Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.12
      1 /*	$NetBSD: ffs_alloc.c,v 1.12 2003/04/02 10:39:49 fvdl Exp $	*/
      2 /* From: NetBSD: ffs_alloc.c,v 1.50 2001/09/06 02:16:01 lukem Exp */
      3 
      4 /*
      5  * Copyright (c) 2002 Networks Associates Technology, Inc.
      6  * All rights reserved.
      7  *
      8  * This software was developed for the FreeBSD Project by Marshall
      9  * Kirk McKusick and Network Associates Laboratories, the Security
     10  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
     11  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
     12  * research program
     13  *
     14  * Copyright (c) 1982, 1986, 1989, 1993
     15  *	The Regents of the University of California.  All rights reserved.
     16  *
     17  * Redistribution and use in source and binary forms, with or without
     18  * modification, are permitted provided that the following conditions
     19  * are met:
     20  * 1. Redistributions of source code must retain the above copyright
     21  *    notice, this list of conditions and the following disclaimer.
     22  * 2. Redistributions in binary form must reproduce the above copyright
     23  *    notice, this list of conditions and the following disclaimer in the
     24  *    documentation and/or other materials provided with the distribution.
     25  * 3. All advertising materials mentioning features or use of this software
     26  *    must display the following acknowledgement:
     27  *	This product includes software developed by the University of
     28  *	California, Berkeley and its contributors.
     29  * 4. Neither the name of the University nor the names of its contributors
     30  *    may be used to endorse or promote products derived from this software
     31  *    without specific prior written permission.
     32  *
     33  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     34  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     35  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     36  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     37  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     38  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     39  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     40  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     41  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     42  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     43  * SUCH DAMAGE.
     44  *
     45  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     46  */
     47 
     48 #include <sys/cdefs.h>
     49 #if defined(__RCSID) && !defined(__lint)
     50 __RCSID("$NetBSD: ffs_alloc.c,v 1.12 2003/04/02 10:39:49 fvdl Exp $");
     51 #endif	/* !__lint */
     52 
     53 #include <sys/param.h>
     54 #include <sys/time.h>
     55 
     56 #include <errno.h>
     57 
     58 #include "makefs.h"
     59 
     60 #include <ufs/ufs/dinode.h>
     61 #include <ufs/ufs/ufs_bswap.h>
     62 #include <ufs/ffs/fs.h>
     63 
     64 #include "ffs/buf.h"
     65 #include "ffs/ufs_inode.h"
     66 #include "ffs/ffs_extern.h"
     67 
     68 
     69 static int scanc(u_int, const u_char *, const u_char *, int);
     70 
     71 static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int);
     72 static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t);
     73 static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int,
     74 		     daddr_t (*)(struct inode *, int, daddr_t, int));
     75 static int32_t ffs_mapsearch(struct fs *, struct cg *, daddr_t, int);
     76 
     77 /* in ffs_tables.c */
     78 extern const int inside[], around[];
     79 extern const u_char * const fragtbl[];
     80 
     81 /*
     82  * Allocate a block in the file system.
     83  *
     84  * The size of the requested block is given, which must be some
     85  * multiple of fs_fsize and <= fs_bsize.
     86  * A preference may be optionally specified. If a preference is given
     87  * the following hierarchy is used to allocate a block:
     88  *   1) allocate the requested block.
     89  *   2) allocate a rotationally optimal block in the same cylinder.
     90  *   3) allocate a block in the same cylinder group.
     91  *   4) quadradically rehash into other cylinder groups, until an
     92  *      available block is located.
     93  * If no block preference is given the following hierarchy is used
     94  * to allocate a block:
     95  *   1) allocate a block in the cylinder group that contains the
     96  *      inode for the file.
     97  *   2) quadradically rehash into other cylinder groups, until an
     98  *      available block is located.
