main.c revision 1.5 1 /* $NetBSD: main.c,v 1.5 2006/11/08 23:12:57 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2006 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * TODO:
41 *
42 * - Need better analysis and tracking of events.
43 * - Should be binary format agnostic, but given that we're likely to be using
44 * ELF for quite a while that's not a big problem.
45 * - Shouldn't have to parse the namelist here. We should use something like
46 * FreeBSD's libelf.
47 * - The way the namelist is searched sucks, is it worth doing something
48 * better?
49 * - Might be nice to record events and replay later, like ktrace/kdump.
50 */
51
52 #include <sys/cdefs.h>
53 #ifndef lint
54 __RCSID("$NetBSD: main.c,v 1.5 2006/11/08 23:12:57 ad Exp $");
55 #endif /* not lint */
56
57 #include <sys/types.h>
58 #include <sys/param.h>
59 #include <sys/time.h>
60 #include <sys/fcntl.h>
61 #include <sys/ioctl.h>
62 #include <sys/wait.h>
63 #include <sys/signal.h>
64 #include <sys/sysctl.h>
65
66 #include <dev/lockstat.h>
67
68 #include <stdio.h>
69 #include <stdlib.h>
70 #include <string.h>
71 #include <limits.h>
72 #include <unistd.h>
73 #include <err.h>
74 #include <paths.h>
75 #include <util.h>
76 #include <ctype.h>
77 #include <errno.h>
78
79 #include "extern.h"
80
81 #define _PATH_DEV_LOCKSTAT "/dev/lockstat"
82
83 #define MILLI 1000.0
84 #define MICRO 1000000.0
85 #define NANO 1000000000.0
86 #define PICO 1000000000000.0
87
88 TAILQ_HEAD(lock_head, lockstruct);
89 typedef struct lock_head locklist_t;
90 TAILQ_HEAD(buf_head, lsbuf);
91 typedef struct buf_head buflist_t;
92
93 typedef struct lockstruct {
94 TAILQ_ENTRY(lockstruct) chain;
95 buflist_t bufs;
96 uintptr_t lock;
97 double times[LB_NEVENT];
98 uint32_t counts[LB_NEVENT];
99 u_int flags;
100 u_int nbufs;
101 } lock_t;
102
103 typedef struct name {
104 const char *name;
105 int mask;
106 } name_t;
107
108 const name_t locknames[] = {
109 { "adaptive_mutex", LB_ADAPTIVE_MUTEX },
110 { "adaptive_rwlock", LB_ADAPTIVE_RWLOCK },
111 { "spin_mutex", LB_SPIN_MUTEX },
112 { "spin_rwlock", LB_SPIN_RWLOCK },
113 { "lockmgr", LB_LOCKMGR },
114 { NULL, 0 }
115 };
116
117 const name_t eventnames[] = {
118 { "spin", LB_SPIN },
119 { "sleep", LB_SLEEP },
120 { NULL, 0 },
121 };
122
123 const name_t alltypes[] = {
124 { "Adaptive mutex spin", LB_ADAPTIVE_MUTEX | LB_SPIN },
125 { "Adaptive mutex sleep", LB_ADAPTIVE_MUTEX | LB_SLEEP },
126 { "Adaptive RW lock spin", LB_ADAPTIVE_RWLOCK | LB_SPIN },
127 { "Adaptive RW lock sleep", LB_ADAPTIVE_RWLOCK | LB_SLEEP },
128 { "Spin mutex spin", LB_SPIN_MUTEX | LB_SPIN },
129 { "lockmgr sleep", LB_LOCKMGR | LB_SLEEP },
130 #ifdef LB_KERNEL_LOCK
131 /* XXX newlock2 */
132 { "Kernel lock spin", LB_KERNEL_LOCK | LB_SPIN },
133 #endif
134 { NULL, 0 }
135 };
136
137 locklist_t locklist[LB_NLOCK >> LB_LOCK_SHIFT];
138
139 lsbuf_t *bufs;
140 lsdisable_t ld;
141 int lflag;
142 int nbufs;
143 int cflag;
144 int lsfd;
145 int displayed;
146 int bin64;
147 double tscale;
148 double cscale;
149 double cpuscale[sizeof(ld.ld_freq) / sizeof(ld.ld_freq[0])];
150 FILE *outfp;
151
152 void findsym(findsym_t, char *, uintptr_t *, uintptr_t *);
153 void spawn(int, char **);
154 void display(int, const char *name);
