ffs_alloc.c revision 1.11 1 /* $NetBSD: ffs_alloc.c,v 1.11 2003/01/24 21:55:32 fvdl Exp $ */
2 /* From: NetBSD: ffs_alloc.c,v 1.50 2001/09/06 02:16:01 lukem Exp */
3
4 /*
5 * Copyright (c) 1982, 1986, 1989, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
37 */
38
39 #include <sys/cdefs.h>
40 #if defined(__RCSID) && !defined(__lint)
41 __RCSID("$NetBSD: ffs_alloc.c,v 1.11 2003/01/24 21:55:32 fvdl Exp $");
42 #endif /* !__lint */
43
44 #include <sys/param.h>
45 #include <sys/time.h>
46
47 #include <errno.h>
48
49 #include "makefs.h"
50
51 #include <ufs/ufs/dinode.h>
52 #include <ufs/ufs/ufs_bswap.h>
53 #include <ufs/ffs/fs.h>
54
55 #include "ffs/buf.h"
56 #include "ffs/ufs_inode.h"
57 #include "ffs/ffs_extern.h"
58
59
60 static int scanc(u_int, const u_char *, const u_char *, int);
61
62 static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int);
63 static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t);
64 static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int,
65 daddr_t (*)(struct inode *, int, daddr_t, int));
66 static daddr_t ffs_mapsearch(struct fs *, struct cg *, daddr_t, int);
67
68 /* in ffs_tables.c */
69 extern const int inside[], around[];
70 extern const u_char * const fragtbl[];
71
72 /*
73 * Allocate a block in the file system.
74 *
75 * The size of the requested block is given, which must be some
76 * multiple of fs_fsize and <= fs_bsize.
77 * A preference may be optionally specified. If a preference is given
78 * the following hierarchy is used to allocate a block:
79 * 1) allocate the requested block.
80 * 2) allocate a rotationally optimal block in the same cylinder.
81 * 3) allocate a block in the same cylinder group.
82 * 4) quadradically rehash into other cylinder groups, until an
83 * available block is located.
84 * If no block preference is given the following hierarchy is used
85 * to allocate a block:
86 * 1) allocate a block in the cylinder group that contains the
87 * inode for the file.
88 * 2) quadradically rehash into other cylinder groups, until an
89 * available block is located.
90 */
91 int
92 ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size,
93 daddr_t *bnp)
94 {
95 struct fs *fs = ip->i_fs;
96 daddr_t bno;
97 int cg;
98
99 *bnp = 0;
100 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
101 errx(1, "ffs_alloc: bad size: bsize %d size %d",
102 fs->fs_bsize, size);
103 }
104 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
105 goto nospace;
106 if (bpref >= fs->fs_size)
107 bpref = 0;
108 if (bpref == 0)
109 cg = ino_to_cg(fs, ip->i_number);
110 else
111 cg = dtog(fs, bpref);
112 bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg);
113 if (bno > 0) {
114 ip->i_ffs_blocks += size / DEV_BSIZE;
115 *bnp = bno;
116 return (0);
117 }
118 nospace:
119 return (ENOSPC);
120 }
121
122 /*
123 * Select the desired position for the next block in a file. The file is
124 * logically divided into sections. The first section is composed of the
125 * direct blocks. Each additional section contains fs_maxbpg blocks.
126 *
127 * If no blocks have been allocated in the first section, the policy is to
128 * request a block in the same cylinder group as the inode that describes
129 * the file. If no blocks have been allocated in any other section, the
130 * policy is to place the section in a cylinder group with a greater than
131 * average number of free blocks. An appropriate cylinder group is found
132 * by using a rotor that sweeps the cylinder groups. When a new group of
133 * blocks is needed, the sweep begins in the cylinder group following the
134 * cylinder group from which the previous allocation was made. The sweep
135 * continues until a cylinder group with greater than the average number
136 * of free blocks is found. If the allocation is for the first block in an
137 * indirect block, the information on the previous allocation is unavailable;
138 * here a best guess is made based upon the logical block number being
139 * allocated.
