hammer2_disk.h revision 1.2 1 /* $NetBSD: hammer2_disk.h,v 1.2 2020/09/23 14:39:23 tkusumi Exp $ */
2
3 /*
4 * Copyright (c) 2011-2019 The DragonFly Project. All rights reserved.
5 *
6 * This code is derived from software contributed to The DragonFly Project
7 * by Matthew Dillon <dillon (at) dragonflybsd.org>
8 * by Venkatesh Srinivas <vsrinivas (at) dragonflybsd.org>
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 *
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in
18 * the documentation and/or other materials provided with the
19 * distribution.
20 * 3. Neither the name of The DragonFly Project nor the names of its
21 * contributors may be used to endorse or promote products derived
22 * from this software without specific, prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
28 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
30 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
32 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
33 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
34 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 */
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: hammer2_disk.h,v 1.2 2020/09/23 14:39:23 tkusumi Exp $");
39
40 #ifndef _VFS_HAMMER2_DISK_H_
41 #define _VFS_HAMMER2_DISK_H_
42
43 #ifndef _SYS_UUID_H_
44 #include <sys/uuid.h>
45 #endif
46 #if 0
47 #ifndef _SYS_DMSG_H_
48 #include <sys/dmsg.h>
49 #endif
50 #endif
51
52 /*
53 * The structures below represent the on-disk media structures for the HAMMER2
54 * filesystem. Note that all fields for on-disk structures are naturally
55 * aligned. The host endian format is typically used - compatibility is
56 * possible if the implementation detects reversed endian and adjusts accesses
57 * accordingly.
58 *
59 * HAMMER2 primarily revolves around the directory topology: inodes,
60 * directory entries, and block tables. Block device buffer cache buffers
61 * are always 64KB. Logical file buffers are typically 16KB. All data
62 * references utilize 64-bit byte offsets.
63 *
64 * Free block management is handled independently using blocks reserved by
65 * the media topology.
66 */
67
68 /*
69 * The data at the end of a file or directory may be a fragment in order
70 * to optimize storage efficiency. The minimum fragment size is 1KB.
71 * Since allocations are in powers of 2 fragments must also be sized in
72 * powers of 2 (1024, 2048, ... 65536).
73 *
74 * For the moment the maximum allocation size is HAMMER2_PBUFSIZE (64K),
75 * which is 2^16. Larger extents may be supported in the future. Smaller
76 * fragments might be supported in the future (down to 64 bytes is possible),
77 * but probably will not be.
78 *
79 * A full indirect block use supports 512 x 128-byte blockrefs in a 64KB
80 * buffer. Indirect blocks down to 1KB are supported to keep small
81 * directories small.
82 *
83 * A maximally sized file (2^64-1 bytes) requires ~6 indirect block levels
84 * using 64KB indirect blocks (128 byte refs, 512 or radix 9 per indblk).
85 *
86 * 16(datablk) + 9 + 9 + 9 + 9 + 9 + 9 = ~70.
87 * 16(datablk) + 7 + 9 + 9 + 9 + 9 + 9 = ~68. (smaller top level indblk)
88 *
89 * The actual depth depends on copies redundancy and whether the filesystem
90 * has chosen to use a smaller indirect block size at the top level or not.
91 */
92 #define HAMMER2_ALLOC_MIN 1024 /* minimum allocation size */
93 #define HAMMER2_RADIX_MIN 10 /* minimum allocation size 2^N */
94 #define HAMMER2_ALLOC_MAX 65536 /* maximum allocation size */
95 #define HAMMER2_RADIX_MAX 16 /* maximum allocation size 2^N */
96 #define HAMMER2_RADIX_KEY 64 /* number of bits in key */
97
98 /*
99 * HAMMER2_LBUFSIZE - Nominal buffer size for I/O rollups.
100 *
101 * HAMMER2_PBUFSIZE - Topological block size used by files for all
102 * blocks except the block straddling EOF.
103 *
104 * HAMMER2_SEGSIZE - Allocation map segment size, typically 4MB
105 * (space represented by a level0 bitmap).
106 */
107
108 #define HAMMER2_SEGSIZE (1 << HAMMER2_FREEMAP_LEVEL0_RADIX)
109 #define HAMMER2_SEGRADIX HAMMER2_FREEMAP_LEVEL0_RADIX
110
111 #define HAMMER2_PBUFRADIX 16 /* physical buf (1<<16) bytes */
112 #define HAMMER2_PBUFSIZE 65536
113 #define HAMMER2_LBUFRADIX 14 /* logical buf (1<<14) bytes */
114 #define HAMMER2_LBUFSIZE 16384
115
116 #define HAMMER2_IND_BYTES_MIN 4096
117 #define HAMMER2_IND_BYTES_NOM HAMMER2_LBUFSIZE
118 #define HAMMER2_IND_BYTES_MAX HAMMER2_PBUFSIZE
119 #define HAMMER2_IND_RADIX_MIN 12
120 #define HAMMER2_IND_RADIX_NOM HAMMER2_LBUFRADIX
121 #define HAMMER2_IND_RADIX_MAX HAMMER2_PBUFRADIX
122 #define HAMMER2_IND_COUNT_MIN (HAMMER2_IND_BYTES_MIN / \
123 sizeof(hammer2_blockref_t))
124 #define HAMMER2_IND_COUNT_MAX (HAMMER2_IND_BYTES_MAX / \
125 sizeof(hammer2_blockref_t))
126
127 /*
128 * In HAMMER2, arrays of blockrefs are fully set-associative, meaning that
129 * any element can occur at any index and holes can be anywhere. As a
130 * future optimization we will be able to flag that such arrays are sorted
131 * and thus optimize lookups, but for now we don't.
132 *
133 * Inodes embed either 512 bytes of direct data or an array of 4 blockrefs,
134 * resulting in highly efficient storage for files <= 512 bytes and for files
135 * <= 512KB. Up to 4 directory entries can be referenced from a directory
136 * without requiring an indirect block.
137 */
138 #define HAMMER2_SET_RADIX 2 /* radix 2 = 4 entries */
139 #define HAMMER2_SET_COUNT (1 << HAMMER2_SET_RADIX)
140 #define HAMMER2_EMBEDDED_BYTES 512 /* inode blockset/dd size */
141 #define HAMMER2_EMBEDDED_RADIX 9
142
143 #define HAMMER2_PBUFMASK (HAMMER2_PBUFSIZE - 1)
144 #define HAMMER2_LBUFMASK (HAMMER2_LBUFSIZE - 1)
145 #define HAMMER2_SEGMASK (HAMMER2_SEGSIZE - 1)
146
147 #define HAMMER2_LBUFMASK64 ((hammer2_off_t)HAMMER2_LBUFMASK)
148 #define HAMMER2_PBUFSIZE64 ((hammer2_off_t)HAMMER2_PBUFSIZE)
149 #define HAMMER2_PBUFMASK64 ((hammer2_off_t)HAMMER2_PBUFMASK)
150 #define HAMMER2_SEGSIZE64 ((hammer2_off_t)HAMMER2_SEGSIZE)
151 #define HAMMER2_SEGMASK64 ((hammer2_off_t)HAMMER2_SEGMASK)
152
153 #define HAMMER2_UUID_STRING "5cbb9ad1-862d-11dc-a94d-01301bb8a9f5"
154
155 /*
156 * A 4MB segment is reserved at the beginning of each 1GB. This segment
157 * contains the volume header (or backup volume header), the free block
158 * table, and possibly other information in the future.
