Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.1.1.1
      1 /*	$NetBSD: ffs_alloc.c,v 1.1.1.1 2001/10/26 06:21:35 lukem Exp $	*/
      2 /* From: NetBSD: ffs_alloc.c,v 1.50 2001/09/06 02:16:01 lukem Exp */
      3 
      4 /*
      5  * Copyright (c) 1982, 1986, 1989, 1993
      6  *	The Regents of the University of California.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by the University of
     19  *	California, Berkeley and its contributors.
     20  * 4. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     37  */
     38 
     39 #include <sys/param.h>
     40 #include <sys/time.h>
     41 
     42 #include <err.h>
     43 #include <errno.h>
     44 
     45 #include <ufs/ufs/ufs_bswap.h>
     46 #include <ufs/ufs/inode.h>
     47 #include <ufs/ffs/fs.h>
     48 
     49 #include "ffs/buf.h"
     50 #include "ffs/ffs_extern.h"
     51 
     52 
     53 static int scanc(u_int, const u_char *, const u_char *, int);
     54 
     55 static ufs_daddr_t ffs_alloccg(struct inode *, int, ufs_daddr_t, int);
     56 static ufs_daddr_t ffs_alloccgblk(struct inode *, struct buf *, ufs_daddr_t);
     57 static u_long ffs_hashalloc(struct inode *, int, long, int,
     58 		     ufs_daddr_t (*)(struct inode *, int, ufs_daddr_t, int));
     59 static ufs_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs_daddr_t, int);
     60 
     61 /* in ffs_tables.c */
     62 extern const int inside[], around[];
     63 extern const u_char * const fragtbl[];
     64 
     65 /*
     66  * Allocate a block in the file system.
     67  *
     68  * The size of the requested block is given, which must be some
     69  * multiple of fs_fsize and <= fs_bsize.
     70  * A preference may be optionally specified. If a preference is given
     71  * the following hierarchy is used to allocate a block:
     72  *   1) allocate the requested block.
     73  *   2) allocate a rotationally optimal block in the same cylinder.
     74  *   3) allocate a block in the same cylinder group.
     75  *   4) quadradically rehash into other cylinder groups, until an
     76  *      available block is located.
     77  * If no block preference is given the following hierarchy is used
     78  * to allocate a block:
     79  *   1) allocate a block in the cylinder group that contains the
     80  *      inode for the file.
     81  *   2) quadradically rehash into other cylinder groups, until an
     82  *      available block is located.
     83  */
     84 int
     85 ffs_alloc(struct inode *ip, ufs_daddr_t lbn, ufs_daddr_t bpref, int size,
     86     ufs_daddr_t *bnp)
     87 {
     88 	struct fs *fs = ip->i_fs;
     89 	ufs_daddr_t bno;
     90 	int cg;
     91 
     92 	*bnp = 0;
     93 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
     94 		errx(1, "ffs_alloc: bad size: bsize %d size %d",
     95 		    fs->fs_bsize, size);
     96 	}
     97 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
     98 		goto nospace;
     99 	if (bpref >= fs->fs_size)
    100 		bpref = 0;
    101 	if (bpref == 0)
    102 		cg = ino_to_cg(fs, ip->i_number);
    103 	else
    104 		cg = dtog(fs, bpref);
    105 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
    106 	    			     ffs_alloccg);
    107 	if (bno > 0) {
    108 		ip->i_ffs_blocks += btodb(size);
    109 		*bnp = bno;
    110 		return (0);
    111 	}
    112 nospace:
    113 	return (ENOSPC);
    114 }
    115 
    116 /*
    117  * Select the desired position for the next block in a file.  The file is
    118  * logically divided into sections. The first section is composed of the
    119  * direct blocks. Each additional section contains fs_maxbpg blocks.
