Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.11
      1  1.11   fvdl /*	$NetBSD: ffs_alloc.c,v 1.11 2003/01/24 21:55:32 fvdl Exp $	*/
      2   1.1  lukem /* From: NetBSD: ffs_alloc.c,v 1.50 2001/09/06 02:16:01 lukem Exp */
      3   1.1  lukem 
      4   1.1  lukem /*
      5   1.1  lukem  * Copyright (c) 1982, 1986, 1989, 1993
      6   1.1  lukem  *	The Regents of the University of California.  All rights reserved.
      7   1.1  lukem  *
      8   1.1  lukem  * Redistribution and use in source and binary forms, with or without
      9   1.1  lukem  * modification, are permitted provided that the following conditions
     10   1.1  lukem  * are met:
     11   1.1  lukem  * 1. Redistributions of source code must retain the above copyright
     12   1.1  lukem  *    notice, this list of conditions and the following disclaimer.
     13   1.1  lukem  * 2. Redistributions in binary form must reproduce the above copyright
     14   1.1  lukem  *    notice, this list of conditions and the following disclaimer in the
     15   1.1  lukem  *    documentation and/or other materials provided with the distribution.
     16   1.1  lukem  * 3. All advertising materials mentioning features or use of this software
     17   1.1  lukem  *    must display the following acknowledgement:
     18   1.1  lukem  *	This product includes software developed by the University of
     19   1.1  lukem  *	California, Berkeley and its contributors.
     20   1.1  lukem  * 4. Neither the name of the University nor the names of its contributors
     21   1.1  lukem  *    may be used to endorse or promote products derived from this software
     22   1.1  lukem  *    without specific prior written permission.
     23   1.1  lukem  *
     24   1.1  lukem  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25   1.1  lukem  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26   1.1  lukem  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27   1.1  lukem  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28   1.1  lukem  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29   1.1  lukem  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30   1.1  lukem  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31   1.1  lukem  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32   1.1  lukem  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33   1.1  lukem  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34   1.1  lukem  * SUCH DAMAGE.
     35   1.1  lukem  *
     36   1.1  lukem  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     37   1.1  lukem  */
     38   1.2  lukem 
     39   1.2  lukem #include <sys/cdefs.h>
     40   1.8     tv #if defined(__RCSID) && !defined(__lint)
     41  1.11   fvdl __RCSID("$NetBSD: ffs_alloc.c,v 1.11 2003/01/24 21:55:32 fvdl Exp $");
     42   1.2  lukem #endif	/* !__lint */
     43   1.1  lukem 
     44   1.1  lukem #include <sys/param.h>
     45   1.1  lukem #include <sys/time.h>
     46   1.1  lukem 
     47   1.1  lukem #include <errno.h>
     48   1.4  lukem 
     49   1.4  lukem #include "makefs.h"
     50   1.1  lukem 
     51   1.7  lukem #include <ufs/ufs/dinode.h>
     52   1.5  lukem #include <ufs/ufs/ufs_bswap.h>
     53   1.5  lukem #include <ufs/ffs/fs.h>
     54   1.1  lukem 
     55   1.1  lukem #include "ffs/buf.h"
     56   1.6  lukem #include "ffs/ufs_inode.h"
     57   1.1  lukem #include "ffs/ffs_extern.h"
     58   1.1  lukem 
     59   1.1  lukem 
     60   1.1  lukem static int scanc(u_int, const u_char *, const u_char *, int);
     61   1.1  lukem 
     62  1.11   fvdl static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int);
     63  1.11   fvdl static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t);
     64  1.11   fvdl static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int,
     65  1.11   fvdl 		     daddr_t (*)(struct inode *, int, daddr_t, int));
     66  1.11   fvdl static daddr_t ffs_mapsearch(struct fs *, struct cg *, daddr_t, int);
     67   1.1  lukem 
     68   1.1  lukem /* in ffs_tables.c */
     69   1.1  lukem extern const int inside[], around[];
     70   1.1  lukem extern const u_char * const fragtbl[];
     71   1.1  lukem 
     72   1.1  lukem /*
     73   1.1  lukem  * Allocate a block in the file system.
     74   1.1  lukem  *
     75   1.1  lukem  * The size of the requested block is given, which must be some
     76   1.1  lukem  * multiple of fs_fsize and <= fs_bsize.
     77   1.1  lukem  * A preference may be optionally specified. If a preference is given
     78   1.1  lukem  * the following hierarchy is used to allocate a block:
     79   1.1  lukem  *   1) allocate the requested block.
     80   1.1  lukem  *   2) allocate a rotationally optimal block in the same cylinder.
     81   1.1  lukem  *   3) allocate a block in the same cylinder group.
     82   1.1  lukem  *   4) quadradically rehash into other cylinder groups, until an
     83   1.1  lukem  *      available block is located.
     84   1.1  lukem  * If no block preference is given the following hierarchy is used
     85   1.1  lukem  * to allocate a block:
     86   1.1  lukem  *   1) allocate a block in the cylinder group that contains the
     87   1.1  lukem  *      inode for the file.
     88   1.1  lukem  *   2) quadradically rehash into other cylinder groups, until an
     89   1.1  lukem  *      available block is located.