155 void listnames(const name_t *);
156 int matchname(const name_t *, const char *);
157 void makelists(void);
158 void nullsig(int);
159 void usage(void);
160 void resort(int, int);
161 int ncpu(void);
162
163 int
164 main(int argc, char **argv)
165 {
166 int eventtype, locktype, ch, nlfd, sflag, fd, i, pflag;
167 const char *nlistf, *outf;
168 char *lockname, *funcname;
169 const name_t *name;
170 lsenable_t le;
171 double ms;
172 char *p;
173
174 nlistf = NULL;
175 outf = NULL;
176 lockname = NULL;
177 funcname = NULL;
178 eventtype = -1;
179 locktype = -1;
180 nbufs = 0;
181 sflag = 0;
182 pflag = 0;
183
184 while ((ch = getopt(argc, argv, "E:F:L:M:N:T:b:ceflo:pst")) != -1)
185 switch (ch) {
186 case 'E':
187 eventtype = matchname(eventnames, optarg);
188 break;
189 case 'F':
190 funcname = optarg;
191 break;
192 case 'L':
193 lockname = optarg;
194 break;
195 case 'N':
196 nlistf = optarg;
197 break;
198 case 'T':
199 locktype = matchname(locknames, optarg);
200 break;
201 case 'b':
202 nbufs = (int)strtol(optarg, &p, 0);
203 if (!isdigit((u_int)*optarg) || *p != '\0')
204 usage();
205 break;
206 case 'c':
207 cflag = 1;
208 break;
209 case 'e':
210 listnames(eventnames);
211 break;
212 case 'l':
213 lflag = 1;
214 break;
215 case 'o':
216 outf = optarg;
217 break;
218 case 'p':
219 pflag = 1;
220 break;
221 case 's':
222 sflag = 1;
223 break;
224 case 't':
225 listnames(locknames);
226 break;
227 default:
228 usage();
229 }
230 argc -= optind;
231 argv += optind;
232
233 if (*argv == NULL)
234 usage();
235
236 if (outf) {
237 fd = open(outf, O_WRONLY | O_CREAT | O_TRUNC, 0600);
238 if (fd == -1)
239 err(EXIT_FAILURE, "opening %s", outf);
240 outfp = fdopen(fd, "w");
241 } else
242 outfp = stdout;
243
244 /*
245 * Find the name list for resolving symbol names, and load it into
246 * memory.
247 */
248 if (nlistf == NULL) {
249 nlfd = open(_PATH_KSYMS, O_RDONLY);
250 nlistf = getbootfile();
251 } else
252 nlfd = -1;
253 if (nlfd == -1) {
254 if ((nlfd = open(nlistf, O_RDONLY)) < 0)
255 err(EXIT_FAILURE, "cannot open " _PATH_KSYMS " or %s",
256 nlistf);
257 }
258 if (loadsym32(nlfd) != 0) {
259 if (loadsym64(nlfd) != 0)
260 errx(EXIT_FAILURE, "unable to load symbol table");
261 bin64 = 1;
262 }
263 close(nlfd);
264
265 memset(&le, 0, sizeof(le));
266 le.le_nbufs = nbufs;
267
268 /*
269 * Set up initial filtering.
270 */
271 if (lockname != NULL) {
272 findsym(LOCK_BYNAME, lockname, &le.le_lock, NULL);
273 le.le_flags |= LE_ONE_LOCK;
274 }
275 if (!lflag)
276 le.le_flags |= LE_CALLSITE;
277 if (funcname != NULL) {
278 if (lflag)
279 usage();
280 findsym(FUNC_BYNAME, funcname, &le.le_csstart, &le.le_csend);
281 le.le_flags |= LE_ONE_CALLSITE;
282 }
283 le.le_mask = (eventtype & LB_EVENT_MASK) | (locktype & LB_LOCK_MASK);
284
285 /*
286 * Start tracing.
287 */
288 if ((lsfd = open(_PATH_DEV_LOCKSTAT, O_RDONLY)) < 0)
289 err(EXIT_FAILURE, "cannot open " _PATH_DEV_LOCKSTAT);
290 if (ioctl(lsfd, IOC_LOCKSTAT_GVERSION, &ch) < 0)
291 err(EXIT_FAILURE, "ioctl");
292 if (ch != LS_VERSION)
293 errx(EXIT_FAILURE, "incompatible lockstat interface version");
294 if (ioctl(lsfd, IOC_LOCKSTAT_ENABLE, &le))
295 err(EXIT_FAILURE, "cannot enable tracing");
296
297 /*
298 * Execute the traced program.
