define HAMMER2_ZONE_FREEMAP_05 26 /* normal freemap rotation */
311 #define HAMMER2_ZONE_FREEMAP_06 31 /* normal freemap rotation */
312 #define HAMMER2_ZONE_FREEMAP_07 36 /* normal freemap rotation */
313 #define HAMMER2_ZONE_FREEMAP_END 41 /* (non-inclusive) */
314
315 #define HAMMER2_ZONE_UNUSED41 41
316 #define HAMMER2_ZONE_UNUSED42 42
317 #define HAMMER2_ZONE_UNUSED43 43
318 #define HAMMER2_ZONE_UNUSED44 44
319 #define HAMMER2_ZONE_UNUSED45 45
320 #define HAMMER2_ZONE_UNUSED46 46
321 #define HAMMER2_ZONE_UNUSED47 47
322 #define HAMMER2_ZONE_UNUSED48 48
323 #define HAMMER2_ZONE_UNUSED49 49
324 #define HAMMER2_ZONE_UNUSED50 50
325 #define HAMMER2_ZONE_UNUSED51 51
326 #define HAMMER2_ZONE_UNUSED52 52
327 #define HAMMER2_ZONE_UNUSED53 53
328 #define HAMMER2_ZONE_UNUSED54 54
329 #define HAMMER2_ZONE_UNUSED55 55
330 #define HAMMER2_ZONE_UNUSED56 56
331 #define HAMMER2_ZONE_UNUSED57 57
332 #define HAMMER2_ZONE_UNUSED58 58
333 #define HAMMER2_ZONE_UNUSED59 59
334 #define HAMMER2_ZONE_UNUSED60 60
335 #define HAMMER2_ZONE_UNUSED61 61
336 #define HAMMER2_ZONE_UNUSED62 62
337 #define HAMMER2_ZONE_UNUSED63 63
338 #define HAMMER2_ZONE_END 64 /* non-inclusive */
339
340 #define HAMMER2_NFREEMAPS 8 /* FREEMAP_00 - FREEMAP_07 */
341
342 /* relative to FREEMAP_x */
343 #define HAMMER2_ZONEFM_LEVEL1 0 /* 1GB leafmap */
344 #define HAMMER2_ZONEFM_LEVEL2 1 /* 256GB indmap */
345 #define HAMMER2_ZONEFM_LEVEL3 2 /* 64TB indmap */
346 #define HAMMER2_ZONEFM_LEVEL4 3 /* 16PB indmap */
347 #define HAMMER2_ZONEFM_LEVEL5 4 /* 4EB indmap */
348 /* LEVEL6 is a set of 4 blockrefs in the volume header 16EB */
349
350 /*
351 * Freemap radix. Assumes a set-count of 4, 128-byte blockrefs,
352 * 32KB indirect block for freemap (LEVELN_PSIZE below).
353 *
354 * Leaf entry represents 4MB of storage broken down into a 512-bit
355 * bitmap, 2-bits per entry. So course bitmap item represents 16KB.
356 */
357 #if HAMMER2_SET_COUNT != 4
358 #error "hammer2_disk.h - freemap assumes SET_COUNT is 4"
359 #endif
360 #define HAMMER2_FREEMAP_LEVEL6_RADIX 64 /* 16EB (end) */
361 #define HAMMER2_FREEMAP_LEVEL5_RADIX 62 /* 4EB */
362 #define HAMMER2_FREEMAP_LEVEL4_RADIX 54 /* 16PB */
363 #define HAMMER2_FREEMAP_LEVEL3_RADIX 46 /* 64TB */
364 #define HAMMER2_FREEMAP_LEVEL2_RADIX 38 /* 256GB */
365 #define HAMMER2_FREEMAP_LEVEL1_RADIX 30 /* 1GB */
366 #define HAMMER2_FREEMAP_LEVEL0_RADIX 22 /* 4MB (128by in l-1 leaf) */
367
368 #define HAMMER2_FREEMAP_LEVELN_PSIZE 32768 /* physical bytes */
369
370 #define HAMMER2_FREEMAP_LEVEL5_SIZE ((hammer2_off_t)1 << \
371 HAMMER2_FREEMAP_LEVEL5_RADIX)
372 #define HAMMER2_FREEMAP_LEVEL4_SIZE ((hammer2_off_t)1 << \
373 HAMMER2_FREEMAP_LEVEL4_RADIX)
374 #define HAMMER2_FREEMAP_LEVEL3_SIZE ((hammer2_off_t)1 << \
375 HAMMER2_FREEMAP_LEVEL3_RADIX)
376 #define HAMMER2_FREEMAP_LEVEL2_SIZE ((hammer2_off_t)1 << \
377 HAMMER2_FREEMAP_LEVEL2_RADIX)
378 #define HAMMER2_FREEMAP_LEVEL1_SIZE ((hammer2_off_t)1 << \
379 HAMMER2_FREEMAP_LEVEL1_RADIX)
380 #define HAMMER2_FREEMAP_LEVEL0_SIZE ((hammer2_off_t)1 << \
381 HAMMER2_FREEMAP_LEVEL0_RADIX)
382
383 #define HAMMER2_FREEMAP_LEVEL5_MASK (HAMMER2_FREEMAP_LEVEL5_SIZE - 1)
384 #define HAMMER2_FREEMAP_LEVEL4_MASK (HAMMER2_FREEMAP_LEVEL4_SIZE - 1)
385 #define HAMMER2_FREEMAP_LEVEL3_MASK (HAMMER2_FREEMAP_LEVEL3_SIZE - 1)
386 #define HAMMER2_FREEMAP_LEVEL2_MASK (HAMMER2_FREEMAP_LEVEL2_SIZE - 1)
387 #define HAMMER2_FREEMAP_LEVEL1_MASK (HAMMER2_FREEMAP_LEVEL1_SIZE - 1)
388 #define HAMMER2_FREEMAP_LEVEL0_MASK (HAMMER2_FREEMAP_LEVEL0_SIZE - 1)
389
390 #define HAMMER2_FREEMAP_COUNT (int)(HAMMER2_FREEMAP_LEVELN_PSIZE / \
391 sizeof(hammer2_bmap_data_t))
392
393 /*
394 * XXX I made a mistake and made the reserved area begin at each LEVEL1 zone,
395 * which is on a 1GB demark. This will eat a little more space but for
396 * now we retain compatibility and make FMZONEBASE every 1GB
397 */
398 #define H2FMZONEBASE(key) ((key) & ~HAMMER2_FREEMAP_LEVEL1_MASK)
399 #define H2FMBASE(key, radix) rounddown2(key, (hammer2_off_t)1 << (radix))
400
401 /*
402 * 16KB bitmap granularity (x2 bits per entry).