    120  *
    121  * If no blocks have been allocated in the first section, the policy is to
    122  * request a block in the same cylinder group as the inode that describes
    123  * the file. If no blocks have been allocated in any other section, the
    124  * policy is to place the section in a cylinder group with a greater than
    125  * average number of free blocks.  An appropriate cylinder group is found
    126  * by using a rotor that sweeps the cylinder groups. When a new group of
    127  * blocks is needed, the sweep begins in the cylinder group following the
    128  * cylinder group from which the previous allocation was made. The sweep
    129  * continues until a cylinder group with greater than the average number
    130  * of free blocks is found. If the allocation is for the first block in an
    131  * indirect block, the information on the previous allocation is unavailable;
    132  * here a best guess is made based upon the logical block number being
    133  * allocated.
    134  *
    135  * If a section is already partially allocated, the policy is to
    136  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    137  * contiguous blocks and the beginning of the next is physically separated
    138  * so that the disk head will be in transit between them for at least
    139  * fs_rotdelay milliseconds.  This is to allow time for the processor to
    140  * schedule another I/O transfer.
    141  */
    142 ufs_daddr_t
    143 ffs_blkpref(struct inode *ip, ufs_daddr_t lbn, int indx, ufs_daddr_t *bap)
    144 {
    145 	struct fs *fs;
    146 	int cg;
    147 	int avgbfree, startcg;
    148 	ufs_daddr_t nextblk;
    149 
    150 	fs = ip->i_fs;
    151 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    152 		if (lbn < NDADDR + NINDIR(fs)) {
    153 			cg = ino_to_cg(fs, ip->i_number);
    154 			return (fs->fs_fpg * cg + fs->fs_frag);
    155 		}
    156 		/*
    157 		 * Find a cylinder with greater than average number of
    158 		 * unused data blocks.
    159 		 */
    160 		if (indx == 0 || bap[indx - 1] == 0)
    161 			startcg =
    162 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    163 		else
    164 			startcg = dtog(fs,
    165 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    166 		startcg %= fs->fs_ncg;
    167 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    168 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    169 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    170 				fs->fs_cgrotor = cg;
    171 				return (fs->fs_fpg * cg + fs->fs_frag);
    172 			}
    173 		for (cg = 0; cg <= startcg; cg++)
    174 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    175 				fs->fs_cgrotor = cg;
    176 				return (fs->fs_fpg * cg + fs->fs_frag);
    177 			}
    178 		return (0);
    179 	}
    180 	/*
    181 	 * One or more previous blocks have been laid out. If less
    182 	 * than fs_maxcontig previous blocks are contiguous, the
    183 	 * next block is requested contiguously, otherwise it is
    184 	 * requested rotationally delayed by fs_rotdelay milliseconds.
    185 	 */
    186 	nextblk = ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    187 	if (indx < fs->fs_maxcontig ||
    188 		ufs_rw32(bap[indx - fs->fs_maxcontig], UFS_FSNEEDSWAP(fs)) +
    189 	    blkstofrags(fs, fs->fs_maxcontig) != nextblk)
    190 		return (nextblk);
    191 	if (fs->fs_rotdelay != 0)
    192 		/*
    193 		 * Here we convert ms of delay to frags as:
    194 		 * (frags) = (ms) * (rev/sec) * (sect/rev) /
    195 		 *	((sect/frag) * (ms/sec))
    196 		 * then round up to the next block.
    197 		 */
    198 		nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
    199 		    (NSPF(fs) * 1000), fs->fs_frag);
    200 	return (nextblk);
    201 }
    202 
    203 /*
    204  * Implement the cylinder overflow algorithm.
    205  *
    206  * The policy implemented by this algorithm is:
    207  *   1) allocate the block in its requested cylinder group.
    208  *   2) quadradically rehash on the cylinder group number.
    209  *   3) brute force search for a free block.