299 */
300 spawn(argc, argv);
301
302 /*
303 * Stop tracing, and read the trace buffers from the kernel.
304 */
305 if (ioctl(lsfd, IOC_LOCKSTAT_DISABLE, &ld) == -1) {
306 if (errno == EOVERFLOW) {
307 warnx("overflowed available kernel trace buffers");
308 exit(EXIT_FAILURE);
309 }
310 err(EXIT_FAILURE, "cannot disable tracing");
311 }
312 if ((bufs = malloc(ld.ld_size)) == NULL)
313 err(EXIT_FAILURE, "cannot allocate memory for user buffers");
314 if (read(lsfd, bufs, ld.ld_size) != ld.ld_size)
315 err(EXIT_FAILURE, "reading from " _PATH_DEV_LOCKSTAT);
316 if (close(lsfd))
317 err(EXIT_FAILURE, "close(" _PATH_DEV_LOCKSTAT ")");
318
319 /*
320 * Figure out how to scale the results, and build the lists. For
321 * internal use we convert all times from CPU frequency based to
322 * picoseconds, and values are eventually displayed in ms.
323 */
324 for (i = 0; i < sizeof(ld.ld_freq) / sizeof(ld.ld_freq[0]); i++)
325 if (ld.ld_freq[i] != 0)
326 cpuscale[i] = PICO / ld.ld_freq[i];
327 ms = ld.ld_time.tv_sec * MILLI + ld.ld_time.tv_nsec / MICRO;
328 if (pflag)
329 cscale = 1.0 / ncpu();
330 else
331 cscale = 1.0;
332 cscale *= (sflag ? MILLI / ms : 1.0);
333 tscale = cscale / NANO;
334 nbufs = (int)(ld.ld_size / sizeof(lsbuf_t));
335 makelists();
336
337 /*
338 * Display the results.
339 */
340 fprintf(outfp, "Elapsed time: %.2f seconds.", ms / MILLI);
341 if (sflag || pflag) {
342 fprintf(outfp, " Displaying ");
343 if (pflag)
344 fprintf(outfp, "per-CPU ");
345 if (sflag)
346 fprintf(outfp, "per-second ");
347 fprintf(outfp, "averages.");
348 }
349 putc('\n', outfp);
350
351 for (name = alltypes; name->name != NULL; name++) {
352 if (eventtype != -1 &&
353 (name->mask & LB_EVENT_MASK) != eventtype)
354 continue;
355 if (locktype != -1 &&
356 (name->mask & LB_LOCK_MASK) != locktype)
357 continue;
358
359 display(name->mask, name->name);
360 }
361
362 if (displayed == 0)
363 fprintf(outfp, "None of the selected events were recorded.\n");
364 exit(EXIT_SUCCESS);
365 }
366
367 void
368 usage(void)
369 {
370
371 fprintf(stderr,
372 "%s: usage:\n"
373 "%s [options] <command>\n\n"
374 "-b nbuf\t\tset number of event buffers to allocate\n"
375 "-c\t\treport percentage of total events by count, not time\n"
376 "-E evt\t\tdisplay only one type of event\n"
377 "-e\t\tlist event types\n"
378 "-F func\t\tlimit trace to one function\n"
379 "-L lock\t\tlimit trace to one lock (name, or address)\n"
380 "-l\t\ttrace only by lock\n"
381 "-N nlist\tspecify name list file\n"
382 "-o file\t\tsend output to named file, not stdout\n"
383 "-p\t\tshow average count/time per CPU, not total\n"
384 "-s\t\tshow average count/time per second, not total\n"
385 "-T type\t\tdisplay only one type of lock\n"
386 "-t\t\tlist lock types\n",
387 getprogname(), getprogname());
388
389 exit(EXIT_FAILURE);
390 }
391
392 void
393 nullsig(int junk)
394 {
395
396 (void)junk;
397 }
398
399 void
400 listnames(const name_t *name)
401 {
402
403 for (; name->name != NULL; name++)
404 printf("%s\n", name->name);
405
406 exit(EXIT_SUCCESS);
407 }
408
409 int
410 matchname(const name_t *name, const char *string)
411 {
412
413 for (; name->name != NULL; name++)
414 if (strcasecmp(name->name, string) == 0)
415 return name->mask;
416
417 warnx("unknown type `%s'", string);
418 usage();
419 return 0;
420 }
421
422 /*
423 * Return the number of CPUs in the running system.