     90   1.1  lukem  */
     91   1.1  lukem int
     92  1.11   fvdl ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size,
     93  1.11   fvdl     daddr_t *bnp)
     94   1.1  lukem {
     95   1.1  lukem 	struct fs *fs = ip->i_fs;
     96  1.11   fvdl 	daddr_t bno;
     97   1.1  lukem 	int cg;
     98   1.1  lukem 
     99   1.1  lukem 	*bnp = 0;
    100   1.1  lukem 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    101   1.1  lukem 		errx(1, "ffs_alloc: bad size: bsize %d size %d",
    102   1.1  lukem 		    fs->fs_bsize, size);
    103   1.1  lukem 	}
    104   1.1  lukem 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    105   1.1  lukem 		goto nospace;
    106   1.1  lukem 	if (bpref >= fs->fs_size)
    107   1.1  lukem 		bpref = 0;
    108   1.1  lukem 	if (bpref == 0)
    109   1.1  lukem 		cg = ino_to_cg(fs, ip->i_number);
    110   1.1  lukem 	else
    111   1.1  lukem 		cg = dtog(fs, bpref);
    112  1.11   fvdl 	bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg);
    113   1.1  lukem 	if (bno > 0) {
    114   1.9  lukem 		ip->i_ffs_blocks += size / DEV_BSIZE;
    115   1.1  lukem 		*bnp = bno;
    116   1.1  lukem 		return (0);
    117   1.1  lukem 	}
    118   1.1  lukem nospace:
    119   1.1  lukem 	return (ENOSPC);
    120   1.1  lukem }
    121   1.1  lukem 
    122   1.1  lukem /*
    123   1.1  lukem  * Select the desired position for the next block in a file.  The file is
    124   1.1  lukem  * logically divided into sections. The first section is composed of the
    125   1.1  lukem  * direct blocks. Each additional section contains fs_maxbpg blocks.
    126   1.1  lukem  *
    127   1.1  lukem  * If no blocks have been allocated in the first section, the policy is to
    128   1.1  lukem  * request a block in the same cylinder group as the inode that describes
    129   1.1  lukem  * the file. If no blocks have been allocated in any other section, the
    130   1.1  lukem  * policy is to place the section in a cylinder group with a greater than
    131   1.1  lukem  * average number of free blocks.  An appropriate cylinder group is found
    132   1.1  lukem  * by using a rotor that sweeps the cylinder groups. When a new group of
    133   1.1  lukem  * blocks is needed, the sweep begins in the cylinder group following the
    134   1.1  lukem  * cylinder group from which the previous allocation was made. The sweep
    135   1.1  lukem  * continues until a cylinder group with greater than the average number
    136   1.1  lukem  * of free blocks is found. If the allocation is for the first block in an
    137   1.1  lukem  * indirect block, the information on the previous allocation is unavailable;
    138   1.1  lukem  * here a best guess is made based upon the logical block number being
    139   1.1  lukem  * allocated.
    140   1.1  lukem  *
    141   1.1  lukem  * If a section is already partially allocated, the policy is to
    142   1.1  lukem  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    143   1.1  lukem  * contiguous blocks and the beginning of the next is physically separated
    144   1.1  lukem  * so that the disk head will be in transit between them for at least
    145   1.1  lukem  * fs_rotdelay milliseconds.  This is to allow time for the processor to
    146   1.1  lukem  * schedule another I/O transfer.
    147   1.1  lukem  */
    148  1.11   fvdl /* XXX ondisk32 */
    149  1.11   fvdl daddr_t
    150  1.11   fvdl ffs_blkpref(struct inode *ip, daddr_t lbn, int indx, int32_t *bap)
    151   1.1  lukem {
    152   1.1  lukem 	struct fs *fs;
    153   1.1  lukem 	int cg;
    154   1.1  lukem 	int avgbfree, startcg;
    155  1.11   fvdl 	daddr_t nextblk;
    156   1.1  lukem 
    157   1.1  lukem 	fs = ip->i_fs;
    158   1.1  lukem 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    159   1.1  lukem 		if (lbn < NDADDR + NINDIR(fs)) {
    160   1.1  lukem 			cg = ino_to_cg(fs, ip->i_number);
    161   1.1  lukem 			return (fs->fs_fpg * cg + fs->fs_frag);
    162   1.1  lukem 		}
    163   1.1  lukem 		/*
    164   1.1  lukem 		 * Find a cylinder with greater than average number of
    165   1.1  lukem 		 * unused data blocks.
    166   1.1  lukem 		 */
    167   1.1  lukem 		if (indx == 0 || bap[indx - 1] == 0)
    168   1.1  lukem 			startcg =
    169   1.1  lukem 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    170   1.1  lukem 		else
    171   1.1  lukem 			startcg = dtog(fs,
    172   1.1  lukem 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    173   1.1  lukem 		startcg %= fs->fs_ncg;
    174   1.1  lukem 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    175   1.1  lukem 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    176   1.1  lukem 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    177   1.1  lukem 				fs->fs_cgrotor = cg;
    178   1.1  lukem 				return (fs->fs_fpg * cg + fs->fs_frag);
    179   1.1  lukem 			}
    180   1.1  lukem 		for (cg = 0; cg <= startcg; cg++)
    181   1.1  lukem 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    182   1.1  lukem 				fs->fs_cgrotor = cg;
    183   1.1  lukem 				return (fs->fs_fpg * cg + fs->fs_frag);
    184   1.1  lukem 			}
    185   1.1  lukem 		return (0);
    186   1.1  lukem 	}
    187   1.1  lukem 	/*
    188   1.1  lukem 	 * One or more previous blocks have been laid out. If less
    189   1.1  lukem 	 * than fs_maxcontig previous blocks are contiguous, the
    190   1.1  lukem 	 * next block is requested contiguously, otherwise it is
    191   1.1  lukem 	 * requested rotationally delayed by fs_rotdelay milliseconds.