    210  *
    211  * `size':	size for data blocks, mode for inodes
    212  */
    213 /*VARARGS5*/
    214 static u_long
    215 ffs_hashalloc(struct inode *ip, int cg, long pref, int size,
    216     ufs_daddr_t (*allocator)(struct inode *, int, ufs_daddr_t, int))
    217 {
    218 	struct fs *fs;
    219 	long result;
    220 	int i, icg = cg;
    221 
    222 	fs = ip->i_fs;
    223 	/*
    224 	 * 1: preferred cylinder group
    225 	 */
    226 	result = (*allocator)(ip, cg, pref, size);
    227 	if (result)
    228 		return (result);
    229 	/*
    230 	 * 2: quadratic rehash
    231 	 */
    232 	for (i = 1; i < fs->fs_ncg; i *= 2) {
    233 		cg += i;
    234 		if (cg >= fs->fs_ncg)
    235 			cg -= fs->fs_ncg;
    236 		result = (*allocator)(ip, cg, 0, size);
    237 		if (result)
    238 			return (result);
    239 	}
    240 	/*
    241 	 * 3: brute force search
    242 	 * Note that we start at i == 2, since 0 was checked initially,
    243 	 * and 1 is always checked in the quadratic rehash.
    244 	 */
    245 	cg = (icg + 2) % fs->fs_ncg;
    246 	for (i = 2; i < fs->fs_ncg; i++) {
    247 		result = (*allocator)(ip, cg, 0, size);
    248 		if (result)
    249 			return (result);
    250 		cg++;
    251 		if (cg == fs->fs_ncg)
    252 			cg = 0;
    253 	}
    254 	return (0);
    255 }
    256 
    257 /*
    258  * Determine whether a block can be allocated.
    259  *
    260  * Check to see if a block of the appropriate size is available,
    261  * and if it is, allocate it.
    262  */
    263 static ufs_daddr_t
    264 ffs_alloccg(struct inode *ip, int cg, ufs_daddr_t bpref, int size)
    265 {
    266 	struct cg *cgp;
    267 	struct buf *bp;
    268 	ufs_daddr_t bno, blkno;
    269 	int error, frags, allocsiz, i;
    270 	struct fs *fs = ip->i_fs;
    271 	const int needswap = UFS_FSNEEDSWAP(fs);
    272 
    273 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
    274 		return (0);
    275 	error = bread(ip->i_fd, ip->i_fs, fsbtodb(fs, cgtod(fs, cg)),
    276 		(int)fs->fs_cgsize, &bp);
    277 	if (error) {
    278 		brelse(bp);
    279 		return (0);
    280 	}
    281 	cgp = (struct cg *)bp->b_data;
    282 	if (!cg_chkmagic(cgp, needswap) ||
    283 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
    284 		brelse(bp);
    285 		return (0);
    286 	}
    287 	if (size == fs->fs_bsize) {
    288 		bno = ffs_alloccgblk(ip, bp, bpref);
    289 		bdwrite(bp);
    290 		return (bno);
    291 	}
    292 	/*
    293 	 * check to see if any fragments are already available
    294 	 * allocsiz is the size which will be allocated, hacking
    295 	 * it down to a smaller size if necessary
    296 	 */
    297 	frags = numfrags(fs, size);
    298 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
    299 		if (cgp->cg_frsum[allocsiz] != 0)
    300 			break;
    301 	if (allocsiz == fs->fs_frag) {
    302 		/*
    303 		 * no fragments were available, so a block will be
    304 		 * allocated, and hacked up
    305 		 */
    306 		if (cgp->cg_cs.cs_nbfree == 0) {
    307 			brelse(bp);
    308 			return (0);
    309 		}
    310 		bno = ffs_alloccgblk(ip, bp, bpref);
    311 		bpref = dtogd(fs, bno);
    312 		for (i = frags; i < fs->fs_frag; i++)
    313 			setbit(cg_blksfree(cgp, needswap), bpref + i);
    314 		i = fs->fs_frag - frags;
    315 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
    316 		fs->fs_cstotal.cs_nffree += i;
    317 		fs->fs_cs(fs, cg).cs_nffree += i;
    318 		fs->fs_fmod = 1;
    319 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
    320 		bdwrite(bp);
    321 		return (bno);
    322 	}
    323 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
    324 	for (i = 0; i < frags; i++)
    325 		clrbit(cg_blksfree(cgp, needswap), bno + i);
    326 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
    327 	fs->fs_cstotal.cs_nffree -= frags;
    328 	fs->fs_cs(fs, cg).cs_nffree -= frags;
    329 	fs->fs_fmod = 1;
    330 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
    331 	if (frags != allocsiz)
    332 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
    333 	blkno = cg * fs->fs_fpg + bno;
    334 	bdwrite(bp);
    335 	return blkno;
    336 }
    337 
    338 /*
    339  * Allocate a block in a cylinder group.