159 *
160 * 4MB = 64 x 64K blocks. Each 4MB segment is broken down as follows:
161 *
162 * ==========
163 * 0 volume header (for the first four 2GB zones)
164 * 1 freemap00 level1 FREEMAP_LEAF (256 x 128B bitmap data per 1GB)
165 * 2 level2 FREEMAP_NODE (256 x 128B indirect block per 256GB)
166 * 3 level3 FREEMAP_NODE (256 x 128B indirect block per 64TB)
167 * 4 level4 FREEMAP_NODE (256 x 128B indirect block per 16PB)
168 * 5 level5 FREEMAP_NODE (256 x 128B indirect block per 4EB)
169 * 6 freemap01 level1 (rotation)
170 * 7 level2
171 * 8 level3
172 * 9 level4
173 * 10 level5
174 * 11 freemap02 level1 (rotation)
175 * 12 level2
176 * 13 level3
177 * 14 level4
178 * 15 level5
179 * 16 freemap03 level1 (rotation)
180 * 17 level2
181 * 18 level3
182 * 19 level4
183 * 20 level5
184 * 21 freemap04 level1 (rotation)
185 * 22 level2
186 * 23 level3
187 * 24 level4
188 * 25 level5
189 * 26 freemap05 level1 (rotation)
190 * 27 level2
191 * 28 level3
192 * 29 level4
193 * 30 level5
194 * 31 freemap06 level1 (rotation)
195 * 32 level2
196 * 33 level3
197 * 34 level4
198 * 35 level5
199 * 36 freemap07 level1 (rotation)
200 * 37 level2
201 * 38 level3
202 * 39 level4
203 * 40 level5
204 * 41 unused
205 * .. unused
206 * 63 unused
207 * ==========
208 *
209 * The first four 2GB zones contain volume headers and volume header backups.
210 * After that the volume header block# is reserved for future use. Similarly,
211 * there are many blocks related to various Freemap levels which are not
212 * used in every segment and those are also reserved for future use.
213 * Note that each FREEMAP_LEAF or FREEMAP_NODE uses 32KB out of 64KB slot.
214 *
215 * Freemap (see the FREEMAP document)
216 *
217 * The freemap utilizes blocks #1-40 in 8 sets of 5 blocks. Each block in
218 * a set represents a level of depth in the freemap topology. Eight sets
219 * exist to prevent live updates from disturbing the state of the freemap
220 * were a crash/reboot to occur. That is, a live update is not committed
221 * until the update's flush reaches the volume root. There are FOUR volume
222 * roots representing the last four synchronization points, so the freemap
223 * must be consistent no matter which volume root is chosen by the mount
224 * code.
225 *
226 * Each freemap set is 5 x 64K blocks and represents the 1GB, 256GB, 64TB,
227 * 16PB and 4EB indirect map. The volume header itself has a set of 4 freemap
228 * blockrefs representing another 2 bits, giving us a total 64 bits of
229 * representable address space.
230 *
231 * The Level 0 64KB block represents 1GB of storage represented by 32KB
232 * (256 x struct hammer2_bmap_data). Each structure represents 4MB of storage
233 * and has a 512 bit bitmap, using 2 bits to represent a 16KB chunk of
234 * storage. These 2 bits represent the following states:
235 *
236 * 00 Free
237 * 01 (reserved) (Possibly partially allocated)
238 * 10 Possibly free
239 * 11 Allocated
240 *
241 * One important thing to note here is that the freemap resolution is 16KB,
242 * but the minimum storage allocation size is 1KB. The hammer2 vfs keeps
243 * track of sub-allocations in memory, which means that on a unmount or reboot
244 * the entire 16KB of a partially allocated block will be considered fully
245 * allocated. It is possible for fragmentation to build up over time, but
246 * defragmentation is fairly easy to accomplish since all modifications
247 * allocate a new block.
248 *
249 * The Second thing to note is that due to the way snapshots and inode
250 * replication works, deleting a file cannot immediately free the related
251 * space. Furthermore, deletions often do not bother to traverse the
252 * block subhierarchy being deleted. And to go even further, whole
253 * sub-directory trees can be deleted simply by deleting the directory inode
254 * at the top. So even though we have a symbol to represent a 'possibly free'
255 * block (binary 10), only the bulk free scanning code can actually use it.
256 * Normal 'rm's or other deletions do not.
257 *
258 * WARNING! ZONE_SEG and VOLUME_ALIGN must be a multiple of 1<<LEVEL0_RADIX
259 * (i.e. a multiple of 4MB). VOLUME_ALIGN must be >= ZONE_SEG.
260 *
261 * In Summary:
262 *
263 * (1) Modifications to freemap blocks 'allocate' a new copy (aka use a block
264 * from the next set). The new copy is reused until a flush occurs at
265 * which point the next modification will then rotate to the next set.
266 */
267 #define HAMMER2_VOLUME_ALIGN (8 * 1024 * 1024)
268 #define HAMMER2_VOLUME_ALIGN64 ((hammer2_off_t)HAMMER2_VOLUME_ALIGN)
269 #define HAMMER2_VOLUME_ALIGNMASK (HAMMER2_VOLUME_ALIGN - 1)
270 #define HAMMER2_VOLUME_ALIGNMASK64 ((hammer2_off_t)HAMMER2_VOLUME_ALIGNMASK)
271
272 #define HAMMER2_NEWFS_ALIGN (HAMMER2_VOLUME_ALIGN)
273 #define HAMMER2_NEWFS_ALIGN64 ((hammer2_off_t)HAMMER2_VOLUME_ALIGN)
274 #define HAMMER2_NEWFS_ALIGNMASK (HAMMER2_VOLUME_ALIGN - 1)
275 #define HAMMER2_NEWFS_ALIGNMASK64 ((hammer2_off_t)HAMMER2_NEWFS_ALIGNMASK)
276
277 #define HAMMER2_ZONE_BYTES64 (2LLU * 1024 * 1024 * 1024)
278 #define HAMMER2_ZONE_MASK64 (HAMMER2_ZONE_BYTES64 - 1)
279 #define HAMMER2_ZONE_SEG (4 * 1024 * 1024)
280 #define HAMMER2_ZONE_SEG64 ((hammer2_off_t)HAMMER2_ZONE_SEG)
281 #define HAMMER2_ZONE_BLOCKS_SEG (HAMMER2_ZONE_SEG / HAMMER2_PBUFSIZE)
282
283 #define HAMMER2_ZONE_FREEMAP_INC 5 /* 5 deep */
284
285 #define HAMMER2_ZONE_VOLHDR 0 /* volume header or backup */
286 #define HAMMER2_ZONE_FREEMAP_00 1 /* normal freemap rotation */
287 #define HAMMER2_ZONE_FREEMAP_01 6 /* normal freemap rotation */
288 #define HAMMER2_ZONE_FREEMAP_02 11 /* normal freemap rotation */
289 #define HAMMER2_ZONE_FREEMAP_03 16 /* normal freemap rotation */
290 #define HAMMER2_ZONE_FREEMAP_04 21 /* normal freemap rotation */
291 #define HAMMER2_ZONE_FREEMAP_05 26 /* normal freemap rotation */
292 #define HAMMER2_ZONE_FREEMAP_06 31 /* normal freemap rotation */
293 #define HAMMER2_ZONE_FREEMAP_07 36 /* normal freemap rotation */
294 #define HAMMER2_ZONE_FREEMAP_END 41 /* (non-inclusive) */
295
296 #define HAMMER2_ZONE_UNUSED41 41
297 #define HAMMER2_ZONE_UNUSED42 42
298 #define HAMMER2_ZONE_UNUSED43 43
299 #define HAMMER2_ZONE_UNUSED44 44
300 #define HAMMER2_ZONE_UNUSED45 45
301 #define HAMMER2_ZONE_UNUSED46 46
302 #define HAMMER2_ZONE_UNUSED47 47
303 #define HAMMER2_ZONE_UNUSED48 48
304 #define HAMMER2_ZONE_UNUSED49 49
305 #define HAMMER2_ZONE_UNUSED50 50
306 #define HAMMER2_ZONE_UNUSED51 51
307 #define HAMMER2_ZONE_UNUSED52 52
308 #define HAMMER2_ZONE_UNUSED53 53
309 #define HAMMER2_ZONE_UNUSED54 54
310 #define HAMMER2_ZONE_UNUSED55 55
311 #define HAMMER2_ZONE_UNUSED56 56
312 #define HAMMER2_ZONE_UNUSED57 57
313 #define HAMMER2_ZONE_UNUSED58 58
314 #define HAMMER2_ZONE_UNUSED59 59
315 #define HAMMER2_ZONE_UNUSED60 60
316 #define HAMMER2_ZONE_UNUSED61 61
317 #define HAMMER2_ZONE_UNUSED62 62
318 #define HAMMER2_ZONE_UNUSED63 63
319 #define HAMMER2_ZONE_END 64 /* non-inclusive */
320
321 #define HAMMER2_NFREEMAPS 8 /* FREEMAP_00 - FREEMAP_07 */
322
323 /* relative to FREEMAP_x */
324 #define HAMMER2_ZONEFM_LEVEL1 0 /* 1GB leafmap */
325 #define HAMMER2_ZONEFM_LEVEL2 1 /* 256GB indmap */
326 #define HAMMER2_ZONEFM_LEVEL3 2 /* 64TB indmap */
327 #define HAMMER2_ZONEFM_LEVEL4 3 /* 16PB indmap */
328 #define HAMMER2_ZONEFM_LEVEL5 4 /* 4EB indmap */
329 /* LEVEL6 is a set of 4 blockrefs in the volume header 16EB */
330
331 /*
332 * Freemap radix. Assumes a set-count of 4, 128-byte blockrefs,
333 * 32KB indirect block for freemap (LEVELN_PSIZE below).