     99  */
    100 int
    101 ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size,
    102     daddr_t *bnp)
    103 {
    104 	struct fs *fs = ip->i_fs;
    105 	daddr_t bno;
    106 	int cg;
    107 
    108 	*bnp = 0;
    109 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    110 		errx(1, "ffs_alloc: bad size: bsize %d size %d",
    111 		    fs->fs_bsize, size);
    112 	}
    113 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    114 		goto nospace;
    115 	if (bpref >= fs->fs_size)
    116 		bpref = 0;
    117 	if (bpref == 0)
    118 		cg = ino_to_cg(fs, ip->i_number);
    119 	else
    120 		cg = dtog(fs, bpref);
    121 	bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg);
    122 	if (bno > 0) {
    123 		DIP(ip, blocks) += size / DEV_BSIZE;
    124 		*bnp = bno;
    125 		return (0);
    126 	}
    127 nospace:
    128 	return (ENOSPC);
    129 }
    130 
    131 /*
    132  * Select the desired position for the next block in a file.  The file is
    133  * logically divided into sections. The first section is composed of the
    134  * direct blocks. Each additional section contains fs_maxbpg blocks.
    135  *
    136  * If no blocks have been allocated in the first section, the policy is to
    137  * request a block in the same cylinder group as the inode that describes
    138  * the file. If no blocks have been allocated in any other section, the
    139  * policy is to place the section in a cylinder group with a greater than
    140  * average number of free blocks.  An appropriate cylinder group is found
    141  * by using a rotor that sweeps the cylinder groups. When a new group of
    142  * blocks is needed, the sweep begins in the cylinder group following the
    143  * cylinder group from which the previous allocation was made. The sweep
    144  * continues until a cylinder group with greater than the average number
    145  * of free blocks is found. If the allocation is for the first block in an
    146  * indirect block, the information on the previous allocation is unavailable;
    147  * here a best guess is made based upon the logical block number being
    148  * allocated.
    149  *
    150  * If a section is already partially allocated, the policy is to
    151  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    152  * contiguous blocks and the beginning of the next is physically separated
    153  * so that the disk head will be in transit between them for at least
    154  * fs_rotdelay milliseconds.  This is to allow time for the processor to
    155  * schedule another I/O transfer.
    156  */
    157 /* XXX ondisk32 */
    158 daddr_t
    159 ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int32_t *bap)
    160 {
    161 	struct fs *fs;
    162 	int cg;
    163 	int avgbfree, startcg;
    164 
    165 	fs = ip->i_fs;
    166 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    167 		if (lbn < NDADDR + NINDIR(fs)) {
    168 			cg = ino_to_cg(fs, ip->i_number);
    169 			return (fs->fs_fpg * cg + fs->fs_frag);
    170 		}
    171 		/*
    172 		 * Find a cylinder with greater than average number of
    173 		 * unused data blocks.
    174 		 */
    175 		if (indx == 0 || bap[indx - 1] == 0)
    176 			startcg =
    177 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    178 		else
    179 			startcg = dtog(fs,
    180 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    181 		startcg %= fs->fs_ncg;
    182 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    183 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    184 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree)
    185 				return (fs->fs_fpg * cg + fs->fs_frag);
    186 		for (cg = 0; cg <= startcg; cg++)
    187 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree)
    188 				return (fs->fs_fpg * cg + fs->fs_frag);
    189 		return (0);
    190 	}
    191 	/*
    192 	 * We just always try to lay things out contiguously.
    193 	 */
    194 	return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    195 }
    196 
    197 daddr_t
    198 ffs_blkpref_ufs2(ip, lbn, indx, bap)
    199 	struct inode *ip;
    200 	daddr_t lbn;
    201 	int indx;
    202 	int64_t *bap;
    203 {
    204 	struct fs *fs;
    205 	int cg;
    206 	int avgbfree, startcg;
    207 
    208 	fs = ip->i_fs;
    209 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    210 		if (lbn < NDADDR + NINDIR(fs)) {
    211 			cg = ino_to_cg(fs, ip->i_number);
    212 			return (fs->fs_fpg * cg + fs->fs_frag);
    213 		}
    214 		/*
    215 		 * Find a cylinder with greater than average number of
    216 		 * unused data blocks.
    217 		 */
    218 		if (indx == 0 || bap[indx - 1] == 0)
    219 			startcg =
    220 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    221 		else
    222 			startcg = dtog(fs,
    223 				ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    224 		startcg %= fs->fs_ncg;
    225 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    226 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    227 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    228 				return (fs->fs_fpg * cg + fs->fs_frag);
    229 			}
    230 		for (cg = 0; cg < startcg; cg++)
    231 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    232 				return (fs->fs_fpg * cg + fs->fs_frag);
    233 			}
    234 		return (0);
    235 	}
    236 	/*
    237 	 * We just always try to lay things out contiguously.