403 */
404 #define HAMMER2_FREEMAP_BLOCK_RADIX 14
405 #define HAMMER2_FREEMAP_BLOCK_SIZE (1 << HAMMER2_FREEMAP_BLOCK_RADIX)
406 #define HAMMER2_FREEMAP_BLOCK_MASK (HAMMER2_FREEMAP_BLOCK_SIZE - 1)
407
408 /*
409 * bitmap[] structure. 2 bits per HAMMER2_FREEMAP_BLOCK_SIZE.
410 *
411 * 8 x 64-bit elements, 2 bits per block.
412 * 32 blocks (radix 5) per element.
413 * representing INDEX_SIZE bytes worth of storage per element.
414 */
415
416 typedef uint64_t hammer2_bitmap_t;
417
418 #define HAMMER2_BMAP_ALLONES ((hammer2_bitmap_t)-1)
419 #define HAMMER2_BMAP_ELEMENTS 8
420 #define HAMMER2_BMAP_BITS_PER_ELEMENT 64
421 #define HAMMER2_BMAP_INDEX_RADIX 5 /* 32 blocks per element */
422 #define HAMMER2_BMAP_BLOCKS_PER_ELEMENT (1 << HAMMER2_BMAP_INDEX_RADIX)
423
424 #define HAMMER2_BMAP_INDEX_SIZE (HAMMER2_FREEMAP_BLOCK_SIZE * \
425 HAMMER2_BMAP_BLOCKS_PER_ELEMENT)
426 #define HAMMER2_BMAP_INDEX_MASK (HAMMER2_BMAP_INDEX_SIZE - 1)
427
428 #define HAMMER2_BMAP_SIZE (HAMMER2_BMAP_INDEX_SIZE * \
429 HAMMER2_BMAP_ELEMENTS)
430 #define HAMMER2_BMAP_MASK (HAMMER2_BMAP_SIZE - 1)
431
432 /*
433 * Two linear areas can be reserved after the initial 4MB segment in the base
434 * zone (the one starting at offset 0). These areas are NOT managed by the
435 * block allocator and do not fall under HAMMER2 crc checking rules based
436 * at the volume header (but can be self-CRCd internally, depending).
437 */
438 #define HAMMER2_BOOT_MIN_BYTES HAMMER2_VOLUME_ALIGN
439 #define HAMMER2_BOOT_NOM_BYTES (64*1024*1024)
440 #define HAMMER2_BOOT_MAX_BYTES (256*1024*1024)
441
442 #define HAMMER2_REDO_MIN_BYTES HAMMER2_VOLUME_ALIGN
443 #define HAMMER2_REDO_NOM_BYTES (256*1024*1024)
444 #define HAMMER2_REDO_MAX_BYTES (1024*1024*1024)
445
446 /*
447 * Most HAMMER2 types are implemented as unsigned 64-bit integers.
448 * Transaction ids are monotonic.
449 *
450 * We utilize 32-bit iSCSI CRCs.
451 */
452 typedef uint64_t hammer2_tid_t;
453 typedef uint64_t hammer2_off_t;
454 typedef uint64_t hammer2_key_t;
455 typedef uint32_t hammer2_crc32_t;
456
457 /*
458 * Miscellanious ranges (all are unsigned).
459 */
460 #define HAMMER2_TID_MIN 1ULL
461 #define HAMMER2_TID_MAX 0xFFFFFFFFFFFFFFFFULL
462 #define HAMMER2_KEY_MIN 0ULL
463 #define HAMMER2_KEY_MAX 0xFFFFFFFFFFFFFFFFULL
464 #define HAMMER2_OFFSET_MIN 0ULL
465 #define HAMMER2_OFFSET_MAX 0xFFFFFFFFFFFFFFFFULL
466
467 /*
468 * HAMMER2 data offset special cases and masking.
469 *
470 * All HAMMER2 data offsets have to be broken down into a 64K buffer base
471 * offset (HAMMER2_OFF_MASK_HI) and a 64K buffer index (HAMMER2_OFF_MASK_LO).
472 *
473 * Indexes into physical buffers are always 64-byte aligned. The low 6 bits
474 * of the data offset field specifies how large the data chunk being pointed
475 * to as a power of 2. The theoretical minimum radix is thus 6 (The space
476 * needed in the low bits of the data offset field). However, the practical
477 * minimum allocation chunk size is 1KB (a radix of 10), so HAMMER2 sets
478 * HAMMER2_RADIX_MIN to 10. The maximum radix is currently 16 (64KB), but
479 * we fully intend to support larger extents in the future.
480 *
481 * WARNING! A radix of 0 (such as when data_off is all 0's) is a special
482 * case which means no data associated with the blockref, and
483 * not the '1 byte' it would otherwise calculate to.
484 */
485 #define HAMMER2_OFF_BAD ((hammer2_off_t)-1)
486 #define HAMMER2_OFF_MASK 0xFFFFFFFFFFFFFFC0ULL
487 #define HAMMER2_OFF_MASK_LO (HAMMER2_OFF_MASK & HAMMER2_PBUFMASK64)
488 #define HAMMER2_OFF_MASK_HI (~HAMMER2_PBUFMASK64)
489 #define HAMMER2_OFF_MASK_RADIX 0x000000000000003FULL
490 #define HAMMER2_MAX_COPIES 6
491
492 /*
493 * HAMMER2 directory support and pre-defined keys
494 */
495 #define HAMMER2_DIRHASH_VISIBLE 0x8000000000000000ULL
496 #define HAMMER2_DIRHASH_USERMSK 0x7FFFFFFFFFFFFFFFULL
497 #define HAMMER2_DIRHASH_LOMASK 0x0000000000007FFFULL
498 #define HAMMER2_DIRHASH_HIMASK 0xFFFFFFFFFFFF0000ULL
499 #define HAMMER2_DIRHASH_FORCED 0x0000000000008000ULL /* bit forced on */
500
501 #define HAMMER2_SROOT_KEY 0x0000000000000000ULL /* volume to sroot */
502 #define HAMMER2_BOOT_KEY 0xd9b36ce135528000ULL /* sroot to BOOT PFS */
503
504 /************************************************************************
505 * DMSG SUPPORT *
506 ************************************************************************
507 * LNK_VOLCONF
508 *
509 * All HAMMER2 directories directly under the super-root on your local
510 * media can be mounted separately, even if they share the same physical
511 * device.
512 *
513 * When you do a HAMMER2 mount you are effectively tying into a HAMMER2
514 * cluster via local media. The local media does not have to participate
515 * in the cluster, other than to provide the hammer2_volconf[] array and
516 * root inode for the mount.
517 *
518 * This is important: The mount device path you specify serves to bootstrap
519 * your entry into the cluster, but your mount will make active connections
520 * to ALL copy elements in the hammer2_volconf[] array which match the
521 * PFSID of the directory in the super-root that you specified. The local
522 * media path does not have to be mentioned in this array but becomes part
523 * of the cluster based on its type and access rights. ALL ELEMENTS ARE
524 * TREATED ACCORDING TO TYPE NO MATTER WHICH ONE YOU MOUNT FROM.