    192   1.1  lukem 	 */
    193  1.11   fvdl 	/* XXX ondisk32 */
    194   1.1  lukem 	nextblk = ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    195   1.1  lukem 	if (indx < fs->fs_maxcontig ||
    196   1.1  lukem 		ufs_rw32(bap[indx - fs->fs_maxcontig], UFS_FSNEEDSWAP(fs)) +
    197   1.1  lukem 	    blkstofrags(fs, fs->fs_maxcontig) != nextblk)
    198   1.1  lukem 		return (nextblk);
    199   1.1  lukem 	if (fs->fs_rotdelay != 0)
    200   1.1  lukem 		/*
    201   1.1  lukem 		 * Here we convert ms of delay to frags as:
    202   1.1  lukem 		 * (frags) = (ms) * (rev/sec) * (sect/rev) /
    203   1.1  lukem 		 *	((sect/frag) * (ms/sec))
    204   1.1  lukem 		 * then round up to the next block.
    205   1.1  lukem 		 */
    206   1.1  lukem 		nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
    207   1.1  lukem 		    (NSPF(fs) * 1000), fs->fs_frag);
    208   1.1  lukem 	return (nextblk);
    209   1.1  lukem }
    210   1.1  lukem 
    211   1.1  lukem /*
    212   1.1  lukem  * Implement the cylinder overflow algorithm.
    213   1.1  lukem  *
    214   1.1  lukem  * The policy implemented by this algorithm is:
    215   1.1  lukem  *   1) allocate the block in its requested cylinder group.
    216   1.1  lukem  *   2) quadradically rehash on the cylinder group number.
    217   1.1  lukem  *   3) brute force search for a free block.
    218   1.1  lukem  *
    219   1.1  lukem  * `size':	size for data blocks, mode for inodes
    220   1.1  lukem  */
    221   1.1  lukem /*VARARGS5*/
    222  1.11   fvdl static daddr_t
    223  1.11   fvdl ffs_hashalloc(struct inode *ip, int cg, daddr_t pref, int size,
    224  1.11   fvdl     daddr_t (*allocator)(struct inode *, int, daddr_t, int))
    225   1.1  lukem {
    226   1.1  lukem 	struct fs *fs;
    227  1.11   fvdl 	daddr_t result;
    228   1.1  lukem 	int i, icg = cg;
    229   1.1  lukem 
    230   1.1  lukem 	fs = ip->i_fs;
    231   1.1  lukem 	/*
    232   1.1  lukem 	 * 1: preferred cylinder group
    233   1.1  lukem 	 */
    234   1.1  lukem 	result = (*allocator)(ip, cg, pref, size);
    235   1.1  lukem 	if (result)
    236   1.1  lukem 		return (result);
    237   1.1  lukem 	/*
    238   1.1  lukem 	 * 2: quadratic rehash
    239   1.1  lukem 	 */
    240   1.1  lukem 	for (i = 1; i < fs->fs_ncg; i *= 2) {
    241   1.1  lukem 		cg += i;
    242   1.1  lukem 		if (cg >= fs->fs_ncg)
    243   1.1  lukem 			cg -= fs->fs_ncg;
    244   1.1  lukem 		result = (*allocator)(ip, cg, 0, size);
    245   1.1  lukem 		if (result)
    246   1.1  lukem 			return (result);
    247   1.1  lukem 	}
    248   1.1  lukem 	/*
    249   1.1  lukem 	 * 3: brute force search
    250   1.1  lukem 	 * Note that we start at i == 2, since 0 was checked initially,
    251   1.1  lukem 	 * and 1 is always checked in the quadratic rehash.
    252   1.1  lukem 	 */
    253   1.1  lukem 	cg = (icg + 2) % fs->fs_ncg;
    254   1.1  lukem 	for (i = 2; i < fs->fs_ncg; i++) {
    255   1.1  lukem 		result = (*allocator)(ip, cg, 0, size);
    256   1.1  lukem 		if (result)
    257   1.1  lukem 			return (result);
    258   1.1  lukem 		cg++;
    259   1.1  lukem 		if (cg == fs->fs_ncg)
    260   1.1  lukem 			cg = 0;
    261   1.1  lukem 	}
    262   1.1  lukem 	return (0);
    263   1.1  lukem }
    264   1.1  lukem 
    265   1.1  lukem /*
    266   1.1  lukem  * Determine whether a block can be allocated.
    267   1.1  lukem  *
    268   1.1  lukem  * Check to see if a block of the appropriate size is available,
    269   1.1  lukem  * and if it is, allocate it.