    238 	 */
    239 	return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    240 }
    241 
    242 /*
    243  * Implement the cylinder overflow algorithm.
    244  *
    245  * The policy implemented by this algorithm is:
    246  *   1) allocate the block in its requested cylinder group.
    247  *   2) quadradically rehash on the cylinder group number.
    248  *   3) brute force search for a free block.
    249  *
    250  * `size':	size for data blocks, mode for inodes
    251  */
    252 /*VARARGS5*/
    253 static daddr_t
    254 ffs_hashalloc(struct inode *ip, int cg, daddr_t pref, int size,
    255     daddr_t (*allocator)(struct inode *, int, daddr_t, int))
    256 {
    257 	struct fs *fs;
    258 	daddr_t result;
    259 	int i, icg = cg;
    260 
    261 	fs = ip->i_fs;
    262 	/*
    263 	 * 1: preferred cylinder group
    264 	 */
    265 	result = (*allocator)(ip, cg, pref, size);
    266 	if (result)
    267 		return (result);
    268 	/*
    269 	 * 2: quadratic rehash
    270 	 */
    271 	for (i = 1; i < fs->fs_ncg; i *= 2) {
    272 		cg += i;
    273 		if (cg >= fs->fs_ncg)
    274 			cg -= fs->fs_ncg;
    275 		result = (*allocator)(ip, cg, 0, size);
    276 		if (result)
    277 			return (result);
    278 	}
    279 	/*
    280 	 * 3: brute force search
    281 	 * Note that we start at i == 2, since 0 was checked initially,
    282 	 * and 1 is always checked in the quadratic rehash.
    283 	 */
    284 	cg = (icg + 2) % fs->fs_ncg;
    285 	for (i = 2; i < fs->fs_ncg; i++) {
    286 		result = (*allocator)(ip, cg, 0, size);
    287 		if (result)
    288 			return (result);
    289 		cg++;
    290 		if (cg == fs->fs_ncg)
    291 			cg = 0;
    292 	}
    293 	return (0);
    294 }
    295 
    296 /*
    297  * Determine whether a block can be allocated.
    298  *
    299  * Check to see if a block of the appropriate size is available,
    300  * and if it is, allocate it.
    301  */
    302 static daddr_t
    303 ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size)
    304 {
    305 	struct cg *cgp;
    306 	struct buf *bp;
    307 	daddr_t bno, blkno;
    308 	int error, frags, allocsiz, i;
    309 	struct fs *fs = ip->i_fs;
    310 	const int needswap = UFS_FSNEEDSWAP(fs);
    311 
    312 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
    313 		return (0);
    314 	error = bread(ip->i_fd, ip->i_fs, fsbtodb(fs, cgtod(fs, cg)),
    315 		(int)fs->fs_cgsize, &bp);
    316 	if (error) {
    317 		brelse(bp);
    318 		return (0);
    319 	}
    320 	cgp = (struct cg *)bp->b_data;
    321 	if (!cg_chkmagic(cgp, needswap) ||
    322 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
    323 		brelse(bp);
    324 		return (0);
    325 	}
    326 	if (size == fs->fs_bsize) {
    327 		bno = ffs_alloccgblk(ip, bp, bpref);
    328 		bdwrite(bp);
    329 		return (bno);
    330 	}
    331 	/*
    332 	 * check to see if any fragments are already available
    333 	 * allocsiz is the size which will be allocated, hacking
    334 	 * it down to a smaller size if necessary
    335 	 */
    336 	frags = numfrags(fs, size);
    337 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
    338 		if (cgp->cg_frsum[allocsiz] != 0)
    339 			break;
    340 	if (allocsiz == fs->fs_frag) {
    341 		/*
    342 		 * no fragments were available, so a block will be
    343 		 * allocated, and hacked up
    344 		 */
    345 		if (cgp->cg_cs.cs_nbfree == 0) {
    346 			brelse(bp);
    347 			return (0);
    348 		}
    349 		bno = ffs_alloccgblk(ip, bp, bpref);
    350 		bpref = dtogd(fs, bno);
    351 		for (i = frags; i < fs->fs_frag; i++)
    352 			setbit(cg_blksfree(cgp, needswap), bpref + i);
    353 		i = fs->fs_frag - frags;
    354 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
    355 		fs->fs_cstotal.cs_nffree += i;
    356 		fs->fs_cs(fs, cg).cs_nffree += i;
    357 		fs->fs_fmod = 1;
    358 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
    359 		bdwrite(bp);
    360 		return (bno);
    361 	}
    362 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
    363 	for (i = 0; i < frags; i++)
    364 		clrbit(cg_blksfree(cgp, needswap), bno + i);
    365 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
    366 	fs->fs_cstotal.cs_nffree -= frags;
    367 	fs->fs_cs(fs, cg).cs_nffree -= frags;
    368 	fs->fs_fmod = 1;
    369 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
    370 	if (frags != allocsiz)
    371 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
    372 	blkno = cg * fs->fs_fpg + bno;
    373 	bdwrite(bp);
    374 	return blkno;
    375 }
    376 
    377 /*
    378  * Allocate a block in a cylinder group.
