hammer2_disk.h revision 1.3 1 /* $NetBSD: hammer2_disk.h,v 1.3 2021/01/10 12:38:40 tkusumi Exp $ */
2
3 /*
4 * Copyright (c) 2011-2019 The DragonFly Project. All rights reserved.
5 *
6 * This code is derived from software contributed to The DragonFly Project
7 * by Matthew Dillon <dillon (at) dragonflybsd.org>
8 * by Venkatesh Srinivas <vsrinivas (at) dragonflybsd.org>
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 *
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in
18 * the documentation and/or other materials provided with the
19 * distribution.
20 * 3. Neither the name of The DragonFly Project nor the names of its
21 * contributors may be used to endorse or promote products derived
22 * from this software without specific, prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
28 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
30 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
32 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
33 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
34 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 */
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: hammer2_disk.h,v 1.3 2021/01/10 12:38:40 tkusumi Exp $");
39
40 #ifndef _VFS_HAMMER2_DISK_H_
41 #define _VFS_HAMMER2_DISK_H_
42
43 #ifndef _SYS_UUID_H_
44 #include <sys/uuid.h>
45 #endif
46 #if 0
47 #ifndef _SYS_DMSG_H_
48 #include <sys/dmsg.h>
49 #endif
50 #endif
51
52 /*
53 * The structures below represent the on-disk media structures for the HAMMER2
54 * filesystem. Note that all fields for on-disk structures are naturally
55 * aligned. The host endian format is typically used - compatibility is
56 * possible if the implementation detects reversed endian and adjusts accesses
57 * accordingly.
58 *
59 * HAMMER2 primarily revolves around the directory topology: inodes,
60 * directory entries, and block tables. Block device buffer cache buffers
61 * are always 64KB. Logical file buffers are typically 16KB. All data
62 * references utilize 64-bit byte offsets.
63 *
64 * Free block management is handled independently using blocks reserved by
65 * the media topology.
66 */
67
68 /*
69 * The data at the end of a file or directory may be a fragment in order
70 * to optimize storage efficiency. The minimum fragment size is 1KB.
71 * Since allocations are in powers of 2 fragments must also be sized in
72 * powers of 2 (1024, 2048, ... 65536).
73 *
74 * For the moment the maximum allocation size is HAMMER2_PBUFSIZE (64K),
75 * which is 2^16. Larger extents may be supported in the future. Smaller
76 * fragments might be supported in the future (down to 64 bytes is possible),
77 * but probably will not be.
78 *
79 * A full indirect block use supports 512 x 128-byte blockrefs in a 64KB
80 * buffer. Indirect blocks down to 1KB are supported to keep small
81 * directories small.
82 *
83 * A maximally sized file (2^64-1 bytes) requires ~6 indirect block levels
84 * using 64KB indirect blocks (128 byte refs, 512 or radix 9 per indblk).
85 *
86 * 16(datablk) + 9 + 9 + 9 + 9 + 9 + 9 = ~70.
87 * 16(datablk) + 7 + 9 + 9 + 9 + 9 + 9 = ~68. (smaller top level indblk)
88 *
89 * The actual depth depends on copies redundancy and whether the filesystem
90 * has chosen to use a smaller indirect block size at the top level or not.
91 */
92 #define HAMMER2_ALLOC_MIN 1024 /* minimum allocation size */
93 #define HAMMER2_RADIX_MIN 10 /* minimum allocation size 2^N */
94 #define HAMMER2_ALLOC_MAX 65536 /* maximum allocation size */
95 #define HAMMER2_RADIX_MAX 16 /* maximum allocation size 2^N */
96 #define HAMMER2_RADIX_KEY 64 /* number of bits in key */
97
98 /*
99 * HAMMER2_LBUFSIZE - Nominal buffer size for I/O rollups.
100 *
101 * HAMMER2_PBUFSIZE - Topological block size used by files for all
102 * blocks except the block straddling EOF.
103 *
104 * HAMMER2_SEGSIZE - Allocation map segment size, typically 4MB
105 * (space represented by a level0 bitmap).
106 */
107
108 #define HAMMER2_SEGSIZE (1 << HAMMER2_FREEMAP_LEVEL0_RADIX)
109 #define HAMMER2_SEGRADIX HAMMER2_FREEMAP_LEVEL0_RADIX
110
111 #define HAMMER2_PBUFRADIX 16 /* physical buf (1<<16) bytes */
112 #define HAMMER2_PBUFSIZE 65536
113 #define HAMMER2_LBUFRADIX 14 /* logical buf (1<<14) bytes */
114 #define HAMMER2_LBUFSIZE 16384
115
116 #define HAMMER2_IND_BYTES_MIN 4096
117 #define HAMMER2_IND_BYTES_NOM HAMMER2_LBUFSIZE
118 #define HAMMER2_IND_BYTES_MAX HAMMER2_PBUFSIZE
119 #define HAMMER2_IND_RADIX_MIN 12
120 #define HAMMER2_IND_RADIX_NOM HAMMER2_LBUFRADIX
121 #define HAMMER2_IND_RADIX_MAX HAMMER2_PBUFRADIX
122 #define HAMMER2_IND_COUNT_MIN (HAMMER2_IND_BYTES_MIN / \
123 sizeof(hammer2_blockref_t))
124 #define HAMMER2_IND_COUNT_MAX (HAMMER2_IND_BYTES_MAX / \
125 sizeof(hammer2_blockref_t))
126
127 /*
128 * In HAMMER2, arrays of blockrefs are fully set-associative, meaning that
129 * any element can occur at any index and holes can be anywhere.
130 *
131 * Inodes embed either 512 bytes of direct data or an array of 4 blockrefs,
132 * resulting in highly efficient storage for files <= 512 bytes and for files
133 * <= 512KB. Up to 4 directory entries can be referenced from a directory
134 * without requiring an indirect block.
135 */
136 #define HAMMER2_SET_RADIX 2 /* radix 2 = 4 entries */
137 #define HAMMER2_SET_COUNT (1 << HAMMER2_SET_RADIX)
138 #define HAMMER2_EMBEDDED_BYTES 512 /* inode blockset/dd size */
139 #define HAMMER2_EMBEDDED_RADIX 9
140
141 #define HAMMER2_PBUFMASK (HAMMER2_PBUFSIZE - 1)
142 #define HAMMER2_LBUFMASK (HAMMER2_LBUFSIZE - 1)
143 #define HAMMER2_SEGMASK (HAMMER2_SEGSIZE - 1)
144
145 #define HAMMER2_LBUFMASK64 ((hammer2_off_t)HAMMER2_LBUFMASK)
146 #define HAMMER2_PBUFSIZE64 ((hammer2_off_t)HAMMER2_PBUFSIZE)
147 #define HAMMER2_PBUFMASK64 ((hammer2_off_t)HAMMER2_PBUFMASK)
148 #define HAMMER2_SEGSIZE64 ((hammer2_off_t)HAMMER2_SEGSIZE)
149 #define HAMMER2_SEGMASK64 ((hammer2_off_t)HAMMER2_SEGMASK)
150
151 #define HAMMER2_UUID_STRING "5cbb9ad1-862d-11dc-a94d-01301bb8a9f5"
152
153 /*
154 * A 4MB segment is reserved at the beginning of each 1GB. This segment
155 * contains the volume header (or backup volume header), the free block
156 * table, and possibly other information in the future.
157 *
158 * 4MB = 64 x 64K blocks. Each 4MB segment is broken down as follows:
159 *
160 * ==========
161 * 0 volume header (for the first four 2GB zones)
162 * 1 freemap00 level1 FREEMAP_LEAF (256 x 128B bitmap data per 1GB)
163 * 2 level2 FREEMAP_NODE (256 x 128B indirect block per 256GB)
164 * 3 level3 FREEMAP_NODE (256 x 128B indirect block per 64TB)
165 * 4 level4 FREEMAP_NODE (256 x 128B indirect block per 16PB)
166 * 5 level5 FREEMAP_NODE (256 x 128B indirect block per 4EB)
167 * 6 freemap01 level1 (rotation)
168 * 7 level2
169 * 8 level3
170 * 9 level4
171 * 10 level5
172 * 11 freemap02 level1 (rotation)
173 * 12 level2
174 * 13 level3
175 * 14 level4
176 * 15 level5
177 * 16 freemap03 level1 (rotation)
178 * 17 level2
179 * 18 level3
180 * 19 level4
181 * 20 level5
182 * 21 freemap04 level1 (rotation)
183 * 22 level2
184 * 23 level3
185 * 24 level4
186 * 25 level5
187 * 26 freemap05 level1 (rotation)
188 * 27 level2
189 * 28 level3
190 * 29 level4
191 * 30 level5
192 * 31 freemap06 level1 (rotation)
193 * 32 level2
194 * 33 level3
195 * 34 level4
196 * 35 level5
197 * 36 freemap07 level1 (rotation)
198 * 37 level2
199 * 38 level3
200 * 39 level4
201 * 40 level5
202 * 41 unused
203 * .. unused
204 * 63 unused
205 * ==========
206 *
207 * The first four 2GB zones contain volume headers and volume header backups.