    340  *
    341  * This algorithm implements the following policy:
    342  *   1) allocate the requested block.
    343  *   2) allocate a rotationally optimal block in the same cylinder.
    344  *   3) allocate the next available block on the block rotor for the
    345  *      specified cylinder group.
    346  * Note that this routine only allocates fs_bsize blocks; these
    347  * blocks may be fragmented by the routine that allocates them.
    348  */
    349 static ufs_daddr_t
    350 ffs_alloccgblk(struct inode *ip, struct buf *bp, ufs_daddr_t bpref)
    351 {
    352 	struct cg *cgp;
    353 	ufs_daddr_t bno, blkno;
    354 	int cylno, pos, delta;
    355 	short *cylbp;
    356 	int i;
    357 	struct fs *fs = ip->i_fs;
    358 	const int needswap = UFS_FSNEEDSWAP(fs);
    359 
    360 	cgp = (struct cg *)bp->b_data;
    361 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
    362 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
    363 		goto norot;
    364 	}
    365 	bpref = blknum(fs, bpref);
    366 	bpref = dtogd(fs, bpref);
    367 	/*
    368 	 * if the requested block is available, use it
    369 	 */
    370 	if (ffs_isblock(fs, cg_blksfree(cgp, needswap),
    371 		fragstoblks(fs, bpref))) {
    372 		bno = bpref;
    373 		goto gotit;
    374 	}
    375 	if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
    376 		/*
    377 		 * Block layout information is not available.
    378 		 * Leaving bpref unchanged means we take the
    379 		 * next available free block following the one
    380 		 * we just allocated. Hopefully this will at
    381 		 * least hit a track cache on drives of unknown
    382 		 * geometry (e.g. SCSI).
    383 		 */
    384 		goto norot;
    385 	}
    386 	/*
    387 	 * check for a block available on the same cylinder
    388 	 */
    389 	cylno = cbtocylno(fs, bpref);
    390 	if (cg_blktot(cgp, needswap)[cylno] == 0)
    391 		goto norot;
    392 	/*
    393 	 * check the summary information to see if a block is
    394 	 * available in the requested cylinder starting at the
    395 	 * requested rotational position and proceeding around.
    396 	 */
    397 	cylbp = cg_blks(fs, cgp, cylno, needswap);
    398 	pos = cbtorpos(fs, bpref);
    399 	for (i = pos; i < fs->fs_nrpos; i++)
    400 		if (ufs_rw16(cylbp[i], needswap) > 0)
    401 			break;
    402 	if (i == fs->fs_nrpos)
    403 		for (i = 0; i < pos; i++)
    404 			if (ufs_rw16(cylbp[i], needswap) > 0)
    405 				break;
    406 	if (ufs_rw16(cylbp[i], needswap) > 0) {
    407 		/*
    408 		 * found a rotational position, now find the actual
    409 		 * block. A panic if none is actually there.