    270   1.1  lukem  */
    271  1.11   fvdl static daddr_t
    272  1.11   fvdl ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size)
    273   1.1  lukem {
    274   1.1  lukem 	struct cg *cgp;
    275   1.1  lukem 	struct buf *bp;
    276  1.11   fvdl 	daddr_t bno, blkno;
    277   1.1  lukem 	int error, frags, allocsiz, i;
    278   1.1  lukem 	struct fs *fs = ip->i_fs;
    279   1.1  lukem 	const int needswap = UFS_FSNEEDSWAP(fs);
    280   1.1  lukem 
    281   1.1  lukem 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
    282   1.1  lukem 		return (0);
    283   1.1  lukem 	error = bread(ip->i_fd, ip->i_fs, fsbtodb(fs, cgtod(fs, cg)),
    284   1.1  lukem 		(int)fs->fs_cgsize, &bp);
    285   1.1  lukem 	if (error) {
    286   1.1  lukem 		brelse(bp);
    287   1.1  lukem 		return (0);
    288   1.1  lukem 	}
    289   1.1  lukem 	cgp = (struct cg *)bp->b_data;
    290   1.1  lukem 	if (!cg_chkmagic(cgp, needswap) ||
    291   1.1  lukem 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
    292   1.1  lukem 		brelse(bp);
    293   1.1  lukem 		return (0);
    294   1.1  lukem 	}
    295   1.1  lukem 	if (size == fs->fs_bsize) {
    296   1.1  lukem 		bno = ffs_alloccgblk(ip, bp, bpref);
    297   1.1  lukem 		bdwrite(bp);
    298   1.1  lukem 		return (bno);
    299   1.1  lukem 	}
    300   1.1  lukem 	/*
    301   1.1  lukem 	 * check to see if any fragments are already available
    302   1.1  lukem 	 * allocsiz is the size which will be allocated, hacking
    303   1.1  lukem 	 * it down to a smaller size if necessary
    304   1.1  lukem 	 */
    305   1.1  lukem 	frags = numfrags(fs, size);
    306   1.1  lukem 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
    307   1.1  lukem 		if (cgp->cg_frsum[allocsiz] != 0)
    308   1.1  lukem 			break;
    309   1.1  lukem 	if (allocsiz == fs->fs_frag) {
    310   1.1  lukem 		/*
    311   1.1  lukem 		 * no fragments were available, so a block will be
    312   1.1  lukem 		 * allocated, and hacked up
    313   1.1  lukem 		 */
    314   1.1  lukem 		if (cgp->cg_cs.cs_nbfree == 0) {
    315   1.1  lukem 			brelse(bp);
    316   1.1  lukem 			return (0);
    317   1.1  lukem 		}
    318   1.1  lukem 		bno = ffs_alloccgblk(ip, bp, bpref);
    319   1.1  lukem 		bpref = dtogd(fs, bno);
    320   1.1  lukem 		for (i = frags; i < fs->fs_frag; i++)
    321   1.1  lukem 			setbit(cg_blksfree(cgp, needswap), bpref + i);
    322   1.1  lukem 		i = fs->fs_frag - frags;
    323   1.1  lukem 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
    324   1.1  lukem 		fs->fs_cstotal.cs_nffree += i;
    325   1.1  lukem 		fs->fs_cs(fs, cg).cs_nffree += i;
    326   1.1  lukem 		fs->fs_fmod = 1;
    327   1.1  lukem 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
    328   1.1  lukem 		bdwrite(bp);
    329   1.1  lukem 		return (bno);
    330   1.1  lukem 	}
    331   1.1  lukem 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
    332   1.1  lukem 	for (i = 0; i < frags; i++)
    333   1.1  lukem 		clrbit(cg_blksfree(cgp, needswap), bno + i);
    334   1.1  lukem 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
    335   1.1  lukem 	fs->fs_cstotal.cs_nffree -= frags;
    336   1.1  lukem 	fs->fs_cs(fs, cg).cs_nffree -= frags;
    337   1.1  lukem 	fs->fs_fmod = 1;
    338   1.1  lukem 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
    339   1.1  lukem 	if (frags != allocsiz)
    340   1.1  lukem 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
    341   1.1  lukem 	blkno = cg * fs->fs_fpg + bno;
    342   1.1  lukem 	bdwrite(bp);
    343   1.1  lukem 	return blkno;
    344   1.1  lukem }
    345   1.1  lukem 
    346   1.1  lukem /*
    347   1.1  lukem  * Allocate a block in a cylinder group.
    348   1.1  lukem  *
    349   1.1  lukem  * This algorithm implements the following policy:
    350   1.1  lukem  *   1) allocate the requested block.
    351   1.1  lukem  *   2) allocate a rotationally optimal block in the same cylinder.
    352   1.1  lukem  *   3) allocate the next available block on the block rotor for the
    353   1.1  lukem  *      specified cylinder group.
    354   1.1  lukem  * Note that this routine only allocates fs_bsize blocks; these
    355   1.1  lukem  * blocks may be fragmented by the routine that allocates them.