208 * After that the volume header block# is reserved for future use. Similarly,
209 * there are many blocks related to various Freemap levels which are not
210 * used in every segment and those are also reserved for future use.
211 * Note that each FREEMAP_LEAF or FREEMAP_NODE uses 32KB out of 64KB slot.
212 *
213 * Freemap (see the FREEMAP document)
214 *
215 * The freemap utilizes blocks #1-40 in 8 sets of 5 blocks. Each block in
216 * a set represents a level of depth in the freemap topology. Eight sets
217 * exist to prevent live updates from disturbing the state of the freemap
218 * were a crash/reboot to occur. That is, a live update is not committed
219 * until the update's flush reaches the volume root. There are FOUR volume
220 * roots representing the last four synchronization points, so the freemap
221 * must be consistent no matter which volume root is chosen by the mount
222 * code.
223 *
224 * Each freemap set is 5 x 64K blocks and represents the 1GB, 256GB, 64TB,
225 * 16PB and 4EB indirect map. The volume header itself has a set of 4 freemap
226 * blockrefs representing another 2 bits, giving us a total 64 bits of
227 * representable address space.
228 *
229 * The Level 0 64KB block represents 1GB of storage represented by 32KB
230 * (256 x struct hammer2_bmap_data). Each structure represents 4MB of storage
231 * and has a 512 bit bitmap, using 2 bits to represent a 16KB chunk of
232 * storage. These 2 bits represent the following states:
233 *
234 * 00 Free
235 * 01 (reserved) (Possibly partially allocated)
236 * 10 Possibly free
237 * 11 Allocated
238 *
239 * One important thing to note here is that the freemap resolution is 16KB,
240 * but the minimum storage allocation size is 1KB. The hammer2 vfs keeps
241 * track of sub-allocations in memory, which means that on a unmount or reboot
242 * the entire 16KB of a partially allocated block will be considered fully
243 * allocated. It is possible for fragmentation to build up over time, but
244 * defragmentation is fairly easy to accomplish since all modifications
245 * allocate a new block.
246 *
247 * The Second thing to note is that due to the way snapshots and inode
248 * replication works, deleting a file cannot immediately free the related
249 * space. Furthermore, deletions often do not bother to traverse the
250 * block subhierarchy being deleted. And to go even further, whole
251 * sub-directory trees can be deleted simply by deleting the directory inode
252 * at the top. So even though we have a symbol to represent a 'possibly free'
253 * block (binary 10), only the bulk free scanning code can actually use it.
254 * Normal 'rm's or other deletions do not.
255 *
256 * WARNING! ZONE_SEG and VOLUME_ALIGN must be a multiple of 1<<LEVEL0_RADIX
257 * (i.e. a multiple of 4MB). VOLUME_ALIGN must be >= ZONE_SEG.
258 *
259 * In Summary:
260 *
261 * (1) Modifications to freemap blocks 'allocate' a new copy (aka use a block
262 * from the next set). The new copy is reused until a flush occurs at
263 * which point the next modification will then rotate to the next set.
264 */
265 #define HAMMER2_VOLUME_ALIGN (8 * 1024 * 1024)
266 #define HAMMER2_VOLUME_ALIGN64 ((hammer2_off_t)HAMMER2_VOLUME_ALIGN)
267 #define HAMMER2_VOLUME_ALIGNMASK (HAMMER2_VOLUME_ALIGN - 1)
268 #define HAMMER2_VOLUME_ALIGNMASK64 ((hammer2_off_t)HAMMER2_VOLUME_ALIGNMASK)
269
270 #define HAMMER2_NEWFS_ALIGN (HAMMER2_VOLUME_ALIGN)
271 #define HAMMER2_NEWFS_ALIGN64 ((hammer2_off_t)HAMMER2_VOLUME_ALIGN)
272 #define HAMMER2_NEWFS_ALIGNMASK (HAMMER2_VOLUME_ALIGN - 1)
273 #define HAMMER2_NEWFS_ALIGNMASK64 ((hammer2_off_t)HAMMER2_NEWFS_ALIGNMASK)
274
275 #define HAMMER2_ZONE_BYTES64 (2LLU * 1024 * 1024 * 1024)
276 #define HAMMER2_ZONE_MASK64 (HAMMER2_ZONE_BYTES64 - 1)
277 #define HAMMER2_ZONE_SEG (4 * 1024 * 1024)
278 #define HAMMER2_ZONE_SEG64 ((hammer2_off_t)HAMMER2_ZONE_SEG)
279 #define HAMMER2_ZONE_BLOCKS_SEG (HAMMER2_ZONE_SEG / HAMMER2_PBUFSIZE)
280
281 #define HAMMER2_ZONE_FREEMAP_INC 5 /* 5 deep */
282
283 #define HAMMER2_ZONE_VOLHDR 0 /* volume header or backup */
284 #define HAMMER2_ZONE_FREEMAP_00 1 /* normal freemap rotation */
285 #define HAMMER2_ZONE_FREEMAP_01 6 /* normal freemap rotation */
286 #define HAMMER2_ZONE_FREEMAP_02 11 /* normal freemap rotation */
287 #define HAMMER2_ZONE_FREEMAP_03 16 /* normal freemap rotation */
288 #define HAMMER2_ZONE_FREEMAP_04 21 /* normal freemap rotation */
289 #define HAMMER2_ZONE_FREEMAP_05 26 /* normal freemap rotation */
290 #define HAMMER2_ZONE_FREEMAP_06 31 /* normal freemap rotation */
291 #define HAMMER2_ZONE_FREEMAP_07 36 /* normal freemap rotation */
292 #define HAMMER2_ZONE_FREEMAP_END 41 /* (non-inclusive) */
293
294 #define HAMMER2_ZONE_UNUSED41 41
295 #define HAMMER2_ZONE_UNUSED42 42
296 #define HAMMER2_ZONE_UNUSED43 43
297 #define HAMMER2_ZONE_UNUSED44 44
298 #define HAMMER2_ZONE_UNUSED45 45
299 #define HAMMER2_ZONE_UNUSED46 46
300 #define HAMMER2_ZONE_UNUSED47 47
301 #define HAMMER2_ZONE_UNUSED48 48
302 #define HAMMER2_ZONE_UNUSED49 49
303 #define HAMMER2_ZONE_UNUSED50 50
304 #define HAMMER2_ZONE_UNUSED51 51
305 #define HAMMER2_ZONE_UNUSED52 52
306 #define HAMMER2_ZONE_UNUSED53 53
307 #define HAMMER2_ZONE_UNUSED54 54
308 #define HAMMER2_ZONE_UNUSED55 55
309 #define HAMMER2_ZONE_UNUSED56 56
310 #define HAMMER2_ZONE_UNUSED57 57
311 #define HAMMER2_ZONE_UNUSED58 58
312 #define HAMMER2_ZONE_UNUSED59 59
313 #define HAMMER2_ZONE_UNUSED60 60
314 #define HAMMER2_ZONE_UNUSED61 61
315 #define HAMMER2_ZONE_UNUSED62 62
316 #define HAMMER2_ZONE_UNUSED63 63
317 #define HAMMER2_ZONE_END 64 /* non-inclusive */
318
319 #define HAMMER2_NFREEMAPS 8 /* FREEMAP_00 - FREEMAP_07 */
320
321 /* relative to FREEMAP_x */
322 #define HAMMER2_ZONEFM_LEVEL1 0 /* 1GB leafmap */
323 #define HAMMER2_ZONEFM_LEVEL2 1 /* 256GB indmap */
324 #define HAMMER2_ZONEFM_LEVEL3 2 /* 64TB indmap */
325 #define HAMMER2_ZONEFM_LEVEL4 3 /* 16PB indmap */
326 #define HAMMER2_ZONEFM_LEVEL5 4 /* 4EB indmap */
327 /* LEVEL6 is a set of 4 blockrefs in the volume header 16EB */
328
329 /*
330 * Freemap radix. Assumes a set-count of 4, 128-byte blockrefs,
331 * 32KB indirect block for freemap (LEVELN_PSIZE below).