334 *
335 * Leaf entry represents 4MB of storage broken down into a 512-bit
336 * bitmap, 2-bits per entry. So course bitmap item represents 16KB.
337 */
338 #if HAMMER2_SET_COUNT != 4
339 #error "hammer2_disk.h - freemap assumes SET_COUNT is 4"
340 #endif
341 #define HAMMER2_FREEMAP_LEVEL6_RADIX 64 /* 16EB (end) */
342 #define HAMMER2_FREEMAP_LEVEL5_RADIX 62 /* 4EB */
343 #define HAMMER2_FREEMAP_LEVEL4_RADIX 54 /* 16PB */
344 #define HAMMER2_FREEMAP_LEVEL3_RADIX 46 /* 64TB */
345 #define HAMMER2_FREEMAP_LEVEL2_RADIX 38 /* 256GB */
346 #define HAMMER2_FREEMAP_LEVEL1_RADIX 30 /* 1GB */
347 #define HAMMER2_FREEMAP_LEVEL0_RADIX 22 /* 4MB (128by in l-1 leaf) */
348
349 #define HAMMER2_FREEMAP_LEVELN_PSIZE 32768 /* physical bytes */
350
351 #define HAMMER2_FREEMAP_LEVEL5_SIZE ((hammer2_off_t)1 << \
352 HAMMER2_FREEMAP_LEVEL5_RADIX)
353 #define HAMMER2_FREEMAP_LEVEL4_SIZE ((hammer2_off_t)1 << \
354 HAMMER2_FREEMAP_LEVEL4_RADIX)
355 #define HAMMER2_FREEMAP_LEVEL3_SIZE ((hammer2_off_t)1 << \
356 HAMMER2_FREEMAP_LEVEL3_RADIX)
357 #define HAMMER2_FREEMAP_LEVEL2_SIZE ((hammer2_off_t)1 << \
358 HAMMER2_FREEMAP_LEVEL2_RADIX)
359 #define HAMMER2_FREEMAP_LEVEL1_SIZE ((hammer2_off_t)1 << \
360 HAMMER2_FREEMAP_LEVEL1_RADIX)
361 #define HAMMER2_FREEMAP_LEVEL0_SIZE ((hammer2_off_t)1 << \
362 HAMMER2_FREEMAP_LEVEL0_RADIX)
363
364 #define HAMMER2_FREEMAP_LEVEL5_MASK (HAMMER2_FREEMAP_LEVEL5_SIZE - 1)
365 #define HAMMER2_FREEMAP_LEVEL4_MASK (HAMMER2_FREEMAP_LEVEL4_SIZE - 1)
366 #define HAMMER2_FREEMAP_LEVEL3_MASK (HAMMER2_FREEMAP_LEVEL3_SIZE - 1)
367 #define HAMMER2_FREEMAP_LEVEL2_MASK (HAMMER2_FREEMAP_LEVEL2_SIZE - 1)
368 #define HAMMER2_FREEMAP_LEVEL1_MASK (HAMMER2_FREEMAP_LEVEL1_SIZE - 1)
369 #define HAMMER2_FREEMAP_LEVEL0_MASK (HAMMER2_FREEMAP_LEVEL0_SIZE - 1)
370
371 #define HAMMER2_FREEMAP_COUNT (int)(HAMMER2_FREEMAP_LEVELN_PSIZE / \
372 sizeof(hammer2_bmap_data_t))
373
374 /*
375 * XXX I made a mistake and made the reserved area begin at each LEVEL1 zone,
376 * which is on a 1GB demark. This will eat a little more space but for
377 * now we retain compatibility and make FMZONEBASE every 1GB
378 */
379 #define H2FMZONEBASE(key) ((key) & ~HAMMER2_FREEMAP_LEVEL1_MASK)
380 #define H2FMBASE(key, radix) rounddown2(key, (hammer2_off_t)1 << (radix))
381
382 /*
383 * 16KB bitmap granularity (x2 bits per entry).
384 */
385 #define HAMMER2_FREEMAP_BLOCK_RADIX 14
386 #define HAMMER2_FREEMAP_BLOCK_SIZE (1 << HAMMER2_FREEMAP_BLOCK_RADIX)
387 #define HAMMER2_FREEMAP_BLOCK_MASK (HAMMER2_FREEMAP_BLOCK_SIZE - 1)
388
389 /*
390 * bitmap[] structure. 2 bits per HAMMER2_FREEMAP_BLOCK_SIZE.
391 *
392 * 8 x 64-bit elements, 2 bits per block.
393 * 32 blocks (radix 5) per element.
394 * representing INDEX_SIZE bytes worth of storage per element.
395 */
396
397 typedef uint64_t hammer2_bitmap_t;
398
399 #define HAMMER2_BMAP_ALLONES ((hammer2_bitmap_t)-1)
400 #define HAMMER2_BMAP_ELEMENTS 8
401 #define HAMMER2_BMAP_BITS_PER_ELEMENT 64
402 #define HAMMER2_BMAP_INDEX_RADIX 5 /* 32 blocks per element */
403 #define HAMMER2_BMAP_BLOCKS_PER_ELEMENT (1 << HAMMER2_BMAP_INDEX_RADIX)
404
405 #define HAMMER2_BMAP_INDEX_SIZE (HAMMER2_FREEMAP_BLOCK_SIZE * \
406 HAMMER2_BMAP_BLOCKS_PER_ELEMENT)
407 #define HAMMER2_BMAP_INDEX_MASK (HAMMER2_BMAP_INDEX_SIZE - 1)
408
409 #define HAMMER2_BMAP_SIZE (HAMMER2_BMAP_INDEX_SIZE * \
410 HAMMER2_BMAP_ELEMENTS)
411 #define HAMMER2_BMAP_MASK (HAMMER2_BMAP_SIZE - 1)
412
413 /*
414 * Two linear areas can be reserved after the initial 4MB segment in the base
415 * zone (the one starting at offset 0). These areas are NOT managed by the
416 * block allocator and do not fall under HAMMER2 crc checking rules based
417 * at the volume header (but can be self-CRCd internally, depending).
418 */
419 #define HAMMER2_BOOT_MIN_BYTES HAMMER2_VOLUME_ALIGN
420 #define HAMMER2_BOOT_NOM_BYTES (64*1024*1024)
421 #define HAMMER2_BOOT_MAX_BYTES (256*1024*1024)
422
423 #define HAMMER2_AUX_MIN_BYTES HAMMER2_VOLUME_ALIGN
424 #define HAMMER2_AUX_NOM_BYTES (256*1024*1024)
425 #define HAMMER2_AUX_MAX_BYTES (1024*1024*1024)
426
427 /*
428 * Most HAMMER2 types are implemented as unsigned 64-bit integers.
429 * Transaction ids are monotonic.
430 *
431 * We utilize 32-bit iSCSI CRCs.
432 */
433 typedef uint64_t hammer2_tid_t;
434 typedef uint64_t hammer2_off_t;
435 typedef uint64_t hammer2_key_t;
436 typedef uint32_t hammer2_crc32_t;
437
438 /*
439 * Miscellanious ranges (all are unsigned).
440 */
441 #define HAMMER2_TID_MIN 1ULL
442 #define HAMMER2_TID_MAX 0xFFFFFFFFFFFFFFFFULL
443 #define HAMMER2_KEY_MIN 0ULL
444 #define HAMMER2_KEY_MAX 0xFFFFFFFFFFFFFFFFULL
445 #define HAMMER2_OFFSET_MIN 0ULL
446 #define HAMMER2_OFFSET_MAX 0xFFFFFFFFFFFFFFFFULL
447
448 /*
449 * HAMMER2 data offset special cases and masking.