    356   1.1  lukem  */
    357  1.11   fvdl static daddr_t
    358  1.11   fvdl ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref)
    359   1.1  lukem {
    360   1.1  lukem 	struct cg *cgp;
    361  1.11   fvdl 	daddr_t bno, blkno;
    362   1.1  lukem 	int cylno, pos, delta;
    363   1.1  lukem 	short *cylbp;
    364   1.1  lukem 	int i;
    365   1.1  lukem 	struct fs *fs = ip->i_fs;
    366   1.1  lukem 	const int needswap = UFS_FSNEEDSWAP(fs);
    367   1.1  lukem 
    368   1.1  lukem 	cgp = (struct cg *)bp->b_data;
    369  1.11   fvdl 	/* XXX ondisk32 */
    370   1.1  lukem 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
    371   1.1  lukem 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
    372   1.1  lukem 		goto norot;
    373   1.1  lukem 	}
    374   1.1  lukem 	bpref = blknum(fs, bpref);
    375   1.1  lukem 	bpref = dtogd(fs, bpref);
    376   1.1  lukem 	/*
    377   1.1  lukem 	 * if the requested block is available, use it
    378   1.1  lukem 	 */
    379   1.1  lukem 	if (ffs_isblock(fs, cg_blksfree(cgp, needswap),
    380   1.1  lukem 		fragstoblks(fs, bpref))) {
    381   1.1  lukem 		bno = bpref;
    382   1.1  lukem 		goto gotit;
    383   1.1  lukem 	}
    384   1.1  lukem 	if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
    385   1.1  lukem 		/*
    386   1.1  lukem 		 * Block layout information is not available.
    387   1.1  lukem 		 * Leaving bpref unchanged means we take the
    388   1.1  lukem 		 * next available free block following the one
    389   1.1  lukem 		 * we just allocated. Hopefully this will at
    390   1.1  lukem 		 * least hit a track cache on drives of unknown
    391   1.1  lukem 		 * geometry (e.g. SCSI).
    392   1.1  lukem 		 */
    393   1.1  lukem 		goto norot;
    394   1.1  lukem 	}
    395   1.1  lukem 	/*
    396   1.1  lukem 	 * check for a block available on the same cylinder
    397   1.1  lukem 	 */
    398   1.1  lukem 	cylno = cbtocylno(fs, bpref);
    399   1.1  lukem 	if (cg_blktot(cgp, needswap)[cylno] == 0)
    400   1.1  lukem 		goto norot;
    401   1.1  lukem 	/*
    402   1.1  lukem 	 * check the summary information to see if a block is
    403   1.1  lukem 	 * available in the requested cylinder starting at the
    404   1.1  lukem 	 * requested rotational position and proceeding around.
    405   1.1  lukem 	 */
    406   1.1  lukem 	cylbp = cg_blks(fs, cgp, cylno, needswap);
    407   1.1  lukem 	pos = cbtorpos(fs, bpref);
    408   1.1  lukem 	for (i = pos; i < fs->fs_nrpos; i++)
    409   1.1  lukem 		if (ufs_rw16(cylbp[i], needswap) > 0)
    410   1.1  lukem 			break;
    411   1.1  lukem 	if (i == fs->fs_nrpos)
    412   1.1  lukem 		for (i = 0; i < pos; i++)
    413   1.1  lukem 			if (ufs_rw16(cylbp[i], needswap) > 0)
    414   1.1  lukem 				break;
    415   1.1  lukem 	if (ufs_rw16(cylbp[i], needswap) > 0) {
    416   1.1  lukem 		/*
    417   1.1  lukem 		 * found a rotational position, now find the actual
    418   1.1  lukem 		 * block. A panic if none is actually there.
    419   1.1  lukem 		 */
    420   1.1  lukem 		pos = cylno % fs->fs_cpc;
    421   1.1  lukem 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
    422   1.1  lukem 		if (fs_postbl(fs, pos)[i] == -1) {
    423   1.1  lukem 			errx(1,
    424   1.1  lukem 			    "ffs_alloccgblk: cyl groups corrupted: pos %d i %d",
    425   1.1  lukem 			    pos, i);
    426   1.1  lukem 		}
    427   1.1  lukem 		for (i = fs_postbl(fs, pos)[i];; ) {
    428   1.1  lukem 			if (ffs_isblock(fs, cg_blksfree(cgp, needswap), bno + i)) {
    429   1.1  lukem 				bno = blkstofrags(fs, (bno + i));
    430   1.1  lukem 				goto gotit;
    431   1.1  lukem 			}
    432   1.1  lukem 			delta = fs_rotbl(fs)[i];
    433   1.1  lukem 			if (delta <= 0 ||
    434   1.1  lukem 			    delta + i > fragstoblks(fs, fs->fs_fpg))
    435   1.1  lukem 				break;
    436   1.1  lukem 			i += delta;
    437   1.1  lukem 		}
    438   1.1  lukem 		errx(1, "ffs_alloccgblk: can't find blk in cyl: pos %d i %d",
    439   1.1  lukem 		    pos, i);
    440   1.1  lukem 	}
    441   1.1  lukem norot:
    442   1.1  lukem 	/*
    443   1.1  lukem 	 * no blocks in the requested cylinder, so take next
    444   1.1  lukem 	 * available one in this cylinder group.
    445   1.1  lukem 	 */
    446   1.1  lukem 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
    447   1.1  lukem 	if (bno < 0)
    448   1.1  lukem 		return (0);
    449  1.11   fvdl 	/* XXX ondisk32 */
    450  1.11   fvdl 	cgp->cg_rotor = ufs_rw64(bno, needswap);
    451   1.1  lukem gotit:
    452   1.1  lukem 	blkno = fragstoblks(fs, bno);
    453   1.1  lukem 	ffs_clrblock(fs, cg_blksfree(cgp, needswap), (long)blkno);
    454   1.1  lukem 	ffs_clusteracct(fs, cgp, blkno, -1);
    455   1.1  lukem 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
    456   1.1  lukem 	fs->fs_cstotal.cs_nbfree--;
    457   1.1  lukem 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
    458   1.1  lukem 	cylno = cbtocylno(fs, bno);
    459   1.1  lukem 	ufs_add16(cg_blks(fs, cgp, cylno, needswap)[cbtorpos(fs, bno)], -1,
    460   1.1  lukem 	    needswap);
    461   1.1  lukem 	ufs_add32(cg_blktot(cgp, needswap)[cylno], -1, needswap);
    462   1.1  lukem 	fs->fs_fmod = 1;
    463  1.11   fvdl 	/* XXX ondisk32 */
    464   1.1  lukem 	blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
    465   1.1  lukem 	return (blkno);
    466   1.1  lukem }
    467   1.1  lukem 
    468   1.1  lukem /*
    469   1.1  lukem  * Free a block or fragment.