    410 		 */
    411 		pos = cylno % fs->fs_cpc;
    412 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
    413 		if (fs_postbl(fs, pos)[i] == -1) {
    414 			errx(1,
    415 			    "ffs_alloccgblk: cyl groups corrupted: pos %d i %d",
    416 			    pos, i);
    417 		}
    418 		for (i = fs_postbl(fs, pos)[i];; ) {
    419 			if (ffs_isblock(fs, cg_blksfree(cgp, needswap), bno + i)) {
    420 				bno = blkstofrags(fs, (bno + i));
    421 				goto gotit;
    422 			}
    423 			delta = fs_rotbl(fs)[i];
    424 			if (delta <= 0 ||
    425 			    delta + i > fragstoblks(fs, fs->fs_fpg))
    426 				break;
    427 			i += delta;
    428 		}
    429 		errx(1, "ffs_alloccgblk: can't find blk in cyl: pos %d i %d",
    430 		    pos, i);
    431 	}
    432 norot:
    433 	/*
    434 	 * no blocks in the requested cylinder, so take next
    435 	 * available one in this cylinder group.
    436 	 */
    437 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
    438 	if (bno < 0)
    439 		return (0);
    440 	cgp->cg_rotor = ufs_rw32(bno, needswap);
    441 gotit:
    442 	blkno = fragstoblks(fs, bno);
    443 	ffs_clrblock(fs, cg_blksfree(cgp, needswap), (long)blkno);
    444 	ffs_clusteracct(fs, cgp, blkno, -1);
    445 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
    446 	fs->fs_cstotal.cs_nbfree--;
    447 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
    448 	cylno = cbtocylno(fs, bno);
    449 	ufs_add16(cg_blks(fs, cgp, cylno, needswap)[cbtorpos(fs, bno)], -1,
    450 	    needswap);
    451 	ufs_add32(cg_blktot(cgp, needswap)[cylno], -1, needswap);
    452 	fs->fs_fmod = 1;
    453 	blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
    454 	return (blkno);
    455 }
    456 
    457 /*
    458  * Free a block or fragment.
    459  *
    460  * The specified block or fragment is placed back in the
    461  * free map. If a fragment is deallocated, a possible
    462  * block reassembly is checked.
    463  */
    464 void
    465 ffs_blkfree(struct inode *ip, ufs_daddr_t bno, long size)
    466 {
    467 	struct cg *cgp;
    468 	struct buf *bp;
    469 	ufs_daddr_t blkno;
    470 	int i, error, cg, blk, frags, bbase;
    471 	struct fs *fs = ip->i_fs;
    472 	const int needswap = UFS_FSNEEDSWAP(fs);
    473 
    474 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
    475 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
    476 		errx(1, "blkfree: bad size: bno %u bsize %d size %ld",
    477 		    bno, fs->fs_bsize, size);
    478 	}
    479 	cg = dtog(fs, bno);
    480 	if ((u_int)bno >= fs->fs_size) {
    481 		warnx("bad block %d, ino %d\n", bno, ip->i_number);
    482 		return;
    483 	}
    484 	error = bread(ip->i_fd, ip->i_fs, fsbtodb(fs, cgtod(fs, cg)),
    485 		(int)fs->fs_cgsize, &bp);
    486 	if (error) {
    487 		brelse(bp);
    488 		return;
    489 	}
    490 	cgp = (struct cg *)bp->b_data;
    491 	if (!cg_chkmagic(cgp, needswap)) {
    492 		brelse(bp);
    493 		return;
    494 	}
    495 	bno = dtogd(fs, bno);
    496 	if (size == fs->fs_bsize) {
    497 		blkno = fragstoblks(fs, bno);
    498 		if (!ffs_isfreeblock(fs, cg_blksfree(cgp, needswap), blkno)) {
    499 			errx(1, "blkfree: freeing free block %d", bno);
    500 		}
    501 		ffs_setblock(fs, cg_blksfree(cgp, needswap), blkno);
    502 		ffs_clusteracct(fs, cgp, blkno, 1);
    503 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
    504 		fs->fs_cstotal.cs_nbfree++;
    505 		fs->fs_cs(fs, cg).cs_nbfree++;
    506 		i = cbtocylno(fs, bno);
    507 		ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bno)], 1,
    508 		    needswap);
    509 		ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
    510 	} else {
    511 		bbase = bno - fragnum(fs, bno);
    512 		/*
    513 		 * decrement the counts associated with the old frags
    514 		 */
    515 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
    516 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
    517 		/*
    518 		 * deallocate the fragment
    519 		 */
    520 		frags = numfrags(fs, size);
    521 		for (i = 0; i < frags; i++) {
    522 			if (isset(cg_blksfree(cgp, needswap), bno + i)) {