332 *
333 * Leaf entry represents 4MB of storage broken down into a 512-bit
334 * bitmap, 2-bits per entry. So course bitmap item represents 16KB.
335 */
336 #if HAMMER2_SET_COUNT != 4
337 #error "hammer2_disk.h - freemap assumes SET_COUNT is 4"
338 #endif
339 #define HAMMER2_FREEMAP_LEVEL6_RADIX 64 /* 16EB (end) */
340 #define HAMMER2_FREEMAP_LEVEL5_RADIX 62 /* 4EB */
341 #define HAMMER2_FREEMAP_LEVEL4_RADIX 54 /* 16PB */
342 #define HAMMER2_FREEMAP_LEVEL3_RADIX 46 /* 64TB */
343 #define HAMMER2_FREEMAP_LEVEL2_RADIX 38 /* 256GB */
344 #define HAMMER2_FREEMAP_LEVEL1_RADIX 30 /* 1GB */
345 #define HAMMER2_FREEMAP_LEVEL0_RADIX 22 /* 4MB (x 256 in l-1 leaf) */
346
347 #define HAMMER2_FREEMAP_LEVELN_PSIZE 32768 /* physical bytes */
348
349 #define HAMMER2_FREEMAP_LEVEL5_SIZE ((hammer2_off_t)1 << \
350 HAMMER2_FREEMAP_LEVEL5_RADIX)
351 #define HAMMER2_FREEMAP_LEVEL4_SIZE ((hammer2_off_t)1 << \
352 HAMMER2_FREEMAP_LEVEL4_RADIX)
353 #define HAMMER2_FREEMAP_LEVEL3_SIZE ((hammer2_off_t)1 << \
354 HAMMER2_FREEMAP_LEVEL3_RADIX)
355 #define HAMMER2_FREEMAP_LEVEL2_SIZE ((hammer2_off_t)1 << \
356 HAMMER2_FREEMAP_LEVEL2_RADIX)
357 #define HAMMER2_FREEMAP_LEVEL1_SIZE ((hammer2_off_t)1 << \
358 HAMMER2_FREEMAP_LEVEL1_RADIX)
359 #define HAMMER2_FREEMAP_LEVEL0_SIZE ((hammer2_off_t)1 << \
360 HAMMER2_FREEMAP_LEVEL0_RADIX)
361
362 #define HAMMER2_FREEMAP_LEVEL5_MASK (HAMMER2_FREEMAP_LEVEL5_SIZE - 1)
363 #define HAMMER2_FREEMAP_LEVEL4_MASK (HAMMER2_FREEMAP_LEVEL4_SIZE - 1)
364 #define HAMMER2_FREEMAP_LEVEL3_MASK (HAMMER2_FREEMAP_LEVEL3_SIZE - 1)
365 #define HAMMER2_FREEMAP_LEVEL2_MASK (HAMMER2_FREEMAP_LEVEL2_SIZE - 1)
366 #define HAMMER2_FREEMAP_LEVEL1_MASK (HAMMER2_FREEMAP_LEVEL1_SIZE - 1)
367 #define HAMMER2_FREEMAP_LEVEL0_MASK (HAMMER2_FREEMAP_LEVEL0_SIZE - 1)
368
369 #define HAMMER2_FREEMAP_COUNT (int)(HAMMER2_FREEMAP_LEVELN_PSIZE / \
370 sizeof(hammer2_bmap_data_t))
371
372 /*
373 * XXX I made a mistake and made the reserved area begin at each LEVEL1 zone,
374 * which is on a 1GB demark. This will eat a little more space but for
375 * now we retain compatibility and make FMZONEBASE every 1GB
376 */
377 #define H2FMZONEBASE(key) ((key) & ~HAMMER2_FREEMAP_LEVEL1_MASK)
378 #define H2FMBASE(key, radix) rounddown2(key, (hammer2_off_t)1 << (radix))
379
380 /*
381 * 16KB bitmap granularity (x2 bits per entry).
382 */
383 #define HAMMER2_FREEMAP_BLOCK_RADIX 14
384 #define HAMMER2_FREEMAP_BLOCK_SIZE (1 << HAMMER2_FREEMAP_BLOCK_RADIX)
385 #define HAMMER2_FREEMAP_BLOCK_MASK (HAMMER2_FREEMAP_BLOCK_SIZE - 1)
386
387 /*
388 * bitmap[] structure. 2 bits per HAMMER2_FREEMAP_BLOCK_SIZE.
389 *
390 * 8 x 64-bit elements, 2 bits per block.
391 * 32 blocks (radix 5) per element.
392 * representing INDEX_SIZE bytes worth of storage per element.
393 */
394
395 typedef uint64_t hammer2_bitmap_t;
396
397 #define HAMMER2_BMAP_ALLONES ((hammer2_bitmap_t)-1)
398 #define HAMMER2_BMAP_ELEMENTS 8
399 #define HAMMER2_BMAP_BITS_PER_ELEMENT 64
400 #define HAMMER2_BMAP_INDEX_RADIX 5 /* 32 blocks per element */
401 #define HAMMER2_BMAP_BLOCKS_PER_ELEMENT (1 << HAMMER2_BMAP_INDEX_RADIX)
402
403 #define HAMMER2_BMAP_INDEX_SIZE (HAMMER2_FREEMAP_BLOCK_SIZE * \
404 HAMMER2_BMAP_BLOCKS_PER_ELEMENT)
405 #define HAMMER2_BMAP_INDEX_MASK (HAMMER2_BMAP_INDEX_SIZE - 1)
406
407 #define HAMMER2_BMAP_SIZE (HAMMER2_BMAP_INDEX_SIZE * \
408 HAMMER2_BMAP_ELEMENTS)
409 #define HAMMER2_BMAP_MASK (HAMMER2_BMAP_SIZE - 1)
410
411 /*
412 * Two linear areas can be reserved after the initial 4MB segment in the base
413 * zone (the one starting at offset 0). These areas are NOT managed by the
414 * block allocator and do not fall under HAMMER2 crc checking rules based
415 * at the volume header (but can be self-CRCd internally, depending).
416 */
417 #define HAMMER2_BOOT_MIN_BYTES HAMMER2_VOLUME_ALIGN
418 #define HAMMER2_BOOT_NOM_BYTES (64*1024*1024)
419 #define HAMMER2_BOOT_MAX_BYTES (256*1024*1024)
420
421 #define HAMMER2_AUX_MIN_BYTES HAMMER2_VOLUME_ALIGN
422 #define HAMMER2_AUX_NOM_BYTES (256*1024*1024)
423 #define HAMMER2_AUX_MAX_BYTES (1024*1024*1024)
424
425 /*
426 * Most HAMMER2 types are implemented as unsigned 64-bit integers.
427 * Transaction ids are monotonic.
428 *
429 * We utilize 32-bit iSCSI CRCs.
430 */
431 typedef uint64_t hammer2_tid_t;
432 typedef uint64_t hammer2_off_t;
433 typedef uint64_t hammer2_key_t;
434 typedef uint32_t hammer2_crc32_t;
435
436 /*
437 * Miscellanious ranges (all are unsigned).
438 */
439 #define HAMMER2_TID_MIN 1ULL
440 #define HAMMER2_TID_MAX 0xFFFFFFFFFFFFFFFFULL
441 #define HAMMER2_KEY_MIN 0ULL
442 #define HAMMER2_KEY_MAX 0xFFFFFFFFFFFFFFFFULL
443 #define HAMMER2_OFFSET_MIN 0ULL
444 #define HAMMER2_OFFSET_MAX 0xFFFFFFFFFFFFFFFFULL
445
446 /*
447 * HAMMER2 data offset special cases and masking.
448 *
449 * All HAMMER2 data offsets have to be broken down into a 64K buffer base
450 * offset (HAMMER2_OFF_MASK_HI) and a 64K buffer index (HAMMER2_OFF_MASK_LO).
451 *
452 * Indexes into physical buffers are always 64-byte aligned. The low 6 bits
453 * of the data offset field specifies how large the data chunk being pointed
454 * to as a power of 2. The theoretical minimum radix is thus 6 (The space
455 * needed in the low bits of the data offset field). However, the practical
456 * minimum allocation chunk size is 1KB (a radix of 10), so HAMMER2 sets
457 * HAMMER2_RADIX_MIN to 10. The maximum radix is currently 16 (64KB), but
458 * we fully intend to support larger extents in the future.