    470   1.1  lukem  *
    471   1.1  lukem  * The specified block or fragment is placed back in the
    472   1.1  lukem  * free map. If a fragment is deallocated, a possible
    473   1.1  lukem  * block reassembly is checked.
    474   1.1  lukem  */
    475   1.1  lukem void
    476  1.11   fvdl ffs_blkfree(struct inode *ip, daddr_t bno, long size)
    477   1.1  lukem {
    478   1.1  lukem 	struct cg *cgp;
    479   1.1  lukem 	struct buf *bp;
    480  1.11   fvdl 	daddr_t blkno;
    481   1.1  lukem 	int i, error, cg, blk, frags, bbase;
    482   1.1  lukem 	struct fs *fs = ip->i_fs;
    483   1.1  lukem 	const int needswap = UFS_FSNEEDSWAP(fs);
    484   1.1  lukem 
    485   1.1  lukem 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
    486   1.1  lukem 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
    487  1.11   fvdl 		errx(1, "blkfree: bad size: bno %lld bsize %d size %ld",
    488  1.11   fvdl 		    (long long)bno, fs->fs_bsize, size);
    489   1.1  lukem 	}
    490   1.1  lukem 	cg = dtog(fs, bno);
    491   1.1  lukem 	if ((u_int)bno >= fs->fs_size) {
    492  1.11   fvdl 		warnx("bad block %lld, ino %d", (long long)bno, ip->i_number);
    493   1.1  lukem 		return;
    494   1.1  lukem 	}
    495   1.1  lukem 	error = bread(ip->i_fd, ip->i_fs, fsbtodb(fs, cgtod(fs, cg)),
    496   1.1  lukem 		(int)fs->fs_cgsize, &bp);
    497   1.1  lukem 	if (error) {
    498   1.1  lukem 		brelse(bp);
    499   1.1  lukem 		return;
    500   1.1  lukem 	}
    501   1.1  lukem 	cgp = (struct cg *)bp->b_data;
    502   1.1  lukem 	if (!cg_chkmagic(cgp, needswap)) {
    503   1.1  lukem 		brelse(bp);
    504   1.1  lukem 		return;
    505   1.1  lukem 	}
    506   1.1  lukem 	bno = dtogd(fs, bno);
    507   1.1  lukem 	if (size == fs->fs_bsize) {
    508   1.1  lukem 		blkno = fragstoblks(fs, bno);
    509   1.1  lukem 		if (!ffs_isfreeblock(fs, cg_blksfree(cgp, needswap), blkno)) {
    510  1.11   fvdl 			errx(1, "blkfree: freeing free block %lld",
    511  1.11   fvdl 			    (long long)bno);
    512   1.1  lukem 		}
    513   1.1  lukem 		ffs_setblock(fs, cg_blksfree(cgp, needswap), blkno);
    514   1.1  lukem 		ffs_clusteracct(fs, cgp, blkno, 1);
    515   1.1  lukem 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
    516   1.1  lukem 		fs->fs_cstotal.cs_nbfree++;
    517   1.1  lukem 		fs->fs_cs(fs, cg).cs_nbfree++;
    518   1.1  lukem 		i = cbtocylno(fs, bno);
    519   1.1  lukem 		ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bno)], 1,
    520   1.1  lukem 		    needswap);
    521   1.1  lukem 		ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
    522   1.1  lukem 	} else {
    523   1.1  lukem 		bbase = bno - fragnum(fs, bno);
    524   1.1  lukem 		/*
    525   1.1  lukem 		 * decrement the counts associated with the old frags
    526   1.1  lukem 		 */
    527   1.1  lukem 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
    528   1.1  lukem 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
    529   1.1  lukem 		/*
    530   1.1  lukem 		 * deallocate the fragment
    531   1.1  lukem 		 */
    532   1.1  lukem 		frags = numfrags(fs, size);
    533   1.1  lukem 		for (i = 0; i < frags; i++) {
    534   1.1  lukem 			if (isset(cg_blksfree(cgp, needswap), bno + i)) {
    535  1.11   fvdl 				errx(1, "blkfree: freeing free frag: block %lld",
    536  1.11   fvdl 				    (long long)(bno + i));
    537   1.1  lukem 			}
    538   1.1  lukem 			setbit(cg_blksfree(cgp, needswap), bno + i);
    539   1.1  lukem 		}
    540   1.1  lukem 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
    541   1.1  lukem 		fs->fs_cstotal.cs_nffree += i;
    542   1.1  lukem 		fs->fs_cs(fs, cg).cs_nffree += i;
    543   1.1  lukem 		/*
    544   1.1  lukem 		 * add back in counts associated with the new frags
    545   1.1  lukem 		 */
    546   1.1  lukem 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
    547   1.1  lukem 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
    548   1.1  lukem 		/*
    549   1.1  lukem 		 * if a complete block has been reassembled, account for it
    550   1.1  lukem 		 */
    551   1.1  lukem 		blkno = fragstoblks(fs, bbase);
    552   1.1  lukem 		if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
    553   1.1  lukem 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
    554   1.1  lukem 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
    555   1.1  lukem 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