424 */
425 int
426 ncpu(void)
427 {
428 int rv, mib[2];
429 size_t varlen;
430
431 mib[0] = CTL_HW;
432 mib[1] = HW_NCPU;
433 varlen = sizeof(rv);
434 if (sysctl(mib, 2, &rv, &varlen, NULL, (size_t)0) < 0)
435 rv = 1;
436
437 return (rv);
438 }
439
440 /*
441 * Call into the ELF parser and look up a symbol by name or by address.
442 */
443 void
444 findsym(findsym_t find, char *name, uintptr_t *start, uintptr_t *end)
445 {
446 uintptr_t tend;
447 char *p;
448 int rv;
449
450 if (end == NULL)
451 end = &tend;
452
453 if (find == LOCK_BYNAME) {
454 if (isdigit((u_int)name[0])) {
455 *start = (uintptr_t)strtoul(name, &p, 0);
456 if (*p == '\0')
457 return;
458 }
459 }
460
461 if (bin64)
462 rv = findsym64(find, name, start, end);
463 else
464 rv = findsym32(find, name, start, end);
465
466 if (find == FUNC_BYNAME || find == LOCK_BYNAME) {
467 if (rv == -1)
468 errx(EXIT_FAILURE, "unable to find symbol `%s'", name);
469 return;
470 }
471
472 if (rv == -1)
473 sprintf(name, "0x%016lx", (long)*start);
474 }
475
476 /*
477 * Fork off the child process and wait for it to complete. We trap SIGINT
478 * so that the caller can use Ctrl-C to stop tracing early and still get
479 * useful results.
480 */
481 void
482 spawn(int argc, char **argv)
483 {
484 pid_t pid;
485
486 switch (pid = fork()) {
487 case 0:
488 close(lsfd);
489 if (execvp(argv[0], argv) == -1)
490 err(EXIT_FAILURE, "cannot exec");
491 break;
492 case -1:
493 err(EXIT_FAILURE, "cannot fork to exec");
494 break;
495 default:
496 signal(SIGINT, nullsig);
497 wait(NULL);
498 signal(SIGINT, SIG_DFL);
499 break;
500 }
501 }
502
503 /*
504 * From the kernel supplied data, construct two dimensional lists of locks
505 * and event buffers, indexed by lock type.
506 */
507 void
508 makelists(void)
509 {
510 lsbuf_t *lb, *lb2, *max;
511 int i, type;
512 lock_t *l;
513
514 for (i = 0; i < LB_NLOCK >> LB_LOCK_SHIFT; i++)
515 TAILQ_INIT(&locklist[i]);
516
517 for (lb = bufs, max = bufs + nbufs; lb < max; lb++) {
518 if (lb->lb_flags == 0)
519 continue;
520
521 /*
522 * Look for a record descibing this lock, and allocate a
523 * new one if needed.
524 */
525 type = ((lb->lb_flags & LB_LOCK_MASK) >> LB_LOCK_SHIFT) - 1;
526 TAILQ_FOREACH(l, &locklist[type], chain) {
527 if (l->lock == lb->lb_lock)
528 break;
529 }
530 if (l == NULL) {
531 l = (lock_t *)malloc(sizeof(*l));
532 l->flags = lb->lb_flags;
533 l->lock = lb->lb_lock;
534 l->nbufs = 0;
535 memset(&l->counts, 0, sizeof(l->counts));
536 memset(&l->times, 0, sizeof(l->times));
537 TAILQ_INIT(&l->bufs);
538 TAILQ_INSERT_TAIL(&locklist[type], l, chain);
539 }
540
541 /*
542 * Scale the time values per buffer and summarise
543 * times+counts per lock.
544 */
545 for (i = 0; i < LB_NEVENT; i++) {
546 lb->lb_times[i] *= cpuscale[lb->lb_cpu];
547 l->counts[i] += lb->lb_counts[i];
548 l->times[i] += lb->lb_times[i];
549 }
550
551 /*
552 * Merge same lock+callsite pairs from multiple CPUs
553 * together.
554 */
555 TAILQ_FOREACH(lb2, &l->bufs, lb_chain.tailq) {
556 if (lb->lb_callsite == lb2->lb_callsite)
557 break;
558 }
559 if (lb2 != NULL) {
560 for (i = 0; i < LB_NEVENT; i++) {
561 lb2->lb_counts[i] += lb->lb_counts[i];
562 lb2->lb_times[i] += lb->lb_times[i];
563 }
564 } else {
565 TAILQ_INSERT_HEAD(&l->bufs, lb, lb_chain.tailq);
566 l->nbufs++;
567 }
568 }
569 }
570
571 /*
572 * Re-sort one list of locks / lock buffers by event type.