450 *
451 * All HAMMER2 data offsets have to be broken down into a 64K buffer base
452 * offset (HAMMER2_OFF_MASK_HI) and a 64K buffer index (HAMMER2_OFF_MASK_LO).
453 *
454 * Indexes into physical buffers are always 64-byte aligned. The low 6 bits
455 * of the data offset field specifies how large the data chunk being pointed
456 * to as a power of 2. The theoretical minimum radix is thus 6 (The space
457 * needed in the low bits of the data offset field). However, the practical
458 * minimum allocation chunk size is 1KB (a radix of 10), so HAMMER2 sets
459 * HAMMER2_RADIX_MIN to 10. The maximum radix is currently 16 (64KB), but
460 * we fully intend to support larger extents in the future.
461 *
462 * WARNING! A radix of 0 (such as when data_off is all 0's) is a special
463 * case which means no data associated with the blockref, and
464 * not the '1 byte' it would otherwise calculate to.
465 */
466 #define HAMMER2_OFF_MASK 0xFFFFFFFFFFFFFFC0ULL
467 #define HAMMER2_OFF_MASK_LO (HAMMER2_OFF_MASK & HAMMER2_PBUFMASK64)
468 #define HAMMER2_OFF_MASK_HI (~HAMMER2_PBUFMASK64)
469 #define HAMMER2_OFF_MASK_RADIX 0x000000000000003FULL
470
471 /*
472 * HAMMER2 directory support and pre-defined keys
473 */
474 #define HAMMER2_DIRHASH_VISIBLE 0x8000000000000000ULL
475 #define HAMMER2_DIRHASH_USERMSK 0x7FFFFFFFFFFFFFFFULL
476 #define HAMMER2_DIRHASH_LOMASK 0x0000000000007FFFULL
477 #define HAMMER2_DIRHASH_HIMASK 0xFFFFFFFFFFFF0000ULL
478 #define HAMMER2_DIRHASH_FORCED 0x0000000000008000ULL /* bit forced on */
479
480 #define HAMMER2_SROOT_KEY 0x0000000000000000ULL /* volume to sroot */
481 #define HAMMER2_BOOT_KEY 0xd9b36ce135528000ULL /* sroot to BOOT PFS */
482
483 /************************************************************************
484 * DMSG SUPPORT *
485 ************************************************************************
486 * LNK_VOLCONF
487 *
488 * All HAMMER2 directories directly under the super-root on your local
489 * media can be mounted separately, even if they share the same physical
490 * device.
491 *
492 * When you do a HAMMER2 mount you are effectively tying into a HAMMER2
493 * cluster via local media. The local media does not have to participate
494 * in the cluster, other than to provide the hammer2_volconf[] array and
495 * root inode for the mount.
496 *
497 * This is important: The mount device path you specify serves to bootstrap
498 * your entry into the cluster, but your mount will make active connections
499 * to ALL copy elements in the hammer2_volconf[] array which match the
500 * PFSID of the directory in the super-root that you specified. The local
501 * media path does not have to be mentioned in this array but becomes part
502 * of the cluster based on its type and access rights. ALL ELEMENTS ARE
503 * TREATED ACCORDING TO TYPE NO MATTER WHICH ONE YOU MOUNT FROM.
504 *
505 * The actual cluster may be far larger than the elements you list in the
506 * hammer2_volconf[] array. You list only the elements you wish to
507 * directly connect to and you are able to access the rest of the cluster
508 * indirectly through those connections.
509 *
510 * WARNING! This structure must be exactly 128 bytes long for its config
511 * array to fit in the volume header.
512 */
513 struct hammer2_volconf {
514 uint8_t copyid; /* 00 copyid 0-255 (must match slot) */
515 uint8_t inprog; /* 01 operation in progress, or 0 */
516 uint8_t chain_to; /* 02 operation chaining to, or 0 */
517 uint8_t chain_from; /* 03 operation chaining from, or 0 */
518 uint16_t flags; /* 04-05 flags field */
519 uint8_t error; /* 06 last operational error */
520 uint8_t priority; /* 07 priority and round-robin flag */
521 uint8_t remote_pfs_type;/* 08 probed direct remote PFS type */
522 uint8_t reserved08[23]; /* 09-1F */
523 uuid_t pfs_clid; /* 20-2F copy target must match this uuid */
524 uint8_t label[16]; /* 30-3F import/export label */
525 uint8_t path[64]; /* 40-7F target specification string or key */
526 } __packed;
527
528 typedef struct hammer2_volconf hammer2_volconf_t;
529
530 #define DMSG_VOLF_ENABLED 0x0001
531 #define DMSG_VOLF_INPROG 0x0002
532 #define DMSG_VOLF_CONN_RR 0x80 /* round-robin at same priority */
533 #define DMSG_VOLF_CONN_EF 0x40 /* media errors flagged */
534 #define DMSG_VOLF_CONN_PRI 0x0F /* select priority 0-15 (15=best) */
535
536 #if 0
537 struct dmsg_lnk_hammer2_volconf {
538 dmsg_hdr_t head;
539 hammer2_volconf_t copy; /* copy spec */
540 int32_t index;
541 int32_t unused01;
542 uuid_t mediaid;
543 int64_t reserved02[32];
544 } __packed;
545 #endif
546
547 typedef struct dmsg_lnk_hammer2_volconf dmsg_lnk_hammer2_volconf_t;
548
549 #define DMSG_LNK_HAMMER2_VOLCONF DMSG_LNK(DMSG_LNK_CMD_HAMMER2_VOLCONF, \
550 dmsg_lnk_hammer2_volconf)
551
552 #define H2_LNK_VOLCONF(msg) ((dmsg_lnk_hammer2_volconf_t *)(msg)->any.buf)
553
554 /*
555 * HAMMER2 directory entry header (embedded in blockref) exactly 16 bytes
556 */
557 struct hammer2_dirent_head {
558 hammer2_tid_t inum; /* inode number */
559 uint16_t namlen; /* name length */
560 uint8_t type; /* OBJTYPE_* */
561 uint8_t unused0B;
562 uint8_t unused0C[4];
563 } __packed;
564
565 typedef struct hammer2_dirent_head hammer2_dirent_head_t;
566
567 /*
568 * The media block reference structure. This forms the core of the HAMMER2
569 * media topology recursion. This 128-byte data structure is embedded in the
570 * volume header, in inodes (which are also directory entries), and in
571 * indirect blocks.
572 *
573 * A blockref references a single media item, which typically can be a
574 * directory entry (aka inode), indirect block, or data block.
575 *
576 * The primary feature a blockref represents is the ability to validate
577 * the entire tree underneath it via its check code. Any modification to
578 * anything propagates up the blockref tree all the way to the root, replacing
579 * the related blocks and compounding the generated check code.
580 *
581 * The check code can be a simple 32-bit iscsi code, a 64-bit crc, or as
582 * complex as a 512 bit cryptographic hash. I originally used a 64-byte
583 * blockref but later expanded it to 128 bytes to be able to support the
584 * larger check code as well as to embed statistics for quota operation.
585 *
586 * Simple check codes are not sufficient for unverified dedup. Even with
587 * a maximally-sized check code unverified dedup should only be used in
588 * in subdirectory trees where you do not need 100% data integrity.
589 *
590 * Unverified dedup is deduping based on meta-data only without verifying
591 * that the data blocks are actually identical. Verified dedup guarantees
592 * integrity but is a far more I/O-expensive operation.
593 *
594 * --
595 *
596 * mirror_tid - per cluster node modified (propagated upward by flush)
597 * modify_tid - clc record modified (not propagated).
598 * update_tid - clc record updated (propagated upward on verification)
599 *
600 * CLC - Stands for 'Cluster Level Change', identifiers which are identical
601 * within the topology across all cluster nodes (when fully
602 * synchronized).
603 *
604 * NOTE: The range of keys represented by the blockref is (key) to
605 * ((key) + (1LL << keybits) - 1). HAMMER2 usually populates
606 * blocks bottom-up, inserting a new root when radix expansion
607 * is required.