525 *
526 * The actual cluster may be far larger than the elements you list in the
527 * hammer2_volconf[] array. You list only the elements you wish to
528 * directly connect to and you are able to access the rest of the cluster
529 * indirectly through those connections.
530 *
531 * WARNING! This structure must be exactly 128 bytes long for its config
532 * array to fit in the volume header.
533 */
534 struct hammer2_volconf {
535 uint8_t copyid; /* 00 copyid 0-255 (must match slot) */
536 uint8_t inprog; /* 01 operation in progress, or 0 */
537 uint8_t chain_to; /* 02 operation chaining to, or 0 */
538 uint8_t chain_from; /* 03 operation chaining from, or 0 */
539 uint16_t flags; /* 04-05 flags field */
540 uint8_t error; /* 06 last operational error */
541 uint8_t priority; /* 07 priority and round-robin flag */
542 uint8_t remote_pfs_type;/* 08 probed direct remote PFS type */
543 uint8_t reserved08[23]; /* 09-1F */
544 uuid_t pfs_clid; /* 20-2F copy target must match this uuid */
545 uint8_t label[16]; /* 30-3F import/export label */
546 uint8_t path[64]; /* 40-7F target specification string or key */
547 } __packed;
548
549 typedef struct hammer2_volconf hammer2_volconf_t;
550
551 #define DMSG_VOLF_ENABLED 0x0001
552 #define DMSG_VOLF_INPROG 0x0002
553 #define DMSG_VOLF_CONN_RR 0x80 /* round-robin at same priority */
554 #define DMSG_VOLF_CONN_EF 0x40 /* media errors flagged */
555 #define DMSG_VOLF_CONN_PRI 0x0F /* select priority 0-15 (15=best) */
556
557 #if 0
558 struct dmsg_lnk_hammer2_volconf {
559 dmsg_hdr_t head;
560 hammer2_volconf_t copy; /* copy spec */
561 int32_t index;
562 int32_t unused01;
563 uuid_t mediaid;
564 int64_t reserved02[32];
565 } __packed;
566 #endif
567
568 typedef struct dmsg_lnk_hammer2_volconf dmsg_lnk_hammer2_volconf_t;
569
570 #define DMSG_LNK_HAMMER2_VOLCONF DMSG_LNK(DMSG_LNK_CMD_HAMMER2_VOLCONF, \
571 dmsg_lnk_hammer2_volconf)
572
573 #define H2_LNK_VOLCONF(msg) ((dmsg_lnk_hammer2_volconf_t *)(msg)->any.buf)
574
575 /*
576 * HAMMER2 directory entry header (embedded in blockref) exactly 16 bytes
577 */
578 struct hammer2_dirent_head {
579 hammer2_tid_t inum; /* inode number */
580 uint16_t namlen; /* name length */
581 uint8_t type; /* OBJTYPE_* */
582 uint8_t unused0B;
583 uint8_t unused0C[4];
584 } __packed;
585
586 typedef struct hammer2_dirent_head hammer2_dirent_head_t;
587
588 /*
589 * The media block reference structure. This forms the core of the HAMMER2
590 * media topology recursion. This 128-byte data structure is embedded in the
591 * volume header, in inodes (which are also directory entries), and in
592 * indirect blocks.
593 *
594 * A blockref references a single media item, which typically can be a
595 * directory entry (aka inode), indirect block, or data block.
596 *
597 * The primary feature a blockref represents is the ability to validate
598 * the entire tree underneath it via its check code. Any modification to
599 * anything propagates up the blockref tree all the way to the root, replacing
600 * the related blocks and compounding the generated check code.
601 *
602 * The check code can be a simple 32-bit iscsi code, a 64-bit crc, or as
603 * complex as a 512 bit cryptographic hash. I originally used a 64-byte
604 * blockref but later expanded it to 128 bytes to be able to support the
605 * larger check code as well as to embed statistics for quota operation.
606 *
607 * Simple check codes are not sufficient for unverified dedup. Even with
608 * a maximally-sized check code unverified dedup should only be used in
609 * in subdirectory trees where you do not need 100% data integrity.
610 *
611 * Unverified dedup is deduping based on meta-data only without verifying
612 * that the data blocks are actually identical. Verified dedup guarantees
613 * integrity but is a far more I/O-expensive operation.
614 *
615 * --
616 *
617 * mirror_tid - per cluster node modified (propagated upward by flush)
618 * modify_tid - clc record modified (not propagated).
619 * update_tid - clc record updated (propagated upward on verification)
620 *
621 * CLC - Stands for 'Cluster Level Change', identifiers which are identical
622 * within the topology across all cluster nodes (when fully
623 * synchronized).
624 *
625 * NOTE: The range of keys represented by the blockref is (key) to
626 * ((key) + (1LL << keybits) - 1). HAMMER2 usually populates
627 * blocks bottom-up, inserting a new root when radix expansion
628 * is required.
629 *
630 * leaf_count - Helps manage leaf collapse calculations when indirect
631 * blocks become mostly empty. This value caps out at
632 * HAMMER2_BLOCKREF_LEAF_MAX (65535).
633 *
634 * Used by the chain code to determine when to pull leafs up
635 * from nearly empty indirect blocks. For the purposes of this
636 * calculation, BREF_TYPE_INODE is considered a leaf, along
637 * with DIRENT and DATA.
638 *
639 * RESERVED FIELDS
640 *
641 * A number of blockref fields are reserved and should generally be set to
642 * 0 for future compatibility.
643 *
644 * FUTURE BLOCKREF EXPANSION
645 *
646 * CONTENT ADDRESSABLE INDEXING (future) - Using a 256 or 512-bit check code.
647 */
648 struct hammer2_blockref { /* MUST BE EXACTLY 64 BYTES */
649 uint8_t type; /* type of underlying item */
650 uint8_t methods; /* check method & compression method */
651 uint8_t copyid; /* specify which copy this is */
652 uint8_t keybits; /* #of keybits masked off 0=leaf */
653 uint8_t vradix; /* virtual data/meta-data size */
654 uint8_t flags; /* blockref flags */
655 uint16_t leaf_count; /* leaf aggregation count */
656 hammer2_key_t key; /* key specification */
657 hammer2_tid_t mirror_tid; /* media flush topology & freemap */
658 hammer2_tid_t modify_tid; /* clc modify (not propagated) */
659 hammer2_off_t data_off; /* low 6 bits is phys size (radix)*/
660 hammer2_tid_t update_tid; /* clc modify (propagated upward) */
661 union {
662 char buf[16];
663
664 /*
665 * Directory entry header (BREF_TYPE_DIRENT)
666 *
667 * NOTE: check.buf contains filename if <= 64 bytes. Longer
668 * filenames are stored in a data reference of size
669 * HAMMER2_ALLOC_MIN (at least 256, typically 1024).