140 *
141 * If a section is already partially allocated, the policy is to
142 * contiguously allocate fs_maxcontig blocks. The end of one of these
143 * contiguous blocks and the beginning of the next is physically separated
144 * so that the disk head will be in transit between them for at least
145 * fs_rotdelay milliseconds. This is to allow time for the processor to
146 * schedule another I/O transfer.
147 */
148 /* XXX ondisk32 */
149 daddr_t
150 ffs_blkpref(struct inode *ip, daddr_t lbn, int indx, int32_t *bap)
151 {
152 struct fs *fs;
153 int cg;
154 int avgbfree, startcg;
155 daddr_t nextblk;
156
157 fs = ip->i_fs;
158 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
159 if (lbn < NDADDR + NINDIR(fs)) {
160 cg = ino_to_cg(fs, ip->i_number);
161 return (fs->fs_fpg * cg + fs->fs_frag);
162 }
163 /*
164 * Find a cylinder with greater than average number of
165 * unused data blocks.
166 */
167 if (indx == 0 || bap[indx - 1] == 0)
168 startcg =
169 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
170 else
171 startcg = dtog(fs,
172 ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
173 startcg %= fs->fs_ncg;
174 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
175 for (cg = startcg; cg < fs->fs_ncg; cg++)
176 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
177 fs->fs_cgrotor = cg;
178 return (fs->fs_fpg * cg + fs->fs_frag);
179 }
180 for (cg = 0; cg <= startcg; cg++)
181 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
182 fs->fs_cgrotor = cg;
183 return (fs->fs_fpg * cg + fs->fs_frag);
184 }
185 return (0);
186 }
187 /*
188 * One or more previous blocks have been laid out. If less
189 * than fs_maxcontig previous blocks are contiguous, the
190 * next block is requested contiguously, otherwise it is
191 * requested rotationally delayed by fs_rotdelay milliseconds.
192 */
193 /* XXX ondisk32 */
194 nextblk = ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
195 if (indx < fs->fs_maxcontig ||
196 ufs_rw32(bap[indx - fs->fs_maxcontig], UFS_FSNEEDSWAP(fs)) +
197 blkstofrags(fs, fs->fs_maxcontig) != nextblk)
198 return (nextblk);
199 if (fs->fs_rotdelay != 0)
200 /*
201 * Here we convert ms of delay to frags as:
202 * (frags) = (ms) * (rev/sec) * (sect/rev) /
203 * ((sect/frag) * (ms/sec))
204 * then round up to the next block.
205 */
206 nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
207 (NSPF(fs) * 1000), fs->fs_frag);
208 return (nextblk);
209 }
210
211 /*
212 * Implement the cylinder overflow algorithm.
213 *
214 * The policy implemented by this algorithm is:
215 * 1) allocate the block in its requested cylinder group.
216 * 2) quadradically rehash on the cylinder group number.
217 * 3) brute force search for a free block.
218 *
219 * `size': size for data blocks, mode for inodes
220 */
221 /*VARARGS5*/
222 static daddr_t
223 ffs_hashalloc(struct inode *ip, int cg, daddr_t pref, int size,
224 daddr_t (*allocator)(struct inode *, int, daddr_t, int))
225 {
226 struct fs *fs;
227 daddr_t result;
228 int i, icg = cg;
229
230 fs = ip->i_fs;
231 /*
232 * 1: preferred cylinder group
233 */
234 result = (*allocator)(ip, cg, pref, size);
235 if (result)
236 return (result);
237 /*
238 * 2: quadratic rehash
239 */
240 for (i = 1; i < fs->fs_ncg; i *= 2) {
241 cg += i;
242 if (cg >= fs->fs_ncg)
243 cg -= fs->fs_ncg;
244 result = (*allocator)(ip, cg, 0, size);
245 if (result)
246 return (result);
247 }
248 /*
249 * 3: brute force search
250 * Note that we start at i == 2, since 0 was checked initially,
251 * and 1 is always checked in the quadratic rehash.