608 *
609 * leaf_count - Helps manage leaf collapse calculations when indirect
610 * blocks become mostly empty. This value caps out at
611 * HAMMER2_BLOCKREF_LEAF_MAX (65535).
612 *
613 * Used by the chain code to determine when to pull leafs up
614 * from nearly empty indirect blocks. For the purposes of this
615 * calculation, BREF_TYPE_INODE is considered a leaf, along
616 * with DIRENT and DATA.
617 *
618 * RESERVED FIELDS
619 *
620 * A number of blockref fields are reserved and should generally be set to
621 * 0 for future compatibility.
622 *
623 * FUTURE BLOCKREF EXPANSION
624 *
625 * CONTENT ADDRESSABLE INDEXING (future) - Using a 256 or 512-bit check code.
626 */
627 struct hammer2_blockref { /* MUST BE EXACTLY 64 BYTES */
628 uint8_t type; /* type of underlying item */
629 uint8_t methods; /* check method & compression method */
630 uint8_t copyid; /* specify which copy this is */
631 uint8_t keybits; /* #of keybits masked off 0=leaf */
632 uint8_t vradix; /* virtual data/meta-data size */
633 uint8_t flags; /* blockref flags */
634 uint16_t leaf_count; /* leaf aggregation count */
635 hammer2_key_t key; /* key specification */
636 hammer2_tid_t mirror_tid; /* media flush topology & freemap */
637 hammer2_tid_t modify_tid; /* clc modify (not propagated) */
638 hammer2_off_t data_off; /* low 6 bits is phys size (radix)*/
639 hammer2_tid_t update_tid; /* clc modify (propagated upward) */
640 union {
641 char buf[16];
642
643 /*
644 * Directory entry header (BREF_TYPE_DIRENT)
645 *
646 * NOTE: check.buf contains filename if <= 64 bytes. Longer
647 * filenames are stored in a data reference of size
648 * HAMMER2_ALLOC_MIN (at least 256, typically 1024).
649 *
650 * NOTE: inode structure may contain a copy of a recently
651 * associated filename, for recovery purposes.
652 *
653 * NOTE: Superroot entries are INODEs, not DIRENTs. Code
654 * allows both cases.
655 */
656 hammer2_dirent_head_t dirent;
657
658 /*
659 * Statistics aggregation (BREF_TYPE_INODE, BREF_TYPE_INDIRECT)
660 */
661 struct {
662 hammer2_key_t data_count;
663 hammer2_key_t inode_count;
664 } stats;
665 } embed;
666 union { /* check info */
667 char buf[64];
668 struct {
669 uint32_t value;
670 uint32_t reserved[15];
671 } iscsi32;
672 struct {
673 uint64_t value;
674 uint64_t reserved[7];
675 } xxhash64;
676 struct {
677 char data[24];
678 char reserved[40];
679 } sha192;
680 struct {
681 char data[32];
682 char reserved[32];
683 } sha256;
684 struct {
685 char data[64];
686 } sha512;
687
688 /*
689 * Freemap hints are embedded in addition to the icrc32.
690 *
691 * bigmask - Radixes available for allocation (0-31).
692 * Heuristical (may be permissive but not
693 * restrictive). Typically only radix values
694 * 10-16 are used (i.e. (1<<10) through (1<<16)).
695 *
696 * avail - Total available space remaining, in bytes
697 */
698 struct {
699 uint32_t icrc32;
700 uint32_t bigmask; /* available radixes */
701 uint64_t avail; /* total available bytes */
702 char reserved[48];
703 } freemap;
704 } check;
705 } __packed;
706
707 typedef struct hammer2_blockref hammer2_blockref_t;
708
709 #define HAMMER2_BLOCKREF_BYTES 128 /* blockref struct in bytes */
710 #define HAMMER2_BLOCKREF_RADIX 7
711
712 #define HAMMER2_BLOCKREF_LEAF_MAX 65535
713
714 /*
715 * On-media and off-media blockref types.
716 *
717 * types >= 128 are pseudo values that should never be present on-media.
718 */
719 #define HAMMER2_BREF_TYPE_EMPTY 0
720 #define HAMMER2_BREF_TYPE_INODE 1
721 #define HAMMER2_BREF_TYPE_INDIRECT 2
722 #define HAMMER2_BREF_TYPE_DATA 3
723 #define HAMMER2_BREF_TYPE_DIRENT 4
724 #define HAMMER2_BREF_TYPE_FREEMAP_NODE 5
725 #define HAMMER2_BREF_TYPE_FREEMAP_LEAF 6
726 #define HAMMER2_BREF_TYPE_FREEMAP 254 /* pseudo-type */
727 #define HAMMER2_BREF_TYPE_VOLUME 255 /* pseudo-type */
728
729 #define HAMMER2_BREF_FLAG_PFSROOT 0x01 /* see also related opflag */
730 #define HAMMER2_BREF_FLAG_ZERO 0x02 /* NO LONGER USED */
731 #define HAMMER2_BREF_FLAG_EMERG_MIP 0x04 /* emerg modified-in-place */
732
733 /*
734 * Encode/decode check mode and compression mode for
735 * bref.methods. The compression level is not encoded in
736 * bref.methods.
737 */
738 #define HAMMER2_ENC_CHECK(n) (((n) & 15) << 4)
739 #define HAMMER2_DEC_CHECK(n) (((n) >> 4) & 15)
740 #define HAMMER2_ENC_COMP(n) ((n) & 15)
741 #define HAMMER2_DEC_COMP(n) ((n) & 15)
742
743 #define HAMMER2_CHECK_NONE 0
744 #define HAMMER2_CHECK_DISABLED 1
745 #define HAMMER2_CHECK_ISCSI32 2
746 #define HAMMER2_CHECK_XXHASH64 3
747 #define HAMMER2_CHECK_SHA192 4
748 #define HAMMER2_CHECK_FREEMAP 5
749
750 #define HAMMER2_CHECK_DEFAULT HAMMER2_CHECK_XXHASH64
751
752 /* user-specifiable check modes only */
753 #define HAMMER2_CHECK_STRINGS { "none", "disabled", "crc32", \
754 "xxhash64", "sha192" }
755 #define HAMMER2_CHECK_STRINGS_COUNT 5
756
757 /*
758 * Encode/decode check or compression algorithm request in
759 * ipdata->meta.check_algo and ipdata->meta.comp_algo.
760 */
761 #define HAMMER2_ENC_ALGO(n) (n)
762 #define HAMMER2_DEC_ALGO(n) ((n) & 15)
763 #define HAMMER2_ENC_LEVEL(n) ((n) << 4)
764 #define HAMMER2_DEC_LEVEL(n) (((n) >> 4) & 15)
765
766 #define HAMMER2_COMP_NONE 0
767 #define HAMMER2_COMP_AUTOZERO 1
768 #define HAMMER2_COMP_LZ4 2
769 #define HAMMER2_COMP_ZLIB 3
770
771 #define HAMMER2_COMP_NEWFS_DEFAULT HAMMER2_COMP_LZ4
772 #define HAMMER2_COMP_STRINGS { "none", "autozero", "lz4", "zlib" }
773 #define HAMMER2_COMP_STRINGS_COUNT 4
774
775 /*
776 * Passed to hammer2_chain_create(), causes methods to be inherited from
777 * parent.
778 */
779 #define HAMMER2_METH_DEFAULT -1
780
781 /*
782 * HAMMER2 block references are collected into sets of 4 blockrefs. These
783 * sets are fully associative, meaning the elements making up a set are
784 * not sorted in any way and may contain duplicate entries, holes, or
785 * entries which shortcut multiple levels of indirection. Sets are used
786 * in various ways:
787 *
788 * (1) When redundancy is desired a set may contain several duplicate
789 * entries pointing to different copies of the same data. Up to 4 copies
790 * are supported.
791 *
792 * (2) The blockrefs in a set can shortcut multiple levels of indirections
793 * within the bounds imposed by the parent of set.
794 *
795 * When a set fills up another level of indirection is inserted, moving
796 * some or all of the set's contents into indirect blocks placed under the
797 * set. This is a top-down approach in that indirect blocks are not created
798 * until the set actually becomes full (that is, the entries in the set can
799 * shortcut the indirect blocks when the set is not full). Depending on how
800 * things are filled multiple indirect blocks will eventually be created.