459 *
460 * WARNING! A radix of 0 (such as when data_off is all 0's) is a special
461 * case which means no data associated with the blockref, and
462 * not the '1 byte' it would otherwise calculate to.
463 */
464 #define HAMMER2_OFF_MASK 0xFFFFFFFFFFFFFFC0ULL
465 #define HAMMER2_OFF_MASK_LO (HAMMER2_OFF_MASK & HAMMER2_PBUFMASK64)
466 #define HAMMER2_OFF_MASK_HI (~HAMMER2_PBUFMASK64)
467 #define HAMMER2_OFF_MASK_RADIX 0x000000000000003FULL
468
469 /*
470 * HAMMER2 directory support and pre-defined keys
471 */
472 #define HAMMER2_DIRHASH_VISIBLE 0x8000000000000000ULL
473 #define HAMMER2_DIRHASH_USERMSK 0x7FFFFFFFFFFFFFFFULL
474 #define HAMMER2_DIRHASH_LOMASK 0x0000000000007FFFULL
475 #define HAMMER2_DIRHASH_HIMASK 0xFFFFFFFFFFFF0000ULL
476 #define HAMMER2_DIRHASH_FORCED 0x0000000000008000ULL /* bit forced on */
477
478 #define HAMMER2_SROOT_KEY 0x0000000000000000ULL /* volume to sroot */
479 #define HAMMER2_BOOT_KEY 0xd9b36ce135528000ULL /* sroot to BOOT PFS */
480
481 /************************************************************************
482 * DMSG SUPPORT *
483 ************************************************************************
484 * LNK_VOLCONF
485 *
486 * All HAMMER2 directories directly under the super-root on your local
487 * media can be mounted separately, even if they share the same physical
488 * device.
489 *
490 * When you do a HAMMER2 mount you are effectively tying into a HAMMER2
491 * cluster via local media. The local media does not have to participate
492 * in the cluster, other than to provide the hammer2_volconf[] array and
493 * root inode for the mount.
494 *
495 * This is important: The mount device path you specify serves to bootstrap
496 * your entry into the cluster, but your mount will make active connections
497 * to ALL copy elements in the hammer2_volconf[] array which match the
498 * PFSID of the directory in the super-root that you specified. The local
499 * media path does not have to be mentioned in this array but becomes part
500 * of the cluster based on its type and access rights. ALL ELEMENTS ARE
501 * TREATED ACCORDING TO TYPE NO MATTER WHICH ONE YOU MOUNT FROM.
502 *
503 * The actual cluster may be far larger than the elements you list in the
504 * hammer2_volconf[] array. You list only the elements you wish to
505 * directly connect to and you are able to access the rest of the cluster
506 * indirectly through those connections.
507 *
508 * WARNING! This structure must be exactly 128 bytes long for its config
509 * array to fit in the volume header.
510 */
511 struct hammer2_volconf {
512 uint8_t copyid; /* 00 copyid 0-255 (must match slot) */
513 uint8_t inprog; /* 01 operation in progress, or 0 */
514 uint8_t chain_to; /* 02 operation chaining to, or 0 */
515 uint8_t chain_from; /* 03 operation chaining from, or 0 */
516 uint16_t flags; /* 04-05 flags field */
517 uint8_t error; /* 06 last operational error */
518 uint8_t priority; /* 07 priority and round-robin flag */
519 uint8_t remote_pfs_type;/* 08 probed direct remote PFS type */
520 uint8_t reserved08[23]; /* 09-1F */
521 uuid_t pfs_clid; /* 20-2F copy target must match this uuid */
522 uint8_t label[16]; /* 30-3F import/export label */
523 uint8_t path[64]; /* 40-7F target specification string or key */
524 } __packed;
525
526 typedef struct hammer2_volconf hammer2_volconf_t;
527
528 #define DMSG_VOLF_ENABLED 0x0001
529 #define DMSG_VOLF_INPROG 0x0002
530 #define DMSG_VOLF_CONN_RR 0x80 /* round-robin at same priority */
531 #define DMSG_VOLF_CONN_EF 0x40 /* media errors flagged */
532 #define DMSG_VOLF_CONN_PRI 0x0F /* select priority 0-15 (15=best) */
533
534 #if 0
535 struct dmsg_lnk_hammer2_volconf {
536 dmsg_hdr_t head;
537 hammer2_volconf_t copy; /* copy spec */
538 int32_t index;
539 int32_t unused01;
540 uuid_t mediaid;
541 int64_t reserved02[32];
542 } __packed;
543 #endif
544
545 typedef struct dmsg_lnk_hammer2_volconf dmsg_lnk_hammer2_volconf_t;
546
547 #define DMSG_LNK_HAMMER2_VOLCONF DMSG_LNK(DMSG_LNK_CMD_HAMMER2_VOLCONF, \
548 dmsg_lnk_hammer2_volconf)
549
550 #define H2_LNK_VOLCONF(msg) ((dmsg_lnk_hammer2_volconf_t *)(msg)->any.buf)
551
552 /*
553 * HAMMER2 directory entry header (embedded in blockref) exactly 16 bytes
554 */
555 struct hammer2_dirent_head {
556 hammer2_tid_t inum; /* inode number */
557 uint16_t namlen; /* name length */
558 uint8_t type; /* OBJTYPE_* */
559 uint8_t unused0B;
560 uint8_t unused0C[4];
561 } __packed;
562
563 typedef struct hammer2_dirent_head hammer2_dirent_head_t;
564
565 /*
566 * The media block reference structure. This forms the core of the HAMMER2
567 * media topology recursion. This 128-byte data structure is embedded in the
568 * volume header, in inodes (which are also directory entries), and in
569 * indirect blocks.
570 *
571 * A blockref references a single media item, which typically can be a
572 * directory entry (aka inode), indirect block, or data block.
573 *
574 * The primary feature a blockref represents is the ability to validate
575 * the entire tree underneath it via its check code. Any modification to
576 * anything propagates up the blockref tree all the way to the root, replacing
577 * the related blocks and compounding the generated check code.
578 *
579 * The check code can be a simple 32-bit iscsi code, a 64-bit crc, or as
580 * complex as a 512 bit cryptographic hash. I originally used a 64-byte
581 * blockref but later expanded it to 128 bytes to be able to support the
582 * larger check code as well as to embed statistics for quota operation.
583 *
584 * Simple check codes are not sufficient for unverified dedup. Even with
585 * a maximally-sized check code unverified dedup should only be used in
586 * in subdirectory trees where you do not need 100% data integrity.
587 *
588 * Unverified dedup is deduping based on meta-data only without verifying
589 * that the data blocks are actually identical. Verified dedup guarantees
590 * integrity but is a far more I/O-expensive operation.
591 *
592 * --
593 *
594 * mirror_tid - per cluster node modified (propagated upward by flush)
595 * modify_tid - clc record modified (not propagated).
596 * update_tid - clc record updated (propagated upward on verification)
597 *
598 * CLC - Stands for 'Cluster Level Change', identifiers which are identical
599 * within the topology across all cluster nodes (when fully
600 * synchronized).
601 *
602 * NOTE: The range of keys represented by the blockref is (key) to
603 * ((key) + (1LL << keybits) - 1). HAMMER2 usually populates
604 * blocks bottom-up, inserting a new root when radix expansion
605 * is required.
606 *
607 * leaf_count - Helps manage leaf collapse calculations when indirect
608 * blocks become mostly empty. This value caps out at
609 * HAMMER2_BLOCKREF_LEAF_MAX (65535).
610 *
611 * Used by the chain code to determine when to pull leafs up
612 * from nearly empty indirect blocks. For the purposes of this
613 * calculation, BREF_TYPE_INODE is considered a leaf, along
614 * with DIRENT and DATA.
615 *
616 * RESERVED FIELDS
617 *
618 * A number of blockref fields are reserved and should generally be set to
619 * 0 for future compatibility.
620 *
621 * FUTURE BLOCKREF EXPANSION
622 *
623 * CONTENT ADDRESSABLE INDEXING (future) - Using a 256 or 512-bit check code.