573 */
574 void
575 resort(int type, int event)
576 {
577 lsbuf_t *lb, *lb2;
578 locklist_t llist;
579 buflist_t blist;
580 lock_t *l, *l2;
581
582 TAILQ_INIT(&llist);
583 while ((l = TAILQ_FIRST(&locklist[type])) != NULL) {
584 TAILQ_REMOVE(&locklist[type], l, chain);
585
586 /*
587 * Sort the buffers into the per-lock list.
588 */
589 TAILQ_INIT(&blist);
590 while ((lb = TAILQ_FIRST(&l->bufs)) != NULL) {
591 TAILQ_REMOVE(&l->bufs, lb, lb_chain.tailq);
592
593 lb2 = TAILQ_FIRST(&blist);
594 while (lb2 != NULL) {
595 if (cflag) {
596 if (lb->lb_counts[event] >
597 lb2->lb_counts[event])
598 break;
599 } else if (lb->lb_times[event] >
600 lb2->lb_times[event])
601 break;
602 lb2 = TAILQ_NEXT(lb2, lb_chain.tailq);
603 }
604 if (lb2 == NULL)
605 TAILQ_INSERT_TAIL(&blist, lb, lb_chain.tailq);
606 else
607 TAILQ_INSERT_BEFORE(lb2, lb, lb_chain.tailq);
608 }
609 l->bufs = blist;
610
611 /*
612 * Sort this lock into the per-type list, based on the
613 * totals per lock.
614 */
615 l2 = TAILQ_FIRST(&llist);
616 while (l2 != NULL) {
617 if (cflag) {
618 if (l->counts[event] > l2->counts[event])
619 break;
620 } else if (l->times[event] > l2->times[event])
621 break;
622 l2 = TAILQ_NEXT(l2, chain);
623 }
624 if (l2 == NULL)
625 TAILQ_INSERT_TAIL(&llist, l, chain);
626 else
627 TAILQ_INSERT_BEFORE(l2, l, chain);
628 }
629 locklist[type] = llist;
630 }
631
632 /*
633 * Display a summary table for one lock type / event type pair.
634 */
635 void
636 display(int mask, const char *name)
637 {
638 lock_t *l;
639 lsbuf_t *lb;
640 int event, type;
641 double pcscale, metric;
642 char lname[256], fname[256];
643
644 type = ((mask & LB_LOCK_MASK) >> LB_LOCK_SHIFT) - 1;
645 if (TAILQ_EMPTY(&locklist[type]))
646 return;
647
648 event = (mask & LB_EVENT_MASK) - 1;
649 resort(type, event);
650
651 fprintf(outfp, "\n-- %s\n\n"
652 "Total%% Count Time/ms Lock Caller\n"
653 "------ ------- --------- ---------------------- ------------------------------\n",
654 name);
655
656 /*
657 * Sum up all events for this type of lock + event.
658 */
659 pcscale = 0;
660 TAILQ_FOREACH(l, &locklist[type], chain) {
661 if (cflag)
662 pcscale += l->counts[event];
663 else
664 pcscale += l->times[event];
665 displayed++;
666 }
667 if (pcscale == 0)
668 pcscale = 100;
669 else
670 pcscale = (100.0 / pcscale);
671
672 /*
673 * For each lock, print a summary total, followed by a breakdown by
674 * caller.
675 */
676 TAILQ_FOREACH(l, &locklist[type], chain) {
677 if (cflag)
678 metric = l->counts[event];
679 else
680 metric = l->times[event];
681 metric *= pcscale;
682
683 findsym(LOCK_BYADDR, lname, &l->lock, NULL);
684
685 if (l->nbufs > 1)
686 fprintf(outfp, "%6.2f %7d %9.2f %-22s <all>\n", metric,
687 (int)(l->counts[event] * cscale),
688 l->times[event] * tscale, lname);
689
690 if (lflag)
691 continue;
692
693 TAILQ_FOREACH(lb, &l->bufs, lb_chain.tailq) {
694 if (cflag)
695 metric = lb->lb_counts[event];
696 else
697 metric = lb->lb_times[event];
698 metric *= pcscale;
699
700 findsym(FUNC_BYADDR, fname, &lb->lb_callsite, NULL);
701 fprintf(outfp, "%6.2f %7d %9.2f %-22s %s\n", metric,
702 (int)(lb->lb_counts[event] * cscale),
703 lb->lb_times[event] * tscale,
704 lname, fname);
705 }
706 }
707 }
708