    379  *
    380  * This algorithm implements the following policy:
    381  *   1) allocate the requested block.
    382  *   2) allocate a rotationally optimal block in the same cylinder.
    383  *   3) allocate the next available block on the block rotor for the
    384  *      specified cylinder group.
    385  * Note that this routine only allocates fs_bsize blocks; these
    386  * blocks may be fragmented by the routine that allocates them.
    387  */
    388 static daddr_t
    389 ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref)
    390 {
    391 	struct cg *cgp;
    392 	daddr_t blkno;
    393 	int32_t bno;
    394 	struct fs *fs = ip->i_fs;
    395 	const int needswap = UFS_FSNEEDSWAP(fs);
    396 	u_int8_t *blksfree;
    397 
    398 	cgp = (struct cg *)bp->b_data;
    399 	blksfree = cg_blksfree(cgp, needswap);
    400 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
    401 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
    402 	} else {
    403 		bpref = blknum(fs, bpref);
    404 		bno = dtogd(fs, bpref);
    405 		/*
    406 		 * if the requested block is available, use it
    407 		 */
    408 		if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
    409 			goto gotit;
    410 	}
    411 	/*
    412 	 * Take the next available one in this cylinder group.
    413 	 */
    414 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
    415 	if (bno < 0)
    416 		return (0);
    417 	cgp->cg_rotor = ufs_rw32(bno, needswap);
    418 gotit:
    419 	blkno = fragstoblks(fs, bno);
    420 	ffs_clrblock(fs, blksfree, (long)blkno);
    421 	ffs_clusteracct(fs, cgp, blkno, -1);
    422 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
    423 	fs->fs_cstotal.cs_nbfree--;
    424 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
    425 	fs->fs_fmod = 1;
    426 	blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
    427 	return (blkno);
    428 }
    429 
    430 /*
    431  * Free a block or fragment.
    432  *
    433  * The specified block or fragment is placed back in the
    434  * free map. If a fragment is deallocated, a possible
    435  * block reassembly is checked.