670 *
671 * NOTE: inode structure may contain a copy of a recently
672 * associated filename, for recovery purposes.
673 *
674 * NOTE: Superroot entries are INODEs, not DIRENTs. Code
675 * allows both cases.
676 */
677 hammer2_dirent_head_t dirent;
678
679 /*
680 * Statistics aggregation (BREF_TYPE_INODE, BREF_TYPE_INDIRECT)
681 */
682 struct {
683 hammer2_key_t data_count;
684 hammer2_key_t inode_count;
685 } stats;
686 } embed;
687 union { /* check info */
688 char buf[64];
689 struct {
690 uint32_t value;
691 uint32_t reserved[15];
692 } iscsi32;
693 struct {
694 uint64_t value;
695 uint64_t reserved[7];
696 } xxhash64;
697 struct {
698 char data[24];
699 char reserved[40];
700 } sha192;
701 struct {
702 char data[32];
703 char reserved[32];
704 } sha256;
705 struct {
706 char data[64];
707 } sha512;
708
709 /*
710 * Freemap hints are embedded in addition to the icrc32.
711 *
712 * bigmask - Radixes available for allocation (0-31).
713 * Heuristical (may be permissive but not
714 * restrictive). Typically only radix values
715 * 10-16 are used (i.e. (1<<10) through (1<<16)).
716 *
717 * avail - Total available space remaining, in bytes
718 */
719 struct {
720 uint32_t icrc32;
721 uint32_t bigmask; /* available radixes */
722 uint64_t avail; /* total available bytes */
723 char reserved[48];
724 } freemap;
725 } check;
726 } __packed;
727
728 typedef struct hammer2_blockref hammer2_blockref_t;
729
730 #define HAMMER2_BLOCKREF_BYTES 128 /* blockref struct in bytes */
731 #define HAMMER2_BLOCKREF_RADIX 7
732
733 #define HAMMER2_BLOCKREF_LEAF_MAX 65535
734
735 /*
736 * On-media and off-media blockref types.
737 *
738 * types >= 128 are pseudo values that should never be present on-media.
739 */
740 #define HAMMER2_BREF_TYPE_EMPTY 0
741 #define HAMMER2_BREF_TYPE_INODE 1
742 #define HAMMER2_BREF_TYPE_INDIRECT 2
743 #define HAMMER2_BREF_TYPE_DATA 3
744 #define HAMMER2_BREF_TYPE_DIRENT 4
745 #define HAMMER2_BREF_TYPE_FREEMAP_NODE 5
746 #define HAMMER2_BREF_TYPE_FREEMAP_LEAF 6
747 #define HAMMER2_BREF_TYPE_FREEMAP 254 /* pseudo-type */
748 #define HAMMER2_BREF_TYPE_VOLUME 255 /* pseudo-type */
749
750 #define HAMMER2_BREF_FLAG_PFSROOT 0x01 /* see also related opflag */
751 #define HAMMER2_BREF_FLAG_ZERO 0x02
752 #define HAMMER2_BREF_FLAG_EMERG_MIP 0x04 /* emerg modified-in-place */
753
754 /*
755 * Encode/decode check mode and compression mode for
756 * bref.methods. The compression level is not encoded in
757 * bref.methods.
758 */
759 #define HAMMER2_ENC_CHECK(n) (((n) & 15) << 4)
760 #define HAMMER2_DEC_CHECK(n) (((n) >> 4) & 15)
761 #define HAMMER2_ENC_COMP(n) ((n) & 15)
762 #define HAMMER2_DEC_COMP(n) ((n) & 15)
763
764 #define HAMMER2_CHECK_NONE 0
765 #define HAMMER2_CHECK_DISABLED 1
766 #define HAMMER2_CHECK_ISCSI32 2
767 #define HAMMER2_CHECK_XXHASH64 3
768 #define HAMMER2_CHECK_SHA192 4
769 #define HAMMER2_CHECK_FREEMAP 5
770
771 #define HAMMER2_CHECK_DEFAULT HAMMER2_CHECK_XXHASH64
772
773 /* user-specifiable check modes only */
774 #define HAMMER2_CHECK_STRINGS { "none", "disabled", "crc32", \
775 "xxhash64", "sha192" }
776 #define HAMMER2_CHECK_STRINGS_COUNT 5
777
778 /*
779 * Encode/decode check or compression algorithm request in
780 * ipdata->meta.check_algo and ipdata->meta.comp_algo.
781 */
782 #define HAMMER2_ENC_ALGO(n) (n)
783 #define HAMMER2_DEC_ALGO(n) ((n) & 15)
784 #define HAMMER2_ENC_LEVEL(n) ((n) << 4)
785 #define HAMMER2_DEC_LEVEL(n) (((n) >> 4) & 15)
786
787 #define HAMMER2_COMP_NONE 0
788 #define HAMMER2_COMP_AUTOZERO 1
789 #define HAMMER2_COMP_LZ4 2
790 #define HAMMER2_COMP_ZLIB 3
791
792 #define HAMMER2_COMP_NEWFS_DEFAULT HAMMER2_COMP_LZ4
793 #define HAMMER2_COMP_STRINGS { "none", "autozero", "lz4", "zlib" }
794 #define HAMMER2_COMP_STRINGS_COUNT 4
795
796 /*
797 * Passed to hammer2_chain_create(), causes methods to be inherited from
798 * parent.
799 */
800 #define HAMMER2_METH_DEFAULT -1
801
802 /*
803 * HAMMER2 block references are collected into sets of 4 blockrefs. These
804 * sets are fully associative, meaning the elements making up a set are
805 * not sorted in any way and may contain duplicate entries, holes, or
806 * entries which shortcut multiple levels of indirection. Sets are used
807 * in various ways:
808 *
809 * (1) When redundancy is desired a set may contain several duplicate
810 * entries pointing to different copies of the same data. Up to 4 copies
811 * are supported.
812 *
813 * (2) The blockrefs in a set can shortcut multiple levels of indirections
814 * within the bounds imposed by the parent of set.
815 *
816 * When a set fills up another level of indirection is inserted, moving
817 * some or all of the set's contents into indirect blocks placed under the
818 * set. This is a top-down approach in that indirect blocks are not created
819 * until the set actually becomes full (that is, the entries in the set can
820 * shortcut the indirect blocks when the set is not full). Depending on how
821 * things are filled multiple indirect blocks will eventually be created.
822 *
823 * Indirect blocks are typically 4KB (64 entres) or 64KB (1024 entries) and
824 * are also treated as fully set-associative.