252 */
253 cg = (icg + 2) % fs->fs_ncg;
254 for (i = 2; i < fs->fs_ncg; i++) {
255 result = (*allocator)(ip, cg, 0, size);
256 if (result)
257 return (result);
258 cg++;
259 if (cg == fs->fs_ncg)
260 cg = 0;
261 }
262 return (0);
263 }
264
265 /*
266 * Determine whether a block can be allocated.
267 *
268 * Check to see if a block of the appropriate size is available,
269 * and if it is, allocate it.
270 */
271 static daddr_t
272 ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size)
273 {
274 struct cg *cgp;
275 struct buf *bp;
276 daddr_t bno, blkno;
277 int error, frags, allocsiz, i;
278 struct fs *fs = ip->i_fs;
279 const int needswap = UFS_FSNEEDSWAP(fs);
280
281 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
282 return (0);
283 error = bread(ip->i_fd, ip->i_fs, fsbtodb(fs, cgtod(fs, cg)),
284 (int)fs->fs_cgsize, &bp);
285 if (error) {
286 brelse(bp);
287 return (0);
288 }
289 cgp = (struct cg *)bp->b_data;
290 if (!cg_chkmagic(cgp, needswap) ||
291 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
292 brelse(bp);
293 return (0);
294 }
295 if (size == fs->fs_bsize) {
296 bno = ffs_alloccgblk(ip, bp, bpref);
297 bdwrite(bp);
298 return (bno);
299 }
300 /*
301 * check to see if any fragments are already available
302 * allocsiz is the size which will be allocated, hacking
303 * it down to a smaller size if necessary
304 */
305 frags = numfrags(fs, size);
306 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
307 if (cgp->cg_frsum[allocsiz] != 0)
308 break;
309 if (allocsiz == fs->fs_frag) {
310 /*
311 * no fragments were available, so a block will be
312 * allocated, and hacked up
313 */
314 if (cgp->cg_cs.cs_nbfree == 0) {
315 brelse(bp);
316 return (0);
317 }
318 bno = ffs_alloccgblk(ip, bp, bpref);
319 bpref = dtogd(fs, bno);
320 for (i = frags; i < fs->fs_frag; i++)
321 setbit(cg_blksfree(cgp, needswap), bpref + i);
322 i = fs->fs_frag - frags;
323 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
324 fs->fs_cstotal.cs_nffree += i;
325 fs->fs_cs(fs, cg).cs_nffree += i;
326 fs->fs_fmod = 1;
327 ufs_add32(cgp->cg_frsum[i], 1, needswap);
328 bdwrite(bp);
329 return (bno);
330 }
331 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
332 for (i = 0; i < frags; i++)
333 clrbit(cg_blksfree(cgp, needswap), bno + i);
334 ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
335 fs->fs_cstotal.cs_nffree -= frags;
336 fs->fs_cs(fs, cg).cs_nffree -= frags;
337 fs->fs_fmod = 1;
338 ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
339 if (frags != allocsiz)
340 ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
341 blkno = cg * fs->fs_fpg + bno;
342 bdwrite(bp);
343 return blkno;
344 }
345
346 /*
347 * Allocate a block in a cylinder group.
348 *
349 * This algorithm implements the following policy:
350 * 1) allocate the requested block.
351 * 2) allocate a rotationally optimal block in the same cylinder.
352 * 3) allocate the next available block on the block rotor for the
353 * specified cylinder group.
354 * Note that this routine only allocates fs_bsize blocks; these
355 * blocks may be fragmented by the routine that allocates them.
356 */
357 static daddr_t
358 ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref)
359 {
360 struct cg *cgp;
361 daddr_t bno, blkno;
362 int cylno, pos, delta;
363 short *cylbp;
364 int i;
365 struct fs *fs = ip->i_fs;
366 const int needswap = UFS_FSNEEDSWAP(fs);
367
368 cgp = (struct cg *)bp->b_data;
369 /* XXX ondisk32 */
370 if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
371 bpref = ufs_rw32(cgp->cg_rotor, needswap);
372 goto norot;
373 }
374 bpref = blknum(fs, bpref);
375 bpref = dtogd(fs, bpref);
376 /*
377 * if the requested block is available, use it
378 */
379 if (ffs_isblock(fs, cg_blksfree(cgp, needswap),
380 fragstoblks(fs, bpref))) {
381 bno = bpref;
382 goto gotit;
383 }
384 if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
385 /*
386 * Block layout information is not available.