624 */
625 struct hammer2_blockref { /* MUST BE EXACTLY 64 BYTES */
626 uint8_t type; /* type of underlying item */
627 uint8_t methods; /* check method & compression method */
628 uint8_t copyid; /* specify which copy this is */
629 uint8_t keybits; /* #of keybits masked off 0=leaf */
630 uint8_t vradix; /* virtual data/meta-data size */
631 uint8_t flags; /* blockref flags */
632 uint16_t leaf_count; /* leaf aggregation count */
633 hammer2_key_t key; /* key specification */
634 hammer2_tid_t mirror_tid; /* media flush topology & freemap */
635 hammer2_tid_t modify_tid; /* clc modify (not propagated) */
636 hammer2_off_t data_off; /* low 6 bits is phys size (radix)*/
637 hammer2_tid_t update_tid; /* clc modify (propagated upward) */
638 union {
639 char buf[16];
640
641 /*
642 * Directory entry header (BREF_TYPE_DIRENT)
643 *
644 * NOTE: check.buf contains filename if <= 64 bytes. Longer
645 * filenames are stored in a data reference of size
646 * HAMMER2_ALLOC_MIN (at least 256, typically 1024).
647 *
648 * NOTE: inode structure may contain a copy of a recently
649 * associated filename, for recovery purposes.
650 *
651 * NOTE: Superroot entries are INODEs, not DIRENTs. Code
652 * allows both cases.
653 */
654 hammer2_dirent_head_t dirent;
655
656 /*
657 * Statistics aggregation (BREF_TYPE_INODE, BREF_TYPE_INDIRECT)
658 */
659 struct {
660 hammer2_key_t data_count;
661 hammer2_key_t inode_count;
662 } stats;
663 } embed;
664 union { /* check info */
665 char buf[64];
666 struct {
667 uint32_t value;
668 uint32_t reserved[15];
669 } iscsi32;
670 struct {
671 uint64_t value;
672 uint64_t reserved[7];
673 } xxhash64;
674 struct {
675 char data[24];
676 char reserved[40];
677 } sha192;
678 struct {
679 char data[32];
680 char reserved[32];
681 } sha256;
682 struct {
683 char data[64];
684 } sha512;
685
686 /*
687 * Freemap hints are embedded in addition to the icrc32.
688 *
689 * bigmask - Radixes available for allocation (0-31).
690 * Heuristical (may be permissive but not
691 * restrictive). Typically only radix values
692 * 10-16 are used (i.e. (1<<10) through (1<<16)).
693 *
694 * avail - Total available space remaining, in bytes
695 */
696 struct {
697 uint32_t icrc32;
698 uint32_t bigmask; /* available radixes */
699 uint64_t avail; /* total available bytes */
700 char reserved[48];
701 } freemap;
702 } check;
703 } __packed;
704
705 typedef struct hammer2_blockref hammer2_blockref_t;
706
707 #define HAMMER2_BLOCKREF_BYTES 128 /* blockref struct in bytes */
708 #define HAMMER2_BLOCKREF_RADIX 7
709
710 #define HAMMER2_BLOCKREF_LEAF_MAX 65535
711
712 /*
713 * On-media and off-media blockref types.
714 *
715 * types >= 128 are pseudo values that should never be present on-media.
716 */
717 #define HAMMER2_BREF_TYPE_EMPTY 0
718 #define HAMMER2_BREF_TYPE_INODE 1
719 #define HAMMER2_BREF_TYPE_INDIRECT 2
720 #define HAMMER2_BREF_TYPE_DATA 3
721 #define HAMMER2_BREF_TYPE_DIRENT 4
722 #define HAMMER2_BREF_TYPE_FREEMAP_NODE 5
723 #define HAMMER2_BREF_TYPE_FREEMAP_LEAF 6
724 #define HAMMER2_BREF_TYPE_INVALID 7
725 #define HAMMER2_BREF_TYPE_FREEMAP 254 /* pseudo-type */
726 #define HAMMER2_BREF_TYPE_VOLUME 255 /* pseudo-type */
727
728 #define HAMMER2_BREF_FLAG_PFSROOT 0x01 /* see also related opflag */
729 #define HAMMER2_BREF_FLAG_ZERO 0x02 /* NO LONGER USED */
730 #define HAMMER2_BREF_FLAG_EMERG_MIP 0x04 /* emerg modified-in-place */
731
732 /*
733 * Encode/decode check mode and compression mode for
734 * bref.methods. The compression level is not encoded in
735 * bref.methods.
736 */
737 #define HAMMER2_ENC_CHECK(n) (((n) & 15) << 4)
738 #define HAMMER2_DEC_CHECK(n) (((n) >> 4) & 15)
739 #define HAMMER2_ENC_COMP(n) ((n) & 15)
740 #define HAMMER2_DEC_COMP(n) ((n) & 15)
741
742 #define HAMMER2_CHECK_NONE 0
743 #define HAMMER2_CHECK_DISABLED 1
744 #define HAMMER2_CHECK_ISCSI32 2
745 #define HAMMER2_CHECK_XXHASH64 3
746 #define HAMMER2_CHECK_SHA192 4
747 #define HAMMER2_CHECK_FREEMAP 5
748
749 #define HAMMER2_CHECK_DEFAULT HAMMER2_CHECK_XXHASH64
750
751 /* user-specifiable check modes only */
752 #define HAMMER2_CHECK_STRINGS { "none", "disabled", "crc32", \
753 "xxhash64", "sha192" }
754 #define HAMMER2_CHECK_STRINGS_COUNT 5
755
756 /*
757 * Encode/decode check or compression algorithm request in
758 * ipdata->meta.check_algo and ipdata->meta.comp_algo.
759 */
760 #define HAMMER2_ENC_ALGO(n) (n)
761 #define HAMMER2_DEC_ALGO(n) ((n) & 15)
762 #define HAMMER2_ENC_LEVEL(n) ((n) << 4)
763 #define HAMMER2_DEC_LEVEL(n) (((n) >> 4) & 15)
764
765 #define HAMMER2_COMP_NONE 0
766 #define HAMMER2_COMP_AUTOZERO 1
767 #define HAMMER2_COMP_LZ4 2
768 #define HAMMER2_COMP_ZLIB 3
769
770 #define HAMMER2_COMP_NEWFS_DEFAULT HAMMER2_COMP_LZ4
771 #define HAMMER2_COMP_STRINGS { "none", "autozero", "lz4", "zlib" }
772 #define HAMMER2_COMP_STRINGS_COUNT 4
773
774 /*
775 * Passed to hammer2_chain_create(), causes methods to be inherited from
776 * parent.
777 */
778 #define HAMMER2_METH_DEFAULT -1
779
780 /*
781 * HAMMER2 block references are collected into sets of 4 blockrefs. These
782 * sets are fully associative, meaning the elements making up a set may
783 * contain duplicate entries, holes, but valid elements are always sorted.
784 *
785 * When redundancy is desired a set may contain several duplicate
786 * entries pointing to different copies of the same data. Up to 4 copies
787 * are supported. Not implemented.
788 *
789 * When a set fills up another level of indirection is inserted, moving
790 * some or all of the set's contents into indirect blocks placed under the
791 * set. This is a top-down approach in that indirect blocks are not created
792 * until the set actually becomes full (that is, the entries in the set can
793 * shortcut the indirect blocks when the set is not full). Depending on how
794 * things are filled multiple indirect blocks will eventually be created.
795 */
796 struct hammer2_blockset {
797 hammer2_blockref_t blockref[HAMMER2_SET_COUNT];
798 };
799
800 typedef struct hammer2_blockset hammer2_blockset_t;
801
802 /*
803 * Catch programmer snafus
804 */
805 #if (1 << HAMMER2_SET_RADIX) != HAMMER2_SET_COUNT
806 #error "hammer2 direct radix is incorrect"
807 #endif
808 #if (1 << HAMMER2_PBUFRADIX) != HAMMER2_PBUFSIZE
809 #error "HAMMER2_PBUFRADIX and HAMMER2_PBUFSIZE are inconsistent"
810 #endif
811 #if (1 << HAMMER2_RADIX_MIN) != HAMMER2_ALLOC_MIN
812 #error "HAMMER2_RADIX_MIN and HAMMER2_ALLOC_MIN are inconsistent"
813 #endif
814
815 /*
816 * hammer2_bmap_data - A freemap entry in the LEVEL1 block.
817 *
818 * Each 128-byte entry contains the bitmap and meta-data required to manage
819 * a LEVEL0 (4MB) block of storage. The storage is managed in 256 x 16KB
820 * chunks.
821 *
822 * A smaller allocation granularity is supported via a linear iterator and/or
823 * must otherwise be tracked in ram.
824 *
825 * (data structure must be 128 bytes exactly)
826 *
827 * linear - A BYTE linear allocation offset used for sub-16KB allocations
828 * only. May contain values between 0 and 4MB. Must be ignored
829 * if 16KB-aligned (i.e. force bitmap scan), otherwise may be
830 * used to sub-allocate within the 16KB block (which is already
831 * marked as allocated in the bitmap).