801 */
802 struct hammer2_blockset {
803 hammer2_blockref_t blockref[HAMMER2_SET_COUNT];
804 };
805
806 typedef struct hammer2_blockset hammer2_blockset_t;
807
808 /*
809 * Catch programmer snafus
810 */
811 #if (1 << HAMMER2_SET_RADIX) != HAMMER2_SET_COUNT
812 #error "hammer2 direct radix is incorrect"
813 #endif
814 #if (1 << HAMMER2_PBUFRADIX) != HAMMER2_PBUFSIZE
815 #error "HAMMER2_PBUFRADIX and HAMMER2_PBUFSIZE are inconsistent"
816 #endif
817 #if (1 << HAMMER2_RADIX_MIN) != HAMMER2_ALLOC_MIN
818 #error "HAMMER2_RADIX_MIN and HAMMER2_ALLOC_MIN are inconsistent"
819 #endif
820
821 /*
822 * hammer2_bmap_data - A freemap entry in the LEVEL1 block.
823 *
824 * Each 128-byte entry contains the bitmap and meta-data required to manage
825 * a LEVEL0 (4MB) block of storage. The storage is managed in 256 x 16KB
826 * chunks.
827 *
828 * A smaller allocation granularity is supported via a linear iterator and/or
829 * must otherwise be tracked in ram.
830 *
831 * (data structure must be 128 bytes exactly)
832 *
833 * linear - A BYTE linear allocation offset used for sub-16KB allocations
834 * only. May contain values between 0 and 4MB. Must be ignored
835 * if 16KB-aligned (i.e. force bitmap scan), otherwise may be
836 * used to sub-allocate within the 16KB block (which is already
837 * marked as allocated in the bitmap).
838 *
839 * Sub-allocations need only be 1KB-aligned and do not have to be
840 * size-aligned, and 16KB or larger allocations do not update this
841 * field, resulting in pretty good packing.
842 *
843 * Please note that file data granularity may be limited by
844 * other issues such as buffer cache direct-mapping and the
845 * desire to support sector sizes up to 16KB (so H2 only issues
846 * I/O's in multiples of 16KB anyway).
847 *
848 * class - Clustering class. Cleared to 0 only if the entire leaf becomes
849 * free. Used to cluster device buffers so all elements must have
850 * the same device block size, but may mix logical sizes.
851 *
852 * Typically integrated with the blockref type in the upper 8 bits
853 * to localize inodes and indrect blocks, improving bulk free scans
854 * and directory scans.
855 *
856 * bitmap - Two bits per 16KB allocation block arranged in arrays of
857 * 64-bit elements, 256x2 bits representing ~4MB worth of media
858 * storage. Bit patterns are as follows:
859 *
860 * 00 Unallocated
861 * 01 (reserved)
862 * 10 Possibly free
863 * 11 Allocated
864 */
865 struct hammer2_bmap_data {
866 int32_t linear; /* 00 linear sub-granular allocation offset */
867 uint16_t class; /* 04-05 clustering class ((type<<8)|radix) */
868 uint8_t reserved06; /* 06 */
869 uint8_t reserved07; /* 07 */
870 uint32_t reserved08; /* 08 */
871 uint32_t reserved0C; /* 0C */
872 uint32_t reserved10; /* 10 */
873 uint32_t reserved14; /* 14 */
874 uint32_t reserved18; /* 18 */
875 uint32_t avail; /* 1C */
876 uint32_t reserved20[8]; /* 20-3F 256 bits manages 128K/1KB/2-bits */
877 /* 40-7F 512 bits manages 4MB of storage */
878 hammer2_bitmap_t bitmapq[HAMMER2_BMAP_ELEMENTS];
879 } __packed;
880
881 typedef struct hammer2_bmap_data hammer2_bmap_data_t;
882
883 /*
884 * The inode number is stored in the inode rather than being
885 * based on the location of the inode (since the location moves every time
886 * the inode or anything underneath the inode is modified).
887 *
888 * The inode is 1024 bytes, made up of 256 bytes of meta-data, 256 bytes
889 * for the filename, and 512 bytes worth of direct file data OR an embedded
890 * blockset. The in-memory hammer2_inode structure contains only the mostly-
891 * node-independent meta-data portion (some flags are node-specific and will
892 * not be synchronized). The rest of the inode is node-specific and chain I/O
893 * is required to obtain it.
894 *
895 * Directories represent one inode per blockref. Inodes are not laid out
896 * as a file but instead are represented by the related blockrefs. The
897 * blockrefs, in turn, are indexed by the 64-bit directory hash key. Remember
898 * that blocksets are fully associative, so a certain degree efficiency is
899 * achieved just from that.
900 *
901 * Up to 512 bytes of direct data can be embedded in an inode, and since
902 * inodes are essentially directory entries this also means that small data
903 * files end up simply being laid out linearly in the directory, resulting
904 * in fewer seeks and highly optimal access.
905 *
906 * The compression mode can be changed at any time in the inode and is
907 * recorded on a blockref-by-blockref basis.
908 */
909 #define HAMMER2_INODE_BYTES 1024 /* (asserted by code) */
910 #define HAMMER2_INODE_MAXNAME 256 /* maximum name in bytes */
911 #define HAMMER2_INODE_VERSION_ONE 1
912
913 #define HAMMER2_INODE_START 1024 /* dynamically allocated */
914
915 struct hammer2_inode_meta {
916 uint16_t version; /* 0000 inode data version */
917 uint8_t reserved02; /* 0002 */
918 uint8_t pfs_subtype; /* 0003 pfs sub-type */
919
920 /*
921 * core inode attributes, inode type, misc flags
922 */
923 uint32_t uflags; /* 0004 chflags */
924 uint32_t rmajor; /* 0008 available for device nodes */
925 uint32_t rminor; /* 000C available for device nodes */
926 uint64_t ctime; /* 0010 inode change time */
927 uint64_t mtime; /* 0018 modified time */
928 uint64_t atime; /* 0020 access time (unsupported) */
929 uint64_t btime; /* 0028 birth time */
930 uuid_t uid; /* 0030 uid / degenerate unix uid */
931 uuid_t gid; /* 0040 gid / degenerate unix gid */
932
933 uint8_t type; /* 0050 object type */
934 uint8_t op_flags; /* 0051 operational flags */
935 uint16_t cap_flags; /* 0052 capability flags */
936 uint32_t mode; /* 0054 unix modes (typ low 16 bits) */
937
938 /*
939 * inode size, identification, localized recursive configuration
940 * for compression and backup copies.
941 *
942 * NOTE: Nominal parent inode number (iparent) is only applicable
943 * for directories but can also help for files during
944 * catastrophic recovery.
945 */
946 hammer2_tid_t inum; /* 0058 inode number */
947 hammer2_off_t size; /* 0060 size of file */
948 uint64_t nlinks; /* 0068 hard links (typ only dirs) */
949 hammer2_tid_t iparent; /* 0070 nominal parent inum */
950 hammer2_key_t name_key; /* 0078 full filename key */
951 uint16_t name_len; /* 0080 filename length */
952 uint8_t ncopies; /* 0082 ncopies to local media */
953 uint8_t comp_algo; /* 0083 compression request & algo */
954
955 /*
956 * These fields are currently only applicable to PFSROOTs.
957 *
958 * NOTE: We can't use {volume_data->fsid, pfs_clid} to uniquely
959 * identify an instance of a PFS in the cluster because
960 * a mount may contain more than one copy of the PFS as
961 * a separate node. {pfs_clid, pfs_fsid} must be used for
962 * registration in the cluster.
963 */
964 uint8_t target_type; /* 0084 hardlink target type */
965 uint8_t check_algo; /* 0085 check code request & algo */
966 uint8_t pfs_nmasters; /* 0086 (if PFSROOT) if multi-master */
967 uint8_t pfs_type; /* 0087 (if PFSROOT) node type */
968 hammer2_tid_t pfs_inum; /* 0088 (if PFSROOT) inum allocator */
969 uuid_t pfs_clid; /* 0090 (if PFSROOT) cluster uuid */
970 uuid_t pfs_fsid; /* 00A0 (if PFSROOT) unique uuid */
971
972 /*
973 * Quotas and aggregate sub-tree inode and data counters. Note that
974 * quotas are not replicated downward, they are explicitly set by
975 * the sysop and in-memory structures keep track of inheritance.