387 * Leaving bpref unchanged means we take the
388 * next available free block following the one
389 * we just allocated. Hopefully this will at
390 * least hit a track cache on drives of unknown
391 * geometry (e.g. SCSI).
392 */
393 goto norot;
394 }
395 /*
396 * check for a block available on the same cylinder
397 */
398 cylno = cbtocylno(fs, bpref);
399 if (cg_blktot(cgp, needswap)[cylno] == 0)
400 goto norot;
401 /*
402 * check the summary information to see if a block is
403 * available in the requested cylinder starting at the
404 * requested rotational position and proceeding around.
405 */
406 cylbp = cg_blks(fs, cgp, cylno, needswap);
407 pos = cbtorpos(fs, bpref);
408 for (i = pos; i < fs->fs_nrpos; i++)
409 if (ufs_rw16(cylbp[i], needswap) > 0)
410 break;
411 if (i == fs->fs_nrpos)
412 for (i = 0; i < pos; i++)
413 if (ufs_rw16(cylbp[i], needswap) > 0)
414 break;
415 if (ufs_rw16(cylbp[i], needswap) > 0) {
416 /*
417 * found a rotational position, now find the actual
418 * block. A panic if none is actually there.
419 */
420 pos = cylno % fs->fs_cpc;
421 bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
422 if (fs_postbl(fs, pos)[i] == -1) {
423 errx(1,
424 "ffs_alloccgblk: cyl groups corrupted: pos %d i %d",
425 pos, i);
426 }
427 for (i = fs_postbl(fs, pos)[i];; ) {
428 if (ffs_isblock(fs, cg_blksfree(cgp, needswap), bno + i)) {
429 bno = blkstofrags(fs, (bno + i));
430 goto gotit;
431 }
432 delta = fs_rotbl(fs)[i];
433 if (delta <= 0 ||
434 delta + i > fragstoblks(fs, fs->fs_fpg))
435 break;
436 i += delta;
437 }
438 errx(1, "ffs_alloccgblk: can't find blk in cyl: pos %d i %d",
439 pos, i);
440 }
441 norot:
442 /*
443 * no blocks in the requested cylinder, so take next
444 * available one in this cylinder group.
445 */
446 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
447 if (bno < 0)
448 return (0);
449 /* XXX ondisk32 */
450 cgp->cg_rotor = ufs_rw64(bno, needswap);
451 gotit:
452 blkno = fragstoblks(fs, bno);
453 ffs_clrblock(fs, cg_blksfree(cgp, needswap), (long)blkno);
454 ffs_clusteracct(fs, cgp, blkno, -1);
455 ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
456 fs->fs_cstotal.cs_nbfree--;
457 fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
458 cylno = cbtocylno(fs, bno);
459 ufs_add16(cg_blks(fs, cgp, cylno, needswap)[cbtorpos(fs, bno)], -1,
460 needswap);
461 ufs_add32(cg_blktot(cgp, needswap)[cylno], -1, needswap);
462 fs->fs_fmod = 1;
463 /* XXX ondisk32 */
464 blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
465 return (blkno);
466 }
467
468 /*
469 * Free a block or fragment.
470 *
471 * The specified block or fragment is placed back in the
472 * free map. If a fragment is deallocated, a possible
473 * block reassembly is checked.