832 *
833 * Sub-allocations need only be 1KB-aligned and do not have to be
834 * size-aligned, and 16KB or larger allocations do not update this
835 * field, resulting in pretty good packing.
836 *
837 * Please note that file data granularity may be limited by
838 * other issues such as buffer cache direct-mapping and the
839 * desire to support sector sizes up to 16KB (so H2 only issues
840 * I/O's in multiples of 16KB anyway).
841 *
842 * class - Clustering class. Cleared to 0 only if the entire leaf becomes
843 * free. Used to cluster device buffers so all elements must have
844 * the same device block size, but may mix logical sizes.
845 *
846 * Typically integrated with the blockref type in the upper 8 bits
847 * to localize inodes and indrect blocks, improving bulk free scans
848 * and directory scans.
849 *
850 * bitmap - Two bits per 16KB allocation block arranged in arrays of
851 * 64-bit elements, 256x2 bits representing ~4MB worth of media
852 * storage. Bit patterns are as follows:
853 *
854 * 00 Unallocated
855 * 01 (reserved)
856 * 10 Possibly free
857 * 11 Allocated
858 *
859 * ==========
860 * level6 freemap
861 * blockref[0] : 4EB
862 * blockref[1] : 4EB
863 * blockref[2] : 4EB
864 * blockref[3] : 4EB
865 * -----------------------------------------------------------------------
866 * 4 x 128B = 512B : 4 x 4EB = 16EB
867 *
868 * level2-5 FREEMAP_NODE
869 * blockref[0] : 1GB,256GB,64TB,16PB
870 * blockref[1] : 1GB,256GB,64TB,16PB
871 * ...
872 * blockref[255] : 1GB,256GB,64TB,16PB
873 * -----------------------------------------------------------------------
874 * 256 x 128B = 32KB : 256 x 1GB,256GB,64TB,16PB = 256GB,64TB,16PB,4EB
875 *
876 * level1 FREEMAP_LEAF
877 * bmap_data[0] : 8 x 8B = 512bits = 256 x 2bits -> 256 x 16KB = 4MB
878 * bmap_data[1] : 8 x 8B = 512bits = 256 x 2bits -> 256 x 16KB = 4MB
879 * ...
880 * bmap_data[255] : 8 x 8B = 512bits = 256 x 2bits -> 256 x 16KB = 4MB
881 * -----------------------------------------------------------------------
882 * 256 x 128B = 32KB : 256 x 4MB = 1GB
883 * ==========
884 */
885 struct hammer2_bmap_data {
886 int32_t linear; /* 00 linear sub-granular allocation offset */
887 uint16_t class; /* 04-05 clustering class ((type<<8)|radix) */
888 uint8_t reserved06; /* 06 */
889 uint8_t reserved07; /* 07 */
890 uint32_t reserved08; /* 08 */
891 uint32_t reserved0C; /* 0C */
892 uint32_t reserved10; /* 10 */
893 uint32_t reserved14; /* 14 */
894 uint32_t reserved18; /* 18 */
895 uint32_t avail; /* 1C */
896 uint32_t reserved20[8]; /* 20-3F 256 bits manages 128K/1KB/2-bits */
897 /* 40-7F 512 bits manages 4MB of storage */
898 hammer2_bitmap_t bitmapq[HAMMER2_BMAP_ELEMENTS];
899 } __packed;
900
901 typedef struct hammer2_bmap_data hammer2_bmap_data_t;
902
903 /*
904 * The inode number is stored in the inode rather than being
905 * based on the location of the inode (since the location moves every time
906 * the inode or anything underneath the inode is modified).
907 *
908 * The inode is 1024 bytes, made up of 256 bytes of meta-data, 256 bytes
909 * for the filename, and 512 bytes worth of direct file data OR an embedded
910 * blockset. The in-memory hammer2_inode structure contains only the mostly-
911 * node-independent meta-data portion (some flags are node-specific and will
912 * not be synchronized). The rest of the inode is node-specific and chain I/O
913 * is required to obtain it.
914 *
915 * Directories represent one inode per blockref. Inodes are not laid out
916 * as a file but instead are represented by the related blockrefs. The
917 * blockrefs, in turn, are indexed by the 64-bit directory hash key. Remember
918 * that blocksets are fully associative, so a certain degree efficiency is
919 * achieved just from that.
920 *
921 * Up to 512 bytes of direct data can be embedded in an inode, and since
922 * inodes are essentially directory entries this also means that small data
923 * files end up simply being laid out linearly in the directory, resulting
924 * in fewer seeks and highly optimal access.
925 *
926 * The compression mode can be changed at any time in the inode and is
927 * recorded on a blockref-by-blockref basis.
928 */
929 #define HAMMER2_INODE_BYTES 1024 /* (asserted by code) */
930 #define HAMMER2_INODE_MAXNAME 256 /* maximum name in bytes */
931 #define HAMMER2_INODE_VERSION_ONE 1
932
933 #define HAMMER2_INODE_START 1024 /* dynamically allocated */
934
935 struct hammer2_inode_meta {
936 uint16_t version; /* 0000 inode data version */
937 uint8_t reserved02; /* 0002 */
938 uint8_t pfs_subtype; /* 0003 pfs sub-type */
939
940 /*
941 * core inode attributes, inode type, misc flags
942 */
943 uint32_t uflags; /* 0004 chflags */
944 uint32_t rmajor; /* 0008 available for device nodes */
945 uint32_t rminor; /* 000C available for device nodes */
946 uint64_t ctime; /* 0010 inode change time */
947 uint64_t mtime; /* 0018 modified time */
948 uint64_t atime; /* 0020 access time (unsupported) */
949 uint64_t btime; /* 0028 birth time */
950 uuid_t uid; /* 0030 uid / degenerate unix uid */
951 uuid_t gid; /* 0040 gid / degenerate unix gid */
952
953 uint8_t type; /* 0050 object type */
954 uint8_t op_flags; /* 0051 operational flags */
955 uint16_t cap_flags; /* 0052 capability flags */
956 uint32_t mode; /* 0054 unix modes (typ low 16 bits) */
957
958 /*
959 * inode size, identification, localized recursive configuration
960 * for compression and backup copies.
961 *
962 * NOTE: Nominal parent inode number (iparent) is only applicable
963 * for directories but can also help for files during
964 * catastrophic recovery.
965 */
966 hammer2_tid_t inum; /* 0058 inode number */
967 hammer2_off_t size; /* 0060 size of file */
968 uint64_t nlinks; /* 0068 hard links (typ only dirs) */
969 hammer2_tid_t iparent; /* 0070 nominal parent inum */
970 hammer2_key_t name_key; /* 0078 full filename key */
971 uint16_t name_len; /* 0080 filename length */
972 uint8_t ncopies; /* 0082 ncopies to local media */
973 uint8_t comp_algo; /* 0083 compression request & algo */
974
975 /*
976 * These fields are currently only applicable to PFSROOTs.
977 *
978 * NOTE: We can't use {volume_data->fsid, pfs_clid} to uniquely
979 * identify an instance of a PFS in the cluster because
980 * a mount may contain more than one copy of the PFS as
981 * a separate node. {pfs_clid, pfs_fsid} must be used for
982 * registration in the cluster.
983 */
984 uint8_t target_type; /* 0084 hardlink target type */
985 uint8_t check_algo; /* 0085 check code request & algo */
986 uint8_t pfs_nmasters; /* 0086 (if PFSROOT) if multi-master */
987 uint8_t pfs_type; /* 0087 (if PFSROOT) node type */
988 hammer2_tid_t pfs_inum; /* 0088 (if PFSROOT) inum allocator */
989 uuid_t pfs_clid; /* 0090 (if PFSROOT) cluster uuid */
990 uuid_t pfs_fsid; /* 00A0 (if PFSROOT) unique uuid */
991
992 /*
993 * Quotas and aggregate sub-tree inode and data counters. Note that
994 * quotas are not replicated downward, they are explicitly set by
995 * the sysop and in-memory structures keep track of inheritance.
996 */
997 hammer2_key_t data_quota; /* 00B0 subtree quota in bytes */
998 hammer2_key_t unusedB8; /* 00B8 subtree byte count */
999 hammer2_key_t inode_quota; /* 00C0 subtree quota inode count */
1000 hammer2_key_t unusedC8; /* 00C8 subtree inode count */
1001
1002 /*
1003 * The last snapshot tid is tested against modify_tid to determine
1004 * when a copy must be made of a data block whos check mode has been
1005 * disabled (a disabled check mode allows data blocks to be updated
1006 * in place instead of copy-on-write).