825 */
826 struct hammer2_blockset {
827 hammer2_blockref_t blockref[HAMMER2_SET_COUNT];
828 };
829
830 typedef struct hammer2_blockset hammer2_blockset_t;
831
832 /*
833 * Catch programmer snafus
834 */
835 #if (1 << HAMMER2_SET_RADIX) != HAMMER2_SET_COUNT
836 #error "hammer2 direct radix is incorrect"
837 #endif
838 #if (1 << HAMMER2_PBUFRADIX) != HAMMER2_PBUFSIZE
839 #error "HAMMER2_PBUFRADIX and HAMMER2_PBUFSIZE are inconsistent"
840 #endif
841 #if (1 << HAMMER2_RADIX_MIN) != HAMMER2_ALLOC_MIN
842 #error "HAMMER2_RADIX_MIN and HAMMER2_ALLOC_MIN are inconsistent"
843 #endif
844
845 /*
846 * hammer2_bmap_data - A freemap entry in the LEVEL1 block.
847 *
848 * Each 128-byte entry contains the bitmap and meta-data required to manage
849 * a LEVEL0 (4MB) block of storage. The storage is managed in 256 x 16KB
850 * chunks.
851 *
852 * A smaller allocation granularity is supported via a linear iterator and/or
853 * must otherwise be tracked in ram.
854 *
855 * (data structure must be 128 bytes exactly)
856 *
857 * linear - A BYTE linear allocation offset used for sub-16KB allocations
858 * only. May contain values between 0 and 4MB. Must be ignored
859 * if 16KB-aligned (i.e. force bitmap scan), otherwise may be
860 * used to sub-allocate within the 16KB block (which is already
861 * marked as allocated in the bitmap).
862 *
863 * Sub-allocations need only be 1KB-aligned and do not have to be
864 * size-aligned, and 16KB or larger allocations do not update this
865 * field, resulting in pretty good packing.
866 *
867 * Please note that file data granularity may be limited by
868 * other issues such as buffer cache direct-mapping and the
869 * desire to support sector sizes up to 16KB (so H2 only issues
870 * I/O's in multiples of 16KB anyway).
871 *
872 * class - Clustering class. Cleared to 0 only if the entire leaf becomes
873 * free. Used to cluster device buffers so all elements must have
874 * the same device block size, but may mix logical sizes.
875 *
876 * Typically integrated with the blockref type in the upper 8 bits
877 * to localize inodes and indrect blocks, improving bulk free scans
878 * and directory scans.
879 *
880 * bitmap - Two bits per 16KB allocation block arranged in arrays of
881 * 64-bit elements, 256x2 bits representing ~4MB worth of media
882 * storage. Bit patterns are as follows:
883 *
884 * 00 Unallocated
885 * 01 (reserved)
886 * 10 Possibly free
887 * 11 Allocated
888 */
889 struct hammer2_bmap_data {
890 int32_t linear; /* 00 linear sub-granular allocation offset */
891 uint16_t class; /* 04-05 clustering class ((type<<8)|radix) */
892 uint8_t reserved06; /* 06 */
893 uint8_t reserved07; /* 07 */
894 uint32_t reserved08; /* 08 */
895 uint32_t reserved0C; /* 0C */
896 uint32_t reserved10; /* 10 */
897 uint32_t reserved14; /* 14 */
898 uint32_t reserved18; /* 18 */
899 uint32_t avail; /* 1C */
900 uint32_t reserved20[8]; /* 20-3F 256 bits manages 128K/1KB/2-bits */
901 /* 40-7F 512 bits manages 4MB of storage */
902 hammer2_bitmap_t bitmapq[HAMMER2_BMAP_ELEMENTS];
903 } __packed;
904
905 typedef struct hammer2_bmap_data hammer2_bmap_data_t;
906
907 /*
908 * XXX "Inodes ARE directory entries" is no longer the case. Hardlinks are
909 * dirents which refer to the same inode#, which is how filesystems usually
910 * implement hardlink. The following comments need to be updated.
911 *
912 * In HAMMER2 inodes ARE directory entries, with a special exception for
913 * hardlinks. The inode number is stored in the inode rather than being
914 * based on the location of the inode (since the location moves every time
915 * the inode or anything underneath the inode is modified).
916 *
917 * The inode is 1024 bytes, made up of 256 bytes of meta-data, 256 bytes
918 * for the filename, and 512 bytes worth of direct file data OR an embedded
919 * blockset. The in-memory hammer2_inode structure contains only the mostly-
920 * node-independent meta-data portion (some flags are node-specific and will
921 * not be synchronized). The rest of the inode is node-specific and chain I/O
922 * is required to obtain it.
923 *
924 * Directories represent one inode per blockref. Inodes are not laid out
925 * as a file but instead are represented by the related blockrefs. The
926 * blockrefs, in turn, are indexed by the 64-bit directory hash key. Remember
927 * that blocksets are fully associative, so a certain degree efficiency is
928 * achieved just from that.
929 *
930 * Up to 512 bytes of direct data can be embedded in an inode, and since
931 * inodes are essentially directory entries this also means that small data
932 * files end up simply being laid out linearly in the directory, resulting
933 * in fewer seeks and highly optimal access.
934 *
935 * The compression mode can be changed at any time in the inode and is
936 * recorded on a blockref-by-blockref basis.
937 *
938 * Hardlinks are supported via the inode map. Essentially the way a hardlink
939 * works is that all individual directory entries representing the same file
940 * are special cased and specify the same inode number. The actual file
941 * is placed in the nearest parent directory that is parent to all instances
942 * of the hardlink. If all hardlinks to a file are in the same directory
943 * the actual file will also be placed in that directory. This file uses
944 * the inode number as the directory entry key and is invisible to normal
945 * directory scans. Real directory entry keys are differentiated from the
946 * inode number key via bit 63. Access to the hardlink silently looks up
947 * the real file and forwards all operations to that file. Removal of the
948 * last hardlink also removes the real file.
949 */
950 #define HAMMER2_INODE_BYTES 1024 /* (asserted by code) */
951 #define HAMMER2_INODE_MAXNAME 256 /* maximum name in bytes */
952 #define HAMMER2_INODE_VERSION_ONE 1
953
954 #define HAMMER2_INODE_START 1024 /* dynamically allocated */
955
956 struct hammer2_inode_meta {
957 uint16_t version; /* 0000 inode data version */
958 uint8_t reserved02; /* 0002 */
959 uint8_t pfs_subtype; /* 0003 pfs sub-type */
960
961 /*
962 * core inode attributes, inode type, misc flags
963 */
964 uint32_t uflags; /* 0004 chflags */
965 uint32_t rmajor; /* 0008 available for device nodes */
966 uint32_t rminor; /* 000C available for device nodes */
967 uint64_t ctime; /* 0010 inode change time */
968 uint64_t mtime; /* 0018 modified time */
969 uint64_t atime; /* 0020 access time (unsupported) */
970 uint64_t btime; /* 0028 birth time */
971 uuid_t uid; /* 0030 uid / degenerate unix uid */
972 uuid_t gid; /* 0040 gid / degenerate unix gid */
973
974 uint8_t type; /* 0050 object type */
975 uint8_t op_flags; /* 0051 operational flags */
976 uint16_t cap_flags; /* 0052 capability flags */
977 uint32_t mode; /* 0054 unix modes (typ low 16 bits) */
978
979 /*
980 * inode size, identification, localized recursive configuration
981 * for compression and backup copies.