474 */
475 void
476 ffs_blkfree(struct inode *ip, daddr_t bno, long size)
477 {
478 struct cg *cgp;
479 struct buf *bp;
480 daddr_t blkno;
481 int i, error, cg, blk, frags, bbase;
482 struct fs *fs = ip->i_fs;
483 const int needswap = UFS_FSNEEDSWAP(fs);
484
485 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
486 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
487 errx(1, "blkfree: bad size: bno %lld bsize %d size %ld",
488 (long long)bno, fs->fs_bsize, size);
489 }
490 cg = dtog(fs, bno);
491 if ((u_int)bno >= fs->fs_size) {
492 warnx("bad block %lld, ino %d", (long long)bno, ip->i_number);
493 return;
494 }
495 error = bread(ip->i_fd, ip->i_fs, fsbtodb(fs, cgtod(fs, cg)),
496 (int)fs->fs_cgsize, &bp);
497 if (error) {
498 brelse(bp);
499 return;
500 }
501 cgp = (struct cg *)bp->b_data;
502 if (!cg_chkmagic(cgp, needswap)) {
503 brelse(bp);
504 return;
505 }
506 bno = dtogd(fs, bno);
507 if (size == fs->fs_bsize) {
508 blkno = fragstoblks(fs, bno);
509 if (!ffs_isfreeblock(fs, cg_blksfree(cgp, needswap), blkno)) {
510 errx(1, "blkfree: freeing free block %lld",
511 (long long)bno);
512 }
513 ffs_setblock(fs, cg_blksfree(cgp, needswap), blkno);
514 ffs_clusteracct(fs, cgp, blkno, 1);
515 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
516 fs->fs_cstotal.cs_nbfree++;
517 fs->fs_cs(fs, cg).cs_nbfree++;
518 i = cbtocylno(fs, bno);
519 ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bno)], 1,
520 needswap);
521 ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
522 } else {
523 bbase = bno - fragnum(fs, bno);
524 /*
525 * decrement the counts associated with the old frags
526 */
527 blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
528 ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
529 /*
530 * deallocate the fragment
531 */
532 frags = numfrags(fs, size);
533 for (i = 0; i < frags; i++) {
534 if (isset(cg_blksfree(cgp, needswap), bno + i)) {
535 errx(1, "blkfree: freeing free frag: block %lld",
536 (long long)(bno + i));
537 }
538 setbit(cg_blksfree(cgp, needswap), bno + i);
539 }
540 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
541 fs->fs_cstotal.cs_nffree += i;
542 fs->fs_cs(fs, cg).cs_nffree += i;
543 /*
544 * add back in counts associated with the new frags
545 */
546 blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
547 ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
548 /*
549 * if a complete block has been reassembled, account for it
550 */
551 blkno = fragstoblks(fs, bbase);
552 if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
553 ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
554 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
555 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
556 ffs_clusteracct(fs, cgp, blkno, 1);
557 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
558 fs->fs_cstotal.cs_nbfree++;
559 fs->fs_cs(fs, cg).cs_nbfree++;
560 i = cbtocylno(fs, bbase);
561 ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs,
562 bbase)], 1,
563 needswap);
564 ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
565 }
566 }
567 fs->fs_fmod = 1;
568 bdwrite(bp);
569 }
570
571
572 static int
573 scanc(u_int size, const u_char *cp, const u_char table[], int mask)
574 {
575 const u_char *end = &cp[size];
576
577 while (cp < end && (table[*cp] & mask) == 0)
578 cp++;
579 return (end - cp);
580 }
581
582 /*
583 * Find a block of the specified size in the specified cylinder group.
584 *
585 * It is a panic if a request is made to find a block if none are
586 * available.