    556   1.1  lukem 			ffs_clusteracct(fs, cgp, blkno, 1);
    557   1.1  lukem 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
    558   1.1  lukem 			fs->fs_cstotal.cs_nbfree++;
    559   1.1  lukem 			fs->fs_cs(fs, cg).cs_nbfree++;
    560   1.1  lukem 			i = cbtocylno(fs, bbase);
    561   1.1  lukem 			ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs,
    562   1.1  lukem 								bbase)], 1,
    563   1.1  lukem 			    needswap);
    564   1.1  lukem 			ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
    565   1.1  lukem 		}
    566   1.1  lukem 	}
    567   1.1  lukem 	fs->fs_fmod = 1;
    568   1.1  lukem 	bdwrite(bp);
    569   1.1  lukem }
    570   1.1  lukem 
    571   1.1  lukem 
    572   1.1  lukem static int
    573   1.1  lukem scanc(u_int size, const u_char *cp, const u_char table[], int mask)
    574   1.1  lukem {
    575   1.1  lukem 	const u_char *end = &cp[size];
    576   1.1  lukem 
    577   1.1  lukem 	while (cp < end && (table[*cp] & mask) == 0)
    578   1.1  lukem 		cp++;
    579   1.1  lukem 	return (end - cp);
    580   1.1  lukem }
    581   1.1  lukem 
    582   1.1  lukem /*
    583   1.1  lukem  * Find a block of the specified size in the specified cylinder group.
    584   1.1  lukem  *
    585   1.1  lukem  * It is a panic if a request is made to find a block if none are
    586   1.1  lukem  * available.
    587   1.1  lukem  */
    588  1.11   fvdl static daddr_t
    589  1.11   fvdl ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
    590   1.1  lukem {
    591  1.11   fvdl 	daddr_t bno;
    592   1.1  lukem 	int start, len, loc, i;
    593   1.1  lukem 	int blk, field, subfield, pos;
    594   1.1  lukem 	int ostart, olen;
    595   1.1  lukem 	const int needswap = UFS_FSNEEDSWAP(fs);
    596   1.1  lukem 
    597   1.1  lukem 	/*
    598   1.1  lukem 	 * find the fragment by searching through the free block
    599   1.1  lukem 	 * map for an appropriate bit pattern
    600   1.1  lukem 	 */
    601   1.1  lukem 	if (bpref)
    602   1.1  lukem 		start = dtogd(fs, bpref) / NBBY;
    603   1.1  lukem 	else
    604   1.1  lukem 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
    605   1.1  lukem 	len = howmany(fs->fs_fpg, NBBY) - start;
    606   1.1  lukem 	ostart = start;
    607   1.1  lukem 	olen = len;
    608   1.1  lukem 	loc = scanc((u_int)len,
    609   1.1  lukem 		(const u_char *)&cg_blksfree(cgp, needswap)[start],
    610   1.1  lukem 		(const u_char *)fragtbl[fs->fs_frag],
    611   1.1  lukem 		(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
    612   1.1  lukem 	if (loc == 0) {
    613   1.1  lukem 		len = start + 1;
    614   1.1  lukem 		start = 0;
    615   1.1  lukem 		loc = scanc((u_int)len,
    616   1.1  lukem 			(const u_char *)&cg_blksfree(cgp, needswap)[0],
    617   1.1  lukem 			(const u_char *)fragtbl[fs->fs_frag],
    618   1.1  lukem 			(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
    619   1.1  lukem 		if (loc == 0) {
    620   1.1  lukem 			errx(1,
    621   1.1  lukem     "ffs_alloccg: map corrupted: start %d len %d offset %d %ld",
    622   1.1  lukem 				ostart, olen,
    623   1.1  lukem 				ufs_rw32(cgp->cg_freeoff, needswap),
    624   1.1  lukem 				(long)cg_blksfree(cgp, needswap) - (long)cgp);
    625   1.1  lukem 			/* NOTREACHED */
    626   1.1  lukem 		}
    627   1.1  lukem 	}
    628   1.1  lukem 	bno = (start + len - loc) * NBBY;
    629   1.1  lukem 	cgp->cg_frotor = ufs_rw32(bno, needswap);
    630   1.1  lukem 	/*
    631   1.1  lukem 	 * found the byte in the map
    632   1.1  lukem 	 * sift through the bits to find the selected frag
    633   1.1  lukem 	 */
    634   1.1  lukem 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
    635   1.1  lukem 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bno);
    636   1.1  lukem 		blk <<= 1;
    637   1.1  lukem 		field = around[allocsiz];
    638   1.1  lukem 		subfield = inside[allocsiz];
    639   1.1  lukem 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
    640   1.1  lukem 			if ((blk & field) == subfield)
    641   1.1  lukem 				return (bno + pos);
    642   1.1  lukem 			field <<= 1;
    643   1.1  lukem 			subfield <<= 1;
    644   1.1  lukem 		}
    645   1.1  lukem 	}
    646  1.11   fvdl 	errx(1, "ffs_alloccg: block not in map: bno %lld", (long long)bno);
    647   1.1  lukem 	return (-1);
    648   1.1  lukem }
    649   1.1  lukem 
    650   1.1  lukem /*
    651   1.1  lukem  * Update the cluster map because of an allocation or free.