982 *
983 * NOTE: Nominal parent inode number (iparent) is only applicable
984 * for directories but can also help for files during
985 * catastrophic recovery.
986 */
987 hammer2_tid_t inum; /* 0058 inode number */
988 hammer2_off_t size; /* 0060 size of file */
989 uint64_t nlinks; /* 0068 hard links (typ only dirs) */
990 hammer2_tid_t iparent; /* 0070 nominal parent inum */
991 hammer2_key_t name_key; /* 0078 full filename key */
992 uint16_t name_len; /* 0080 filename length */
993 uint8_t ncopies; /* 0082 ncopies to local media */
994 uint8_t comp_algo; /* 0083 compression request & algo */
995
996 /*
997 * These fields are currently only applicable to PFSROOTs.
998 *
999 * NOTE: We can't use {volume_data->fsid, pfs_clid} to uniquely
1000 * identify an instance of a PFS in the cluster because
1001 * a mount may contain more than one copy of the PFS as
1002 * a separate node. {pfs_clid, pfs_fsid} must be used for
1003 * registration in the cluster.
1004 */
1005 uint8_t target_type; /* 0084 hardlink target type */
1006 uint8_t check_algo; /* 0085 check code request & algo */
1007 uint8_t pfs_nmasters; /* 0086 (if PFSROOT) if multi-master */
1008 uint8_t pfs_type; /* 0087 (if PFSROOT) node type */
1009 hammer2_tid_t pfs_inum; /* 0088 (if PFSROOT) inum allocator */
1010 uuid_t pfs_clid; /* 0090 (if PFSROOT) cluster uuid */
1011 uuid_t pfs_fsid; /* 00A0 (if PFSROOT) unique uuid */
1012
1013 /*
1014 * Quotas and aggregate sub-tree inode and data counters. Note that
1015 * quotas are not replicated downward, they are explicitly set by
1016 * the sysop and in-memory structures keep track of inheritance.
1017 */
1018 hammer2_key_t data_quota; /* 00B0 subtree quota in bytes */
1019 hammer2_key_t unusedB8; /* 00B8 subtree byte count */
1020 hammer2_key_t inode_quota; /* 00C0 subtree quota inode count */
1021 hammer2_key_t unusedC8; /* 00C8 subtree inode count */
1022
1023 /*
1024 * The last snapshot tid is tested against modify_tid to determine
1025 * when a copy must be made of a data block whos check mode has been
1026 * disabled (a disabled check mode allows data blocks to be updated
1027 * in place instead of copy-on-write).
1028 */
1029 hammer2_tid_t pfs_lsnap_tid; /* 00D0 last snapshot tid */
1030 hammer2_tid_t reservedD8; /* 00D8 (avail) */
1031
1032 /*
1033 * Tracks (possibly degenerate) free areas covering all sub-tree
1034 * allocations under inode, not counting the inode itself.
1035 * 0/0 indicates empty entry. fully set-associative.
1036 *
1037 * (not yet implemented)
1038 */
1039 uint64_t decrypt_check; /* 00E0 decryption validator */
1040 hammer2_off_t reservedE0[3]; /* 00E8/F0/F8 */
1041 } __packed;
1042
1043 typedef struct hammer2_inode_meta hammer2_inode_meta_t;
1044
1045 struct hammer2_inode_data {
1046 hammer2_inode_meta_t meta; /* 0000-00FF */
1047 unsigned char filename[HAMMER2_INODE_MAXNAME];
1048 /* 0100-01FF (256 char, unterminated) */
1049 union { /* 0200-03FF (64x8 = 512 bytes) */
1050 hammer2_blockset_t blockset;
1051 char data[HAMMER2_EMBEDDED_BYTES];
1052 } u;
1053 } __packed;
1054
1055 typedef struct hammer2_inode_data hammer2_inode_data_t;
1056
1057 #define HAMMER2_OPFLAG_DIRECTDATA 0x01
1058 #define HAMMER2_OPFLAG_PFSROOT 0x02 /* (see also bref flag) */
1059 #define HAMMER2_OPFLAG_COPYIDS 0x04 /* copyids override parent */
1060
1061 #define HAMMER2_OBJTYPE_UNKNOWN 0
1062 #define HAMMER2_OBJTYPE_DIRECTORY 1
1063 #define HAMMER2_OBJTYPE_REGFILE 2
1064 #define HAMMER2_OBJTYPE_FIFO 4
1065 #define HAMMER2_OBJTYPE_CDEV 5
1066 #define HAMMER2_OBJTYPE_BDEV 6
1067 #define HAMMER2_OBJTYPE_SOFTLINK 7
1068 #define HAMMER2_OBJTYPE_UNUSED08 8
1069 #define HAMMER2_OBJTYPE_SOCKET 9
1070 #define HAMMER2_OBJTYPE_WHITEOUT 10
1071
1072 #define HAMMER2_COPYID_NONE 0
1073 #define HAMMER2_COPYID_LOCAL ((uint8_t)-1)
1074
1075 #define HAMMER2_COPYID_COUNT 256
1076
1077 /*
1078 * PFS types identify the role of a PFS within a cluster. The PFS types
1079 * is stored on media and in LNK_SPAN messages and used in other places.
1080 *
1081 * The low 4 bits specify the current active type while the high 4 bits
1082 * specify the transition target if the PFS is being upgraded or downgraded,
1083 * If the upper 4 bits are not zero it may effect how a PFS is used during
1084 * the transition.
1085 *
1086 * Generally speaking, downgrading a MASTER to a SLAVE cannot complete until
1087 * at least all MASTERs have updated their pfs_nmasters field. And upgrading
1088 * a SLAVE to a MASTER cannot complete until the new prospective master has
1089 * been fully synchronized (though theoretically full synchronization is
1090 * not required if a (new) quorum of other masters are fully synchronized).
1091 *
1092 * It generally does not matter which PFS element you actually mount, you
1093 * are mounting 'the cluster'. So, for example, a network mount will mount
1094 * a DUMMY PFS type on a memory filesystem. However, there are two exceptions.
1095 * In order to gain the benefits of a SOFT_MASTER or SOFT_SLAVE, those PFSs
1096 * must be directly mounted.