1007 */
1008 hammer2_tid_t pfs_lsnap_tid; /* 00D0 last snapshot tid */
1009 hammer2_tid_t reservedD8; /* 00D8 (avail) */
1010
1011 /*
1012 * Tracks (possibly degenerate) free areas covering all sub-tree
1013 * allocations under inode, not counting the inode itself.
1014 * 0/0 indicates empty entry. fully set-associative.
1015 *
1016 * (not yet implemented)
1017 */
1018 uint64_t decrypt_check; /* 00E0 decryption validator */
1019 hammer2_off_t reservedE0[3]; /* 00E8/F0/F8 */
1020 } __packed;
1021
1022 typedef struct hammer2_inode_meta hammer2_inode_meta_t;
1023
1024 struct hammer2_inode_data {
1025 hammer2_inode_meta_t meta; /* 0000-00FF */
1026 unsigned char filename[HAMMER2_INODE_MAXNAME];
1027 /* 0100-01FF (256 char, unterminated) */
1028 union { /* 0200-03FF (64x8 = 512 bytes) */
1029 hammer2_blockset_t blockset;
1030 char data[HAMMER2_EMBEDDED_BYTES];
1031 } u;
1032 } __packed;
1033
1034 typedef struct hammer2_inode_data hammer2_inode_data_t;
1035
1036 #define HAMMER2_OPFLAG_DIRECTDATA 0x01
1037 #define HAMMER2_OPFLAG_PFSROOT 0x02 /* (see also bref flag) */
1038 #define HAMMER2_OPFLAG_COPYIDS 0x04 /* copyids override parent */
1039
1040 #define HAMMER2_OBJTYPE_UNKNOWN 0
1041 #define HAMMER2_OBJTYPE_DIRECTORY 1
1042 #define HAMMER2_OBJTYPE_REGFILE 2
1043 #define HAMMER2_OBJTYPE_FIFO 4
1044 #define HAMMER2_OBJTYPE_CDEV 5
1045 #define HAMMER2_OBJTYPE_BDEV 6
1046 #define HAMMER2_OBJTYPE_SOFTLINK 7
1047 #define HAMMER2_OBJTYPE_UNUSED08 8
1048 #define HAMMER2_OBJTYPE_SOCKET 9
1049 #define HAMMER2_OBJTYPE_WHITEOUT 10
1050
1051 #define HAMMER2_COPYID_NONE 0
1052 #define HAMMER2_COPYID_LOCAL ((uint8_t)-1)
1053
1054 #define HAMMER2_COPYID_COUNT 256
1055
1056 /*
1057 * PFS types identify the role of a PFS within a cluster. The PFS types
1058 * is stored on media and in LNK_SPAN messages and used in other places.
1059 *
1060 * The low 4 bits specify the current active type while the high 4 bits
1061 * specify the transition target if the PFS is being upgraded or downgraded,
1062 * If the upper 4 bits are not zero it may effect how a PFS is used during
1063 * the transition.
1064 *
1065 * Generally speaking, downgrading a MASTER to a SLAVE cannot complete until
1066 * at least all MASTERs have updated their pfs_nmasters field. And upgrading
1067 * a SLAVE to a MASTER cannot complete until the new prospective master has
1068 * been fully synchronized (though theoretically full synchronization is
1069 * not required if a (new) quorum of other masters are fully synchronized).
1070 *
1071 * It generally does not matter which PFS element you actually mount, you
1072 * are mounting 'the cluster'. So, for example, a network mount will mount
1073 * a DUMMY PFS type on a memory filesystem. However, there are two exceptions.
1074 * In order to gain the benefits of a SOFT_MASTER or SOFT_SLAVE, those PFSs
1075 * must be directly mounted.
1076 */
1077 #define HAMMER2_PFSTYPE_NONE 0x00
1078 #define HAMMER2_PFSTYPE_CACHE 0x01
1079 #define HAMMER2_PFSTYPE_UNUSED02 0x02
1080 #define HAMMER2_PFSTYPE_SLAVE 0x03
1081 #define HAMMER2_PFSTYPE_SOFT_SLAVE 0x04
1082 #define HAMMER2_PFSTYPE_SOFT_MASTER 0x05
1083 #define HAMMER2_PFSTYPE_MASTER 0x06
1084 #define HAMMER2_PFSTYPE_UNUSED07 0x07
1085 #define HAMMER2_PFSTYPE_SUPROOT 0x08
1086 #define HAMMER2_PFSTYPE_DUMMY 0x09
1087 #define HAMMER2_PFSTYPE_MAX 16
1088
1089 #define HAMMER2_PFSTRAN_NONE 0x00 /* no transition in progress */
1090 #define HAMMER2_PFSTRAN_CACHE 0x10
1091 #define HAMMER2_PFSTRAN_UNMUSED20 0x20
1092 #define HAMMER2_PFSTRAN_SLAVE 0x30
1093 #define HAMMER2_PFSTRAN_SOFT_SLAVE 0x40
1094 #define HAMMER2_PFSTRAN_SOFT_MASTER 0x50
1095 #define HAMMER2_PFSTRAN_MASTER 0x60
1096 #define HAMMER2_PFSTRAN_UNUSED70 0x70
1097 #define HAMMER2_PFSTRAN_SUPROOT 0x80
1098 #define HAMMER2_PFSTRAN_DUMMY 0x90
1099
1100 #define HAMMER2_PFS_DEC(n) ((n) & 0x0F)
1101 #define HAMMER2_PFS_DEC_TRANSITION(n) (((n) >> 4) & 0x0F)
1102 #define HAMMER2_PFS_ENC_TRANSITION(n) (((n) & 0x0F) << 4)
1103
1104 #define HAMMER2_PFSSUBTYPE_NONE 0
1105 #define HAMMER2_PFSSUBTYPE_SNAPSHOT 1 /* manual/managed snapshot */
1106 #define HAMMER2_PFSSUBTYPE_AUTOSNAP 2 /* automatic snapshot */
1107
1108 /*
1109 * PFS mode of operation is a bitmask. This is typically not stored
1110 * on-media, but defined here because the field may be used in dmsgs.
1111 */
1112 #define HAMMER2_PFSMODE_QUORUM 0x01
1113 #define HAMMER2_PFSMODE_RW 0x02
1114
1115 /*
1116 * The volume header eats a 64K block at the beginning of each 2GB zone
1117 * up to four copies.
1118 *
1119 * All information is stored in host byte order. The volume header's magic
1120 * number may be checked to determine the byte order. If you wish to mount
1121 * between machines w/ different endian modes you'll need filesystem code
1122 * which acts on the media data consistently (either all one way or all the
1123 * other). Our code currently does not do that.
1124 *
1125 * A read-write mount may have to recover missing allocations by doing an
1126 * incremental mirror scan looking for modifications made after alloc_tid.
1127 * If alloc_tid == last_tid then no recovery operation is needed. Recovery
1128 * operations are usually very, very fast.
1129 *
1130 * Read-only mounts do not need to do any recovery, access to the filesystem
1131 * topology is always consistent after a crash (is always consistent, period).
1132 * However, there may be shortcutted blockref updates present from deep in
1133 * the tree which are stored in the volumeh eader and must be tracked on
1134 * the fly.
1135 *
1136 * NOTE: The copyinfo[] array contains the configuration for both the
1137 * cluster connections and any local media copies. The volume
1138 * header will be replicated for each local media copy.
1139 *
1140 * The mount command may specify multiple medias or just one and
1141 * allow HAMMER2 to pick up the others when it checks the copyinfo[]
1142 * array on mount.
1143 *
1144 * NOTE: sroot_blockset points to the super-root directory, not the root
1145 * directory. The root directory will be a subdirectory under the
1146 * super-root.
1147 *
1148 * The super-root directory contains all root directories and all
1149 * snapshots (readonly or writable). It is possible to do a
1150 * null-mount of the super-root using special path constructions
1151 * relative to your mounted root.
1152 */
1153 #define HAMMER2_VOLUME_ID_HBO 0x48414d3205172011LLU
1154 #define HAMMER2_VOLUME_ID_ABO 0x11201705324d4148LLU
1155
1156 /*
1157 * If volume version is HAMMER2_VOL_VERSION_MULTI_VOLUMES or above, max
1158 * HAMMER2_MAX_VOLUMES volumes are supported. There must be 1 (and only 1)
1159 * volume with volume id HAMMER2_ROOT_VOLUME.