587 */
588 static daddr_t
589 ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
590 {
591 daddr_t bno;
592 int start, len, loc, i;
593 int blk, field, subfield, pos;
594 int ostart, olen;
595 const int needswap = UFS_FSNEEDSWAP(fs);
596
597 /*
598 * find the fragment by searching through the free block
599 * map for an appropriate bit pattern
600 */
601 if (bpref)
602 start = dtogd(fs, bpref) / NBBY;
603 else
604 start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
605 len = howmany(fs->fs_fpg, NBBY) - start;
606 ostart = start;
607 olen = len;
608 loc = scanc((u_int)len,
609 (const u_char *)&cg_blksfree(cgp, needswap)[start],
610 (const u_char *)fragtbl[fs->fs_frag],
611 (1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
612 if (loc == 0) {
613 len = start + 1;
614 start = 0;
615 loc = scanc((u_int)len,
616 (const u_char *)&cg_blksfree(cgp, needswap)[0],
617 (const u_char *)fragtbl[fs->fs_frag],
618 (1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
619 if (loc == 0) {
620 errx(1,
621 "ffs_alloccg: map corrupted: start %d len %d offset %d %ld",
622 ostart, olen,
623 ufs_rw32(cgp->cg_freeoff, needswap),
624 (long)cg_blksfree(cgp, needswap) - (long)cgp);
625 /* NOTREACHED */
626 }
627 }
628 bno = (start + len - loc) * NBBY;
629 cgp->cg_frotor = ufs_rw32(bno, needswap);
630 /*
631 * found the byte in the map
632 * sift through the bits to find the selected frag
633 */
634 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
635 blk = blkmap(fs, cg_blksfree(cgp, needswap), bno);
636 blk <<= 1;
637 field = around[allocsiz];
638 subfield = inside[allocsiz];
639 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
640 if ((blk & field) == subfield)
641 return (bno + pos);
642 field <<= 1;
643 subfield <<= 1;
644 }
645 }
646 errx(1, "ffs_alloccg: block not in map: bno %lld", (long long)bno);
647 return (-1);
648 }
649
650 /*
651 * Update the cluster map because of an allocation or free.
652 *
653 * Cnt == 1 means free; cnt == -1 means allocating.
654 */
655 void
656 ffs_clusteracct(struct fs *fs, struct cg *cgp, daddr_t blkno, int cnt)
657 {
658 int32_t *sump;
659 int32_t *lp;
660 u_char *freemapp, *mapp;
661 int i, start, end, forw, back, map, bit;
662 const int needswap = UFS_FSNEEDSWAP(fs);
663
664 if (fs->fs_contigsumsize <= 0)
665 return;
666 freemapp = cg_clustersfree(cgp, needswap);
667 sump = cg_clustersum(cgp, needswap);
668 /*
669 * Allocate or clear the actual block.
670 */
671 if (cnt > 0)
672 setbit(freemapp, blkno);
673 else
674 clrbit(freemapp, blkno);
675 /*
676 * Find the size of the cluster going forward.
677 */
678 start = blkno + 1;
679 end = start + fs->fs_contigsumsize;
680 if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
681 end = ufs_rw32(cgp->cg_nclusterblks, needswap);
682 mapp = &freemapp[start / NBBY];
683 map = *mapp++;
684 bit = 1 << (start % NBBY);
685 for (i = start; i < end; i++) {
686 if ((map & bit) == 0)
687 break;
688 if ((i & (NBBY - 1)) != (NBBY - 1)) {
689 bit <<= 1;
690 } else {
691 map = *mapp++;
692 bit = 1;
693 }
694 }
695 forw = i - start;
696 /*
697 * Find the size of the cluster going backward.
698 */
699 start = blkno - 1;
700 end = start - fs->fs_contigsumsize;
701 if (end < 0)
702 end = -1;
703 mapp = &freemapp[start / NBBY];
704 map = *mapp--;
705 bit = 1 << (start % NBBY);
706 for (i = start; i > end; i--) {
707 if ((map & bit) == 0)
708 break;
709 if ((i & (NBBY - 1)) != 0) {
710 bit >>= 1;
711 } else {
712 map = *mapp--;
713 bit = 1 << (NBBY - 1);
714 }
715 }
716 back = start - i;
717 /*
718 * Account for old cluster and the possibly new forward and
719 * back clusters.
720 */
721 i = back + forw + 1;
722 if (i > fs->fs_contigsumsize)
723 i = fs->fs_contigsumsize;
724 ufs_add32(sump[i], cnt, needswap);
725 if (back > 0)
726 ufs_add32(sump[back], -cnt, needswap);
727 if (forw > 0)
728 ufs_add32(sump[forw], -cnt, needswap);
729
730 /*
731 * Update cluster summary information.
732 */
733 lp = &sump[fs->fs_contigsumsize];
734 for (i = fs->fs_contigsumsize; i > 0; i--)
735 if (ufs_rw32(*lp--, needswap) > 0)
736 break;
737 fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
738 }
739