1097 */
1098 #define HAMMER2_PFSTYPE_NONE 0x00
1099 #define HAMMER2_PFSTYPE_CACHE 0x01
1100 #define HAMMER2_PFSTYPE_UNUSED02 0x02
1101 #define HAMMER2_PFSTYPE_SLAVE 0x03
1102 #define HAMMER2_PFSTYPE_SOFT_SLAVE 0x04
1103 #define HAMMER2_PFSTYPE_SOFT_MASTER 0x05
1104 #define HAMMER2_PFSTYPE_MASTER 0x06
1105 #define HAMMER2_PFSTYPE_UNUSED07 0x07
1106 #define HAMMER2_PFSTYPE_SUPROOT 0x08
1107 #define HAMMER2_PFSTYPE_DUMMY 0x09
1108 #define HAMMER2_PFSTYPE_MAX 16
1109
1110 #define HAMMER2_PFSTRAN_NONE 0x00 /* no transition in progress */
1111 #define HAMMER2_PFSTRAN_CACHE 0x10
1112 #define HAMMER2_PFSTRAN_UNMUSED20 0x20
1113 #define HAMMER2_PFSTRAN_SLAVE 0x30
1114 #define HAMMER2_PFSTRAN_SOFT_SLAVE 0x40
1115 #define HAMMER2_PFSTRAN_SOFT_MASTER 0x50
1116 #define HAMMER2_PFSTRAN_MASTER 0x60
1117 #define HAMMER2_PFSTRAN_UNUSED70 0x70
1118 #define HAMMER2_PFSTRAN_SUPROOT 0x80
1119 #define HAMMER2_PFSTRAN_DUMMY 0x90
1120
1121 #define HAMMER2_PFS_DEC(n) ((n) & 0x0F)
1122 #define HAMMER2_PFS_DEC_TRANSITION(n) (((n) >> 4) & 0x0F)
1123 #define HAMMER2_PFS_ENC_TRANSITION(n) (((n) & 0x0F) << 4)
1124
1125 #define HAMMER2_PFSSUBTYPE_NONE 0
1126 #define HAMMER2_PFSSUBTYPE_SNAPSHOT 1 /* manual/managed snapshot */
1127 #define HAMMER2_PFSSUBTYPE_AUTOSNAP 2 /* automatic snapshot */
1128
1129 /*
1130 * PFS mode of operation is a bitmask. This is typically not stored
1131 * on-media, but defined here because the field may be used in dmsgs.
1132 */
1133 #define HAMMER2_PFSMODE_QUORUM 0x01
1134 #define HAMMER2_PFSMODE_RW 0x02
1135
1136 /*
1137 * Allocation Table
1138 *
1139 */
1140
1141
1142 /*
1143 * Flags (8 bits) - blockref, for freemap only
1144 *
1145 * Note that the minimum chunk size is 1KB so we could theoretically have
1146 * 10 bits here, but we might have some future extension that allows a
1147 * chunk size down to 256 bytes and if so we will need bits 8 and 9.
1148 */
1149 #define HAMMER2_AVF_SELMASK 0x03 /* select group */
1150 #define HAMMER2_AVF_ALL_ALLOC 0x04 /* indicate all allocated */
1151 #define HAMMER2_AVF_ALL_FREE 0x08 /* indicate all free */
1152 #define HAMMER2_AVF_RESERVED10 0x10
1153 #define HAMMER2_AVF_RESERVED20 0x20
1154 #define HAMMER2_AVF_RESERVED40 0x40
1155 #define HAMMER2_AVF_RESERVED80 0x80
1156 #define HAMMER2_AVF_AVMASK32 ((uint32_t)0xFFFFFF00LU)
1157 #define HAMMER2_AVF_AVMASK64 ((uint64_t)0xFFFFFFFFFFFFFF00LLU)
1158
1159 #define HAMMER2_AV_SELECT_A 0x00
1160 #define HAMMER2_AV_SELECT_B 0x01
1161 #define HAMMER2_AV_SELECT_C 0x02
1162 #define HAMMER2_AV_SELECT_D 0x03
1163
1164 /*
1165 * The volume header eats a 64K block. There is currently an issue where
1166 * we want to try to fit all nominal filesystem updates in a 512-byte section
1167 * but it may be a lost cause due to the need for a blockset.
1168 *
1169 * All information is stored in host byte order. The volume header's magic
1170 * number may be checked to determine the byte order. If you wish to mount
1171 * between machines w/ different endian modes you'll need filesystem code
1172 * which acts on the media data consistently (either all one way or all the
1173 * other). Our code currently does not do that.
1174 *
1175 * A read-write mount may have to recover missing allocations by doing an
1176 * incremental mirror scan looking for modifications made after alloc_tid.
1177 * If alloc_tid == last_tid then no recovery operation is needed. Recovery
1178 * operations are usually very, very fast.
1179 *
1180 * Read-only mounts do not need to do any recovery, access to the filesystem
1181 * topology is always consistent after a crash (is always consistent, period).
1182 * However, there may be shortcutted blockref updates present from deep in
1183 * the tree which are stored in the volumeh eader and must be tracked on
1184 * the fly.
1185 *
1186 * NOTE: The copyinfo[] array contains the configuration for both the
1187 * cluster connections and any local media copies. The volume
1188 * header will be replicated for each local media copy.
1189 *
1190 * The mount command may specify multiple medias or just one and
1191 * allow HAMMER2 to pick up the others when it checks the copyinfo[]
1192 * array on mount.
1193 *
1194 * NOTE: root_blockref points to the super-root directory, not the root
1195 * directory. The root directory will be a subdirectory under the
1196 * super-root.
1197 *
1198 * The super-root directory contains all root directories and all
1199 * snapshots (readonly or writable). It is possible to do a
1200 * null-mount of the super-root using special path constructions
1201 * relative to your mounted root.
1202 *
1203 * NOTE: HAMMER2 allows any subdirectory tree to be managed as if it were
1204 * a PFS, including mirroring and storage quota operations, and this is
1205 * prefered over creating discrete PFSs in the super-root. Instead
1206 * the super-root is most typically used to create writable snapshots,
1207 * alternative roots, and so forth. The super-root is also used by
1208 * the automatic snapshotting mechanism.
1209 */
1210 #define HAMMER2_VOLUME_ID_HBO 0x48414d3205172011LLU
1211 #define HAMMER2_VOLUME_ID_ABO 0x11201705324d4148LLU
1212
1213 struct hammer2_volume_data {
1214 /*
1215 * sector #0 - 512 bytes
1216 */
1217 uint64_t magic; /* 0000 Signature */
1218 hammer2_off_t boot_beg; /* 0008 Boot area (future) */
1219 hammer2_off_t boot_end; /* 0010 (size = end - beg) */
1220 hammer2_off_t aux_beg; /* 0018 Aux area (future) */
1221 hammer2_off_t aux_end; /* 0020 (size = end - beg) */
1222 hammer2_off_t volu_size; /* 0028 Volume size, bytes */
1223
1224 uint32_t version; /* 0030 */
1225 uint32_t flags; /* 0034 */
1226 uint8_t copyid; /* 0038 copyid of phys vol */
1227 uint8_t freemap_version; /* 0039 freemap algorithm */
1228 uint8_t peer_type; /* 003A HAMMER2_PEER_xxx */
1229 uint8_t reserved003B; /* 003B */
1230 uint32_t reserved003C; /* 003C */
1231
1232 uuid_t fsid; /* 0040 */
1233 uuid_t fstype; /* 0050 */
1234
1235 /*
1236 * allocator_size is precalculated at newfs time and does not include
1237 * reserved blocks, boot, or redo areas.