    523 				errx(1, "blkfree: freeing free frag: block %d",
    524 				    bno + i);
    525 			}
    526 			setbit(cg_blksfree(cgp, needswap), bno + i);
    527 		}
    528 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
    529 		fs->fs_cstotal.cs_nffree += i;
    530 		fs->fs_cs(fs, cg).cs_nffree += i;
    531 		/*
    532 		 * add back in counts associated with the new frags
    533 		 */
    534 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
    535 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
    536 		/*
    537 		 * if a complete block has been reassembled, account for it
    538 		 */
    539 		blkno = fragstoblks(fs, bbase);
    540 		if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
    541 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
    542 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
    543 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
    544 			ffs_clusteracct(fs, cgp, blkno, 1);
    545 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
    546 			fs->fs_cstotal.cs_nbfree++;
    547 			fs->fs_cs(fs, cg).cs_nbfree++;
    548 			i = cbtocylno(fs, bbase);
    549 			ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs,
    550 								bbase)], 1,
    551 			    needswap);
    552 			ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
    553 		}
    554 	}
    555 	fs->fs_fmod = 1;
    556 	bdwrite(bp);
    557 }
    558 
    559 
    560 static int
    561 scanc(u_int size, const u_char *cp, const u_char table[], int mask)
    562 {
    563 	const u_char *end = &cp[size];
    564 
    565 	while (cp < end && (table[*cp] & mask) == 0)
    566 		cp++;
    567 	return (end - cp);
    568 }
    569 
    570 /*
    571  * Find a block of the specified size in the specified cylinder group.
    572  *
    573  * It is a panic if a request is made to find a block if none are
    574  * available.
    575  */
    576 static ufs_daddr_t
    577 ffs_mapsearch(struct fs *fs, struct cg *cgp, ufs_daddr_t bpref, int allocsiz)
    578 {
    579 	ufs_daddr_t bno;
    580 	int start, len, loc, i;
    581 	int blk, field, subfield, pos;
    582 	int ostart, olen;
    583 	const int needswap = UFS_FSNEEDSWAP(fs);
    584 
    585 	/*
    586 	 * find the fragment by searching through the free block
    587 	 * map for an appropriate bit pattern
    588 	 */
    589 	if (bpref)
    590 		start = dtogd(fs, bpref) / NBBY;
    591 	else
    592 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
    593 	len = howmany(fs->fs_fpg, NBBY) - start;
    594 	ostart = start;
    595 	olen = len;
    596 	loc = scanc((u_int)len,
    597 		(const u_char *)&cg_blksfree(cgp, needswap)[start],
    598 		(const u_char *)fragtbl[fs->fs_frag],
    599 		(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
    600 	if (loc == 0) {
    601 		len = start + 1;
    602 		start = 0;
    603 		loc = scanc((u_int)len,
    604 			(const u_char *)&cg_blksfree(cgp, needswap)[0],
    605 			(const u_char *)fragtbl[fs->fs_frag],
    606 			(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
    607 		if (loc == 0) {
    608 			errx(1,
    609     "ffs_alloccg: map corrupted: start %d len %d offset %d %ld",
    610 				ostart, olen,
    611 				ufs_rw32(cgp->cg_freeoff, needswap),
    612 				(long)cg_blksfree(cgp, needswap) - (long)cgp);
    613 			/* NOTREACHED */
    614 		}
    615 	}
    616 	bno = (start + len - loc) * NBBY;
    617 	cgp->cg_frotor = ufs_rw32(bno, needswap);
    618 	/*
    619 	 * found the byte in the map
    620 	 * sift through the bits to find the selected frag
    621 	 */
    622 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
    623 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bno);
    624 		blk <<= 1;
    625 		field = around[allocsiz];
    626 		subfield = inside[allocsiz];
    627 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
    628 			if ((blk & field) == subfield)
    629 				return (bno + pos);
    630 			field <<= 1;
    631 			subfield <<= 1;
    632 		}
    633 	}
    634 	errx(1, "ffs_alloccg: block not in map: bno %d", bno);
    635 	return (-1);
    636 }
    637 
    638 /*
    639  * Update the cluster map because of an allocation or free.