    652   1.1  lukem  *
    653   1.1  lukem  * Cnt == 1 means free; cnt == -1 means allocating.
    654   1.1  lukem  */
    655   1.1  lukem void
    656  1.11   fvdl ffs_clusteracct(struct fs *fs, struct cg *cgp, daddr_t blkno, int cnt)
    657   1.1  lukem {
    658   1.1  lukem 	int32_t *sump;
    659   1.1  lukem 	int32_t *lp;
    660   1.1  lukem 	u_char *freemapp, *mapp;
    661   1.1  lukem 	int i, start, end, forw, back, map, bit;
    662   1.1  lukem 	const int needswap = UFS_FSNEEDSWAP(fs);
    663   1.1  lukem 
    664   1.1  lukem 	if (fs->fs_contigsumsize <= 0)
    665   1.1  lukem 		return;
    666   1.1  lukem 	freemapp = cg_clustersfree(cgp, needswap);
    667   1.1  lukem 	sump = cg_clustersum(cgp, needswap);
    668   1.1  lukem 	/*
    669   1.1  lukem 	 * Allocate or clear the actual block.
    670   1.1  lukem 	 */
    671   1.1  lukem 	if (cnt > 0)
    672   1.1  lukem 		setbit(freemapp, blkno);
    673   1.1  lukem 	else
    674   1.1  lukem 		clrbit(freemapp, blkno);
    675   1.1  lukem 	/*
    676   1.1  lukem 	 * Find the size of the cluster going forward.
    677   1.1  lukem 	 */
    678   1.1  lukem 	start = blkno + 1;
    679   1.1  lukem 	end = start + fs->fs_contigsumsize;
    680   1.1  lukem 	if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
    681   1.1  lukem 		end = ufs_rw32(cgp->cg_nclusterblks, needswap);
    682   1.1  lukem 	mapp = &freemapp[start / NBBY];
    683   1.1  lukem 	map = *mapp++;
    684   1.1  lukem 	bit = 1 << (start % NBBY);
    685   1.1  lukem 	for (i = start; i < end; i++) {
    686   1.1  lukem 		if ((map & bit) == 0)
    687   1.1  lukem 			break;
    688   1.1  lukem 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
    689   1.1  lukem 			bit <<= 1;
    690   1.1  lukem 		} else {
    691   1.1  lukem 			map = *mapp++;
    692   1.1  lukem 			bit = 1;
    693   1.1  lukem 		}
    694   1.1  lukem 	}
    695   1.1  lukem 	forw = i - start;
    696   1.1  lukem 	/*
    697   1.1  lukem 	 * Find the size of the cluster going backward.
    698   1.1  lukem 	 */
    699   1.1  lukem 	start = blkno - 1;
    700   1.1  lukem 	end = start - fs->fs_contigsumsize;
    701   1.1  lukem 	if (end < 0)
    702   1.1  lukem 		end = -1;
    703   1.1  lukem 	mapp = &freemapp[start / NBBY];
    704   1.1  lukem 	map = *mapp--;
    705   1.1  lukem 	bit = 1 << (start % NBBY);
    706   1.1  lukem 	for (i = start; i > end; i--) {
    707   1.1  lukem 		if ((map & bit) == 0)
    708   1.1  lukem 			break;
    709   1.1  lukem 		if ((i & (NBBY - 1)) != 0) {
    710   1.1  lukem 			bit >>= 1;
    711   1.1  lukem 		} else {
    712   1.1  lukem 			map = *mapp--;
    713   1.1  lukem 			bit = 1 << (NBBY - 1);
    714   1.1  lukem 		}
    715   1.1  lukem 	}
    716   1.1  lukem 	back = start - i;
    717   1.1  lukem 	/*
    718   1.1  lukem 	 * Account for old cluster and the possibly new forward and
    719   1.1  lukem 	 * back clusters.
    720   1.1  lukem 	 */
    721   1.1  lukem 	i = back + forw + 1;
    722   1.1  lukem 	if (i > fs->fs_contigsumsize)
    723   1.1  lukem 		i = fs->fs_contigsumsize;
    724   1.1  lukem 	ufs_add32(sump[i], cnt, needswap);
    725   1.1  lukem 	if (back > 0)
    726   1.1  lukem 		ufs_add32(sump[back], -cnt, needswap);
    727   1.1  lukem 	if (forw > 0)
    728   1.1  lukem 		ufs_add32(sump[forw], -cnt, needswap);
    729   1.1  lukem 
    730   1.1  lukem 	/*
    731   1.1  lukem 	 * Update cluster summary information.
    732   1.1  lukem 	 */
    733   1.1  lukem 	lp = &sump[fs->fs_contigsumsize];
    734   1.1  lukem 	for (i = fs->fs_contigsumsize; i > 0; i--)
    735   1.1  lukem 		if (ufs_rw32(*lp--, needswap) > 0)
    736   1.1  lukem 			break;
    737   1.1  lukem 	fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
    738   1.1  lukem }
    739