1238 *
1239 * Initial non-reserved-area allocations do not use the freemap
1240 * but instead adjust alloc_iterator. Dynamic allocations take
1241 * over starting at (allocator_beg). This makes newfs_hammer2's
1242 * job a lot easier and can also serve as a testing jig.
1243 */
1244 hammer2_off_t allocator_size; /* 0060 Total data space */
1245 hammer2_off_t allocator_free; /* 0068 Free space */
1246 hammer2_off_t allocator_beg; /* 0070 Initial allocations */
1247
1248 /*
1249 * mirror_tid reflects the highest committed change for this
1250 * block device regardless of whether it is to the super-root
1251 * or to a PFS or whatever.
1252 *
1253 * freemap_tid reflects the highest committed freemap change for
1254 * this block device.
1255 */
1256 hammer2_tid_t mirror_tid; /* 0078 committed tid (vol) */
1257 hammer2_tid_t reserved0080; /* 0080 */
1258 hammer2_tid_t reserved0088; /* 0088 */
1259 hammer2_tid_t freemap_tid; /* 0090 committed tid (fmap) */
1260 hammer2_tid_t bulkfree_tid; /* 0098 bulkfree incremental */
1261 hammer2_tid_t reserved00A0[5]; /* 00A0-00C7 */
1262
1263 /*
1264 * Copyids are allocated dynamically from the copyexists bitmap.
1265 * An id from the active copies set (up to 8, see copyinfo later on)
1266 * may still exist after the copy set has been removed from the
1267 * volume header and its bit will remain active in the bitmap and
1268 * cannot be reused until it is 100% removed from the hierarchy.
1269 */
1270 uint32_t copyexists[8]; /* 00C8-00E7 copy exists bmap */
1271 char reserved0140[248]; /* 00E8-01DF */
1272
1273 /*
1274 * 32 bit CRC array at the end of the first 512 byte sector.
1275 *
1276 * icrc_sects[7] - First 512-4 bytes of volume header (including all
1277 * the other icrc's except this one).
1278 *
1279 * icrc_sects[6] - Sector 1 (512 bytes) of volume header, which is
1280 * the blockset for the root.
1281 *
1282 * icrc_sects[5] - Sector 2
1283 * icrc_sects[4] - Sector 3
1284 * icrc_sects[3] - Sector 4 (the freemap blockset)
1285 */
1286 hammer2_crc32_t icrc_sects[8]; /* 01E0-01FF */
1287
1288 /*
1289 * sector #1 - 512 bytes
1290 *
1291 * The entire sector is used by a blockset.
1292 */
1293 hammer2_blockset_t sroot_blockset; /* 0200-03FF Superroot dir */
1294
1295 /*
1296 * sector #2-7
1297 */
1298 char sector2[512]; /* 0400-05FF reserved */
1299 char sector3[512]; /* 0600-07FF reserved */
1300 hammer2_blockset_t freemap_blockset; /* 0800-09FF freemap */
1301 char sector5[512]; /* 0A00-0BFF reserved */
1302 char sector6[512]; /* 0C00-0DFF reserved */
1303 char sector7[512]; /* 0E00-0FFF reserved */
1304
1305 /*
1306 * sector #8-71 - 32768 bytes
1307 *
1308 * Contains the configuration for up to 256 copyinfo targets. These
1309 * specify local and remote copies operating as masters or slaves.
1310 * copyid's 0 and 255 are reserved (0 indicates an empty slot and 255
1311 * indicates the local media).
1312 *
1313 * Each inode contains a set of up to 8 copyids, either inherited
1314 * from its parent or explicitly specified in the inode, which
1315 * indexes into this array.
1316 */
1317 /* 1000-8FFF copyinfo config */
1318 hammer2_volconf_t copyinfo[HAMMER2_COPYID_COUNT];
1319
1320 /*
1321 * Remaining sections are reserved for future use.
1322 */
1323 char reserved0400[0x6FFC]; /* 9000-FFFB reserved */
1324
1325 /*
1326 * icrc on entire volume header
1327 */
1328 hammer2_crc32_t icrc_volheader; /* FFFC-FFFF full volume icrc*/
1329 } __packed;
1330
1331 typedef struct hammer2_volume_data hammer2_volume_data_t;
1332
1333 /*
1334 * Various parts of the volume header have their own iCRCs.
1335 *
1336 * The first 512 bytes has its own iCRC stored at the end of the 512 bytes
1337 * and not included the icrc calculation.
1338 *
1339 * The second 512 bytes also has its own iCRC but it is stored in the first
1340 * 512 bytes so it covers the entire second 512 bytes.
1341 *
1342 * The whole volume block (64KB) has an iCRC covering all but the last 4 bytes,
1343 * which is where the iCRC for the whole volume is stored. This is currently
1344 * a catch-all for anything not individually iCRCd.
1345 */
1346 #define HAMMER2_VOL_ICRC_SECT0 7
1347 #define HAMMER2_VOL_ICRC_SECT1 6
1348
1349 #define HAMMER2_VOLUME_BYTES 65536
1350
1351 #define HAMMER2_VOLUME_ICRC0_OFF 0
1352 #define HAMMER2_VOLUME_ICRC1_OFF 512
1353 #define HAMMER2_VOLUME_ICRCVH_OFF 0
1354
1355 #define HAMMER2_VOLUME_ICRC0_SIZE (512 - 4)
1356 #define HAMMER2_VOLUME_ICRC1_SIZE (512)
1357 #define HAMMER2_VOLUME_ICRCVH_SIZE (65536 - 4)
1358
1359 #define HAMMER2_VOL_VERSION_MIN 1
1360 #define HAMMER2_VOL_VERSION_DEFAULT 1
1361 #define HAMMER2_VOL_VERSION_WIP 2
1362
1363 #define HAMMER2_NUM_VOLHDRS 4
1364
1365 union hammer2_media_data {
1366 hammer2_volume_data_t voldata;
1367 hammer2_inode_data_t ipdata;
1368 hammer2_blockset_t blkset;
1369 hammer2_blockref_t npdata[HAMMER2_IND_COUNT_MAX];
1370 hammer2_bmap_data_t bmdata[HAMMER2_FREEMAP_COUNT];
1371 char buf[HAMMER2_PBUFSIZE];
1372 } __packed;
1373
1374 typedef union hammer2_media_data hammer2_media_data_t;
1375
1376 #endif /* !_VFS_HAMMER2_DISK_H_ */
1377