1160 * Otherwise filesystem only supports 1 volume, and that volume must have
1161 * volume id HAMMER2_ROOT_VOLUME(0) which was a reserved field then.
1162 */
1163 #define HAMMER2_MAX_VOLUMES 64
1164 #define HAMMER2_ROOT_VOLUME 0
1165
1166 struct hammer2_volume_data {
1167 /*
1168 * sector #0 - 512 bytes
1169 */
1170 uint64_t magic; /* 0000 Signature */
1171 hammer2_off_t boot_beg; /* 0008 Boot area (future) */
1172 hammer2_off_t boot_end; /* 0010 (size = end - beg) */
1173 hammer2_off_t aux_beg; /* 0018 Aux area (future) */
1174 hammer2_off_t aux_end; /* 0020 (size = end - beg) */
1175 hammer2_off_t volu_size; /* 0028 Volume size, bytes */
1176
1177 uint32_t version; /* 0030 */
1178 uint32_t flags; /* 0034 */
1179 uint8_t copyid; /* 0038 copyid of phys vol */
1180 uint8_t freemap_version; /* 0039 freemap algorithm */
1181 uint8_t peer_type; /* 003A HAMMER2_PEER_xxx */
1182 uint8_t volu_id; /* 003B */
1183 uint8_t nvolumes; /* 003C */
1184 uint8_t reserved003D; /* 003D */
1185 uint16_t reserved003E; /* 003E */
1186
1187 uuid_t fsid; /* 0040 */
1188 uuid_t fstype; /* 0050 */
1189
1190 /*
1191 * allocator_size is precalculated at newfs time and does not include
1192 * reserved blocks, boot, or aux areas.
1193 *
1194 * Initial non-reserved-area allocations do not use the freemap
1195 * but instead adjust alloc_iterator. Dynamic allocations take
1196 * over starting at (allocator_beg). This makes newfs_hammer2's
1197 * job a lot easier and can also serve as a testing jig.
1198 */
1199 hammer2_off_t allocator_size; /* 0060 Total data space */
1200 hammer2_off_t allocator_free; /* 0068 Free space */
1201 hammer2_off_t allocator_beg; /* 0070 Initial allocations */
1202
1203 /*
1204 * mirror_tid reflects the highest committed change for this
1205 * block device regardless of whether it is to the super-root
1206 * or to a PFS or whatever.
1207 *
1208 * freemap_tid reflects the highest committed freemap change for
1209 * this block device.
1210 */
1211 hammer2_tid_t mirror_tid; /* 0078 committed tid (vol) */
1212 hammer2_tid_t reserved0080; /* 0080 */
1213 hammer2_tid_t reserved0088; /* 0088 */
1214 hammer2_tid_t freemap_tid; /* 0090 committed tid (fmap) */
1215 hammer2_tid_t bulkfree_tid; /* 0098 bulkfree incremental */
1216 hammer2_tid_t reserved00A0[4]; /* 00A0-00BF */
1217
1218 hammer2_off_t total_size; /* 00C0 Total volume size, bytes */
1219
1220 /*
1221 * Copyids are allocated dynamically from the copyexists bitmap.
1222 * An id from the active copies set (up to 8, see copyinfo later on)
1223 * may still exist after the copy set has been removed from the
1224 * volume header and its bit will remain active in the bitmap and
1225 * cannot be reused until it is 100% removed from the hierarchy.
1226 */
1227 uint32_t copyexists[8]; /* 00C8-00E7 copy exists bmap */
1228 char reserved0140[248]; /* 00E8-01DF */
1229
1230 /*
1231 * 32 bit CRC array at the end of the first 512 byte sector.
1232 *
1233 * icrc_sects[7] - First 512-4 bytes of volume header (including all
1234 * the other icrc's except this one).
1235 *
1236 * icrc_sects[6] - Sector 1 (512 bytes) of volume header, which is
1237 * the blockset for the root.
1238 *
1239 * icrc_sects[5] - Sector 2
1240 * icrc_sects[4] - Sector 3
1241 * icrc_sects[3] - Sector 4 (the freemap blockset)
1242 */
1243 hammer2_crc32_t icrc_sects[8]; /* 01E0-01FF */
1244
1245 /*
1246 * sector #1 - 512 bytes
1247 *
1248 * The entire sector is used by a blockset, but currently only first
1249 * blockref is used.
1250 */
1251 hammer2_blockset_t sroot_blockset; /* 0200-03FF Superroot dir */
1252
1253 /*
1254 * sector #2-6
1255 */
1256 char sector2[512]; /* 0400-05FF reserved */
1257 char sector3[512]; /* 0600-07FF reserved */
1258 hammer2_blockset_t freemap_blockset; /* 0800-09FF freemap */
1259 char sector5[512]; /* 0A00-0BFF reserved */
1260 char sector6[512]; /* 0C00-0DFF reserved */
1261
1262 /*
1263 * sector #7 - 512 bytes
1264 * Maximum 64 volume offsets within logical offset.
1265 */
1266 hammer2_off_t volu_loff[HAMMER2_MAX_VOLUMES];
1267
1268 /*
1269 * sector #8-71 - 32768 bytes
1270 *
1271 * Contains the configuration for up to 256 copyinfo targets. These
1272 * specify local and remote copies operating as masters or slaves.
1273 * copyid's 0 and 255 are reserved (0 indicates an empty slot and 255
1274 * indicates the local media).
1275 */
1276 /* 1000-8FFF copyinfo config */
1277 hammer2_volconf_t copyinfo[HAMMER2_COPYID_COUNT];
1278
1279 /*
1280 * Remaining sections are reserved for future use.
1281 */
1282 char reserved0400[0x6FFC]; /* 9000-FFFB reserved */
1283
1284 /*
1285 * icrc on entire volume header
1286 */
1287 hammer2_crc32_t icrc_volheader; /* FFFC-FFFF full volume icrc*/
1288 } __packed;
1289
1290 typedef struct hammer2_volume_data hammer2_volume_data_t;
1291
1292 /*
1293 * Various parts of the volume header have their own iCRCs.
1294 *
1295 * The first 512 bytes has its own iCRC stored at the end of the 512 bytes
1296 * and not included the icrc calculation.
1297 *
1298 * The second 512 bytes also has its own iCRC but it is stored in the first
1299 * 512 bytes so it covers the entire second 512 bytes.
1300 *
1301 * The whole volume block (64KB) has an iCRC covering all but the last 4 bytes,
1302 * which is where the iCRC for the whole volume is stored. This is currently
1303 * a catch-all for anything not individually iCRCd.
1304 */
1305 #define HAMMER2_VOL_ICRC_SECT0 7
1306 #define HAMMER2_VOL_ICRC_SECT1 6
1307
1308 #define HAMMER2_VOLUME_BYTES 65536
1309
1310 #define HAMMER2_VOLUME_ICRC0_OFF 0
1311 #define HAMMER2_VOLUME_ICRC1_OFF 512
1312 #define HAMMER2_VOLUME_ICRCVH_OFF 0
1313
1314 #define HAMMER2_VOLUME_ICRC0_SIZE (512 - 4)
1315 #define HAMMER2_VOLUME_ICRC1_SIZE (512)
1316 #define HAMMER2_VOLUME_ICRCVH_SIZE (65536 - 4)
1317
1318 #define HAMMER2_VOL_VERSION_MULTI_VOLUMES 2
1319
1320 #define HAMMER2_VOL_VERSION_MIN 1
1321 #define HAMMER2_VOL_VERSION_DEFAULT HAMMER2_VOL_VERSION_MULTI_VOLUMES
1322 #define HAMMER2_VOL_VERSION_WIP (HAMMER2_VOL_VERSION_MULTI_VOLUMES + 1)
1323
1324 #define HAMMER2_NUM_VOLHDRS 4
1325
1326 union hammer2_media_data {
1327 hammer2_volume_data_t voldata;
1328 hammer2_inode_data_t ipdata;
1329 hammer2_blockset_t blkset;
1330 hammer2_blockref_t npdata[HAMMER2_IND_COUNT_MAX];
1331 hammer2_bmap_data_t bmdata[HAMMER2_FREEMAP_COUNT];
1332 char buf[HAMMER2_PBUFSIZE];
1333 } __packed;
1334
1335 typedef union hammer2_media_data hammer2_media_data_t;
1336
1337 #endif /* !_VFS_HAMMER2_DISK_H_ */
1338