976 */
977 hammer2_key_t data_quota; /* 00B0 subtree quota in bytes */
978 hammer2_key_t unusedB8; /* 00B8 subtree byte count */
979 hammer2_key_t inode_quota; /* 00C0 subtree quota inode count */
980 hammer2_key_t unusedC8; /* 00C8 subtree inode count */
981
982 /*
983 * The last snapshot tid is tested against modify_tid to determine
984 * when a copy must be made of a data block whos check mode has been
985 * disabled (a disabled check mode allows data blocks to be updated
986 * in place instead of copy-on-write).
987 */
988 hammer2_tid_t pfs_lsnap_tid; /* 00D0 last snapshot tid */
989 hammer2_tid_t reservedD8; /* 00D8 (avail) */
990
991 /*
992 * Tracks (possibly degenerate) free areas covering all sub-tree
993 * allocations under inode, not counting the inode itself.
994 * 0/0 indicates empty entry. fully set-associative.
995 *
996 * (not yet implemented)
997 */
998 uint64_t decrypt_check; /* 00E0 decryption validator */
999 hammer2_off_t reservedE0[3]; /* 00E8/F0/F8 */
1000 } __packed;
1001
1002 typedef struct hammer2_inode_meta hammer2_inode_meta_t;
1003
1004 struct hammer2_inode_data {
1005 hammer2_inode_meta_t meta; /* 0000-00FF */
1006 unsigned char filename[HAMMER2_INODE_MAXNAME];
1007 /* 0100-01FF (256 char, unterminated) */
1008 union { /* 0200-03FF (64x8 = 512 bytes) */
1009 hammer2_blockset_t blockset;
1010 char data[HAMMER2_EMBEDDED_BYTES];
1011 } u;
1012 } __packed;
1013
1014 typedef struct hammer2_inode_data hammer2_inode_data_t;
1015
1016 #define HAMMER2_OPFLAG_DIRECTDATA 0x01
1017 #define HAMMER2_OPFLAG_PFSROOT 0x02 /* (see also bref flag) */
1018 #define HAMMER2_OPFLAG_COPYIDS 0x04 /* copyids override parent */
1019
1020 #define HAMMER2_OBJTYPE_UNKNOWN 0
1021 #define HAMMER2_OBJTYPE_DIRECTORY 1
1022 #define HAMMER2_OBJTYPE_REGFILE 2
1023 #define HAMMER2_OBJTYPE_FIFO 4
1024 #define HAMMER2_OBJTYPE_CDEV 5
1025 #define HAMMER2_OBJTYPE_BDEV 6
1026 #define HAMMER2_OBJTYPE_SOFTLINK 7
1027 #define HAMMER2_OBJTYPE_UNUSED08 8
1028 #define HAMMER2_OBJTYPE_SOCKET 9
1029 #define HAMMER2_OBJTYPE_WHITEOUT 10
1030
1031 #define HAMMER2_COPYID_NONE 0
1032 #define HAMMER2_COPYID_LOCAL ((uint8_t)-1)
1033
1034 #define HAMMER2_COPYID_COUNT 256
1035
1036 /*
1037 * PFS types identify the role of a PFS within a cluster. The PFS types
1038 * is stored on media and in LNK_SPAN messages and used in other places.
1039 *
1040 * The low 4 bits specify the current active type while the high 4 bits
1041 * specify the transition target if the PFS is being upgraded or downgraded,
1042 * If the upper 4 bits are not zero it may effect how a PFS is used during
1043 * the transition.
1044 *
1045 * Generally speaking, downgrading a MASTER to a SLAVE cannot complete until
1046 * at least all MASTERs have updated their pfs_nmasters field. And upgrading
1047 * a SLAVE to a MASTER cannot complete until the new prospective master has
1048 * been fully synchronized (though theoretically full synchronization is
1049 * not required if a (new) quorum of other masters are fully synchronized).
1050 *
1051 * It generally does not matter which PFS element you actually mount, you
1052 * are mounting 'the cluster'. So, for example, a network mount will mount
1053 * a DUMMY PFS type on a memory filesystem. However, there are two exceptions.
1054 * In order to gain the benefits of a SOFT_MASTER or SOFT_SLAVE, those PFSs
1055 * must be directly mounted.
1056 */
1057 #define HAMMER2_PFSTYPE_NONE 0x00
1058 #define HAMMER2_PFSTYPE_CACHE 0x01
1059 #define HAMMER2_PFSTYPE_UNUSED02 0x02
1060 #define HAMMER2_PFSTYPE_SLAVE 0x03
1061 #define HAMMER2_PFSTYPE_SOFT_SLAVE 0x04
1062 #define HAMMER2_PFSTYPE_SOFT_MASTER 0x05
1063 #define HAMMER2_PFSTYPE_MASTER 0x06
1064 #define HAMMER2_PFSTYPE_UNUSED07 0x07
1065 #define HAMMER2_PFSTYPE_SUPROOT 0x08
1066 #define HAMMER2_PFSTYPE_DUMMY 0x09
1067 #define HAMMER2_PFSTYPE_MAX 16
1068
1069 #define HAMMER2_PFSTRAN_NONE 0x00 /* no transition in progress */
1070 #define HAMMER2_PFSTRAN_CACHE 0x10
1071 #define HAMMER2_PFSTRAN_UNMUSED20 0x20
1072 #define HAMMER2_PFSTRAN_SLAVE 0x30
1073 #define HAMMER2_PFSTRAN_SOFT_SLAVE 0x40
1074 #define HAMMER2_PFSTRAN_SOFT_MASTER 0x50
1075 #define HAMMER2_PFSTRAN_MASTER 0x60
1076 #define HAMMER2_PFSTRAN_UNUSED70 0x70
1077 #define HAMMER2_PFSTRAN_SUPROOT 0x80
1078 #define HAMMER2_PFSTRAN_DUMMY 0x90
1079
1080 #define HAMMER2_PFS_DEC(n) ((n) & 0x0F)
1081 #define HAMMER2_PFS_DEC_TRANSITION(n) (((n) >> 4) & 0x0F)
1082 #define HAMMER2_PFS_ENC_TRANSITION(n) (((n) & 0x0F) << 4)
1083
1084 #define HAMMER2_PFSSUBTYPE_NONE 0
1085 #define HAMMER2_PFSSUBTYPE_SNAPSHOT 1 /* manual/managed snapshot */
1086 #define HAMMER2_PFSSUBTYPE_AUTOSNAP 2 /* automatic snapshot */
1087
1088 /*
1089 * PFS mode of operation is a bitmask. This is typically not stored
1090 * on-media, but defined here because the field may be used in dmsgs.
1091 */
1092 #define HAMMER2_PFSMODE_QUORUM 0x01
1093 #define HAMMER2_PFSMODE_RW 0x02
1094
1095 /*
1096 * The volume header eats a 64K block at the beginning of each 2GB zone
1097 * up to four copies.
1098 *
1099 * All information is stored in host byte order. The volume header's magic
1100 * number may be checked to determine the byte order. If you wish to mount
1101 * between machines w/ different endian modes you'll need filesystem code
1102 * which acts on the media data consistently (either all one way or all the
1103 * other). Our code currently does not do that.
1104 *
1105 * A read-write mount may have to recover missing allocations by doing an
1106 * incremental mirror scan looking for modifications made after alloc_tid.
1107 * If alloc_tid == last_tid then no recovery operation is needed. Recovery
1108 * operations are usually very, very fast.
1109 *
1110 * Read-only mounts do not need to do any recovery, access to the filesystem
1111 * topology is always consistent after a crash (is always consistent, period).
1112 * However, there may be shortcutted blockref updates present from deep in
1113 * the tree which are stored in the volumeh eader and must be tracked on
1114 * the fly.
1115 *
1116 * NOTE: The copyinfo[] array contains the configuration for both the
1117 * cluster connections and any local media copies. The volume
1118 * header will be replicated for each local media copy.
1119 *
1120 * The mount command may specify multiple medias or just one and
1121 * allow HAMMER2 to pick up the others when it checks the copyinfo[]
1122 * array on mount.