    640  *
    641  * Cnt == 1 means free; cnt == -1 means allocating.
    642  */
    643 void
    644 ffs_clusteracct(struct fs *fs, struct cg *cgp, ufs_daddr_t blkno, int cnt)
    645 {
    646 	int32_t *sump;
    647 	int32_t *lp;
    648 	u_char *freemapp, *mapp;
    649 	int i, start, end, forw, back, map, bit;
    650 	const int needswap = UFS_FSNEEDSWAP(fs);
    651 
    652 	if (fs->fs_contigsumsize <= 0)
    653 		return;
    654 	freemapp = cg_clustersfree(cgp, needswap);
    655 	sump = cg_clustersum(cgp, needswap);
    656 	/*
    657 	 * Allocate or clear the actual block.
    658 	 */
    659 	if (cnt > 0)
    660 		setbit(freemapp, blkno);
    661 	else
    662 		clrbit(freemapp, blkno);
    663 	/*
    664 	 * Find the size of the cluster going forward.
    665 	 */
    666 	start = blkno + 1;
    667 	end = start + fs->fs_contigsumsize;
    668 	if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
    669 		end = ufs_rw32(cgp->cg_nclusterblks, needswap);
    670 	mapp = &freemapp[start / NBBY];
    671 	map = *mapp++;
    672 	bit = 1 << (start % NBBY);
    673 	for (i = start; i < end; i++) {
    674 		if ((map & bit) == 0)
    675 			break;
    676 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
    677 			bit <<= 1;
    678 		} else {
    679 			map = *mapp++;
    680 			bit = 1;
    681 		}
    682 	}
    683 	forw = i - start;
    684 	/*
    685 	 * Find the size of the cluster going backward.
    686 	 */
    687 	start = blkno - 1;
    688 	end = start - fs->fs_contigsumsize;
    689 	if (end < 0)
    690 		end = -1;
    691 	mapp = &freemapp[start / NBBY];
    692 	map = *mapp--;
    693 	bit = 1 << (start % NBBY);
    694 	for (i = start; i > end; i--) {
    695 		if ((map & bit) == 0)
    696 			break;
    697 		if ((i & (NBBY - 1)) != 0) {
    698 			bit >>= 1;
    699 		} else {
    700 			map = *mapp--;
    701 			bit = 1 << (NBBY - 1);
    702 		}
    703 	}
    704 	back = start - i;
    705 	/*
    706 	 * Account for old cluster and the possibly new forward and
    707 	 * back clusters.
    708 	 */
    709 	i = back + forw + 1;
    710 	if (i > fs->fs_contigsumsize)
    711 		i = fs->fs_contigsumsize;
    712 	ufs_add32(sump[i], cnt, needswap);
    713 	if (back > 0)
    714 		ufs_add32(sump[back], -cnt, needswap);
    715 	if (forw > 0)
    716 		ufs_add32(sump[forw], -cnt, needswap);
    717 
    718 	/*
    719 	 * Update cluster summary information.
    720 	 */
    721 	lp = &sump[fs->fs_contigsumsize];
    722 	for (i = fs->fs_contigsumsize; i > 0; i--)
    723 		if (ufs_rw32(*lp--, needswap) > 0)
    724 			break;
    725 	fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
    726 }
    727