1123 *
1124 * NOTE: sroot_blockset points to the super-root directory, not the root
1125 * directory. The root directory will be a subdirectory under the
1126 * super-root.
1127 *
1128 * The super-root directory contains all root directories and all
1129 * snapshots (readonly or writable). It is possible to do a
1130 * null-mount of the super-root using special path constructions
1131 * relative to your mounted root.
1132 */
1133 #define HAMMER2_VOLUME_ID_HBO 0x48414d3205172011LLU
1134 #define HAMMER2_VOLUME_ID_ABO 0x11201705324d4148LLU
1135
1136 struct hammer2_volume_data {
1137 /*
1138 * sector #0 - 512 bytes
1139 */
1140 uint64_t magic; /* 0000 Signature */
1141 hammer2_off_t boot_beg; /* 0008 Boot area (future) */
1142 hammer2_off_t boot_end; /* 0010 (size = end - beg) */
1143 hammer2_off_t aux_beg; /* 0018 Aux area (future) */
1144 hammer2_off_t aux_end; /* 0020 (size = end - beg) */
1145 hammer2_off_t volu_size; /* 0028 Volume size, bytes */
1146
1147 uint32_t version; /* 0030 */
1148 uint32_t flags; /* 0034 */
1149 uint8_t copyid; /* 0038 copyid of phys vol */
1150 uint8_t freemap_version; /* 0039 freemap algorithm */
1151 uint8_t peer_type; /* 003A HAMMER2_PEER_xxx */
1152 uint8_t reserved003B; /* 003B */
1153 uint32_t reserved003C; /* 003C */
1154
1155 uuid_t fsid; /* 0040 */
1156 uuid_t fstype; /* 0050 */
1157
1158 /*
1159 * allocator_size is precalculated at newfs time and does not include
1160 * reserved blocks, boot, or aux areas.
1161 *
1162 * Initial non-reserved-area allocations do not use the freemap
1163 * but instead adjust alloc_iterator. Dynamic allocations take
1164 * over starting at (allocator_beg). This makes newfs_hammer2's
1165 * job a lot easier and can also serve as a testing jig.
1166 */
1167 hammer2_off_t allocator_size; /* 0060 Total data space */
1168 hammer2_off_t allocator_free; /* 0068 Free space */
1169 hammer2_off_t allocator_beg; /* 0070 Initial allocations */
1170
1171 /*
1172 * mirror_tid reflects the highest committed change for this
1173 * block device regardless of whether it is to the super-root
1174 * or to a PFS or whatever.
1175 *
1176 * freemap_tid reflects the highest committed freemap change for
1177 * this block device.
1178 */
1179 hammer2_tid_t mirror_tid; /* 0078 committed tid (vol) */
1180 hammer2_tid_t reserved0080; /* 0080 */
1181 hammer2_tid_t reserved0088; /* 0088 */
1182 hammer2_tid_t freemap_tid; /* 0090 committed tid (fmap) */
1183 hammer2_tid_t bulkfree_tid; /* 0098 bulkfree incremental */
1184 hammer2_tid_t reserved00A0[5]; /* 00A0-00C7 */
1185
1186 /*
1187 * Copyids are allocated dynamically from the copyexists bitmap.
1188 * An id from the active copies set (up to 8, see copyinfo later on)
1189 * may still exist after the copy set has been removed from the
1190 * volume header and its bit will remain active in the bitmap and
1191 * cannot be reused until it is 100% removed from the hierarchy.
1192 */
1193 uint32_t copyexists[8]; /* 00C8-00E7 copy exists bmap */
1194 char reserved0140[248]; /* 00E8-01DF */
1195
1196 /*
1197 * 32 bit CRC array at the end of the first 512 byte sector.
1198 *
1199 * icrc_sects[7] - First 512-4 bytes of volume header (including all
1200 * the other icrc's except this one).
1201 *
1202 * icrc_sects[6] - Sector 1 (512 bytes) of volume header, which is
1203 * the blockset for the root.
1204 *
1205 * icrc_sects[5] - Sector 2
1206 * icrc_sects[4] - Sector 3
1207 * icrc_sects[3] - Sector 4 (the freemap blockset)
1208 */
1209 hammer2_crc32_t icrc_sects[8]; /* 01E0-01FF */
1210
1211 /*
1212 * sector #1 - 512 bytes
1213 *
1214 * The entire sector is used by a blockset.
1215 */
1216 hammer2_blockset_t sroot_blockset; /* 0200-03FF Superroot dir */
1217
1218 /*
1219 * sector #2-7
1220 */
1221 char sector2[512]; /* 0400-05FF reserved */
1222 char sector3[512]; /* 0600-07FF reserved */
1223 hammer2_blockset_t freemap_blockset; /* 0800-09FF freemap */
1224 char sector5[512]; /* 0A00-0BFF reserved */
1225 char sector6[512]; /* 0C00-0DFF reserved */
1226 char sector7[512]; /* 0E00-0FFF reserved */
1227
1228 /*
1229 * sector #8-71 - 32768 bytes
1230 *
1231 * Contains the configuration for up to 256 copyinfo targets. These
1232 * specify local and remote copies operating as masters or slaves.
1233 * copyid's 0 and 255 are reserved (0 indicates an empty slot and 255
1234 * indicates the local media).
1235 *
1236 * Each inode contains a set of up to 8 copyids, either inherited
1237 * from its parent or explicitly specified in the inode, which
1238 * indexes into this array.
1239 */
1240 /* 1000-8FFF copyinfo config */
1241 hammer2_volconf_t copyinfo[HAMMER2_COPYID_COUNT];
1242
1243 /*
1244 * Remaining sections are reserved for future use.
1245 */
1246 char reserved0400[0x6FFC]; /* 9000-FFFB reserved */
1247
1248 /*
1249 * icrc on entire volume header
1250 */
1251 hammer2_crc32_t icrc_volheader; /* FFFC-FFFF full volume icrc*/
1252 } __packed;
1253
1254 typedef struct hammer2_volume_data hammer2_volume_data_t;
1255
1256 /*
1257 * Various parts of the volume header have their own iCRCs.
1258 *
1259 * The first 512 bytes has its own iCRC stored at the end of the 512 bytes
1260 * and not included the icrc calculation.
1261 *
1262 * The second 512 bytes also has its own iCRC but it is stored in the first
1263 * 512 bytes so it covers the entire second 512 bytes.
1264 *
1265 * The whole volume block (64KB) has an iCRC covering all but the last 4 bytes,
1266 * which is where the iCRC for the whole volume is stored. This is currently
1267 * a catch-all for anything not individually iCRCd.
1268 */
1269 #define HAMMER2_VOL_ICRC_SECT0 7
1270 #define HAMMER2_VOL_ICRC_SECT1 6
1271
1272 #define HAMMER2_VOLUME_BYTES 65536
1273
1274 #define HAMMER2_VOLUME_ICRC0_OFF 0
1275 #define HAMMER2_VOLUME_ICRC1_OFF 512
1276 #define HAMMER2_VOLUME_ICRCVH_OFF 0
1277
1278 #define HAMMER2_VOLUME_ICRC0_SIZE (512 - 4)
1279 #define HAMMER2_VOLUME_ICRC1_SIZE (512)
1280 #define HAMMER2_VOLUME_ICRCVH_SIZE (65536 - 4)
1281
1282 #define HAMMER2_VOL_VERSION_MIN 1
1283 #define HAMMER2_VOL_VERSION_DEFAULT 1
1284 #define HAMMER2_VOL_VERSION_WIP 2
1285
1286 #define HAMMER2_NUM_VOLHDRS 4
1287
1288 union hammer2_media_data {
1289 hammer2_volume_data_t voldata;
1290 hammer2_inode_data_t ipdata;
1291 hammer2_blockset_t blkset;
1292 hammer2_blockref_t npdata[HAMMER2_IND_COUNT_MAX];
1293 hammer2_bmap_data_t bmdata[HAMMER2_FREEMAP_COUNT];
1294 char buf[HAMMER2_PBUFSIZE];
1295 } __packed;
1296
1297 typedef union hammer2_media_data hammer2_media_data_t;
1298
1299 #endif /* !_VFS_HAMMER2_DISK_H_ */
1300