    436  */
    437 void
    438 ffs_blkfree(struct inode *ip, daddr_t bno, long size)
    439 {
    440 	struct cg *cgp;
    441 	struct buf *bp;
    442 	int32_t fragno, cgbno;
    443 	int i, error, cg, blk, frags, bbase;
    444 	struct fs *fs = ip->i_fs;
    445 	const int needswap = UFS_FSNEEDSWAP(fs);
    446 
    447 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
    448 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
    449 		errx(1, "blkfree: bad size: bno %lld bsize %d size %ld",
    450 		    (long long)bno, fs->fs_bsize, size);
    451 	}
    452 	cg = dtog(fs, bno);
    453 	if (bno >= fs->fs_size) {
    454 		warnx("bad block %lld, ino %d", (long long)bno, ip->i_number);
    455 		return;
    456 	}
    457 	error = bread(ip->i_fd, ip->i_fs, fsbtodb(fs, cgtod(fs, cg)),
    458 		(int)fs->fs_cgsize, &bp);
    459 	if (error) {
    460 		brelse(bp);
    461 		return;
    462 	}
    463 	cgp = (struct cg *)bp->b_data;
    464 	if (!cg_chkmagic(cgp, needswap)) {
    465 		brelse(bp);
    466 		return;
    467 	}
    468 	cgbno = dtogd(fs, bno);
    469 	if (size == fs->fs_bsize) {
    470 		fragno = fragstoblks(fs, cgbno);
    471 		if (!ffs_isfreeblock(fs, cg_blksfree(cgp, needswap), fragno)) {
    472 			errx(1, "blkfree: freeing free block %lld",
    473 			    (long long)bno);
    474 		}
    475 		ffs_setblock(fs, cg_blksfree(cgp, needswap), fragno);
    476 		ffs_clusteracct(fs, cgp, fragno, 1);
    477 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
    478 		fs->fs_cstotal.cs_nbfree++;
    479 		fs->fs_cs(fs, cg).cs_nbfree++;
    480 	} else {
    481 		bbase = cgbno - fragnum(fs, cgbno);
    482 		/*
    483 		 * decrement the counts associated with the old frags
    484 		 */
    485 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
    486 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
    487 		/*
    488 		 * deallocate the fragment
    489 		 */
    490 		frags = numfrags(fs, size);
    491 		for (i = 0; i < frags; i++) {
    492 			if (isset(cg_blksfree(cgp, needswap), cgbno + i)) {
    493 				errx(1, "blkfree: freeing free frag: block %lld",
    494 				    (long long)(cgbno + i));
    495 			}
    496 			setbit(cg_blksfree(cgp, needswap), cgbno + i);
    497 		}
    498 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
    499 		fs->fs_cstotal.cs_nffree += i;
    500 		fs->fs_cs(fs, cg).cs_nffree += i;
    501 		/*
    502 		 * add back in counts associated with the new frags
    503 		 */
    504 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
    505 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
    506 		/*
    507 		 * if a complete block has been reassembled, account for it
    508 		 */
    509 		fragno = fragstoblks(fs, bbase);
    510 		if (ffs_isblock(fs, cg_blksfree(cgp, needswap), fragno)) {
    511 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
    512 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
    513 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
    514 			ffs_clusteracct(fs, cgp, fragno, 1);
    515 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
    516 			fs->fs_cstotal.cs_nbfree++;
    517 			fs->fs_cs(fs, cg).cs_nbfree++;
    518 		}
    519 	}
    520 	fs->fs_fmod = 1;
    521 	bdwrite(bp);
    522 }
    523 
    524 
    525 static int
    526 scanc(u_int size, const u_char *cp, const u_char table[], int mask)
    527 {
    528 	const u_char *end = &cp[size];
    529 
    530 	while (cp < end && (table[*cp] & mask) == 0)
    531 		cp++;
    532 	return (end - cp);
    533 }
    534 
    535 /*
    536  * Find a block of the specified size in the specified cylinder group.
    537  *
    538  * It is a panic if a request is made to find a block if none are
    539  * available.
    540  */
    541 static int32_t
    542 ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
    543 {
    544 	int32_t bno;
    545 	int start, len, loc, i;
    546 	int blk, field, subfield, pos;
    547 	int ostart, olen;
    548 	const int needswap = UFS_FSNEEDSWAP(fs);
    549 
    550 	/*
    551 	 * find the fragment by searching through the free block
    552 	 * map for an appropriate bit pattern
    553 	 */
    554 	if (bpref)
    555 		start = dtogd(fs, bpref) / NBBY;
    556 	else
    557 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
    558 	len = howmany(fs->fs_fpg, NBBY) - start;
    559 	ostart = start;
    560 	olen = len;
    561 	loc = scanc((u_int)len,
    562 		(const u_char *)&cg_blksfree(cgp, needswap)[start],
    563 		(const u_char *)fragtbl[fs->fs_frag],
    564 		(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
    565 	if (loc == 0) {
    566 		len = start + 1;
    567 		start = 0;
    568 		loc = scanc((u_int)len,
    569 			(const u_char *)&cg_blksfree(cgp, needswap)[0],
    570 			(const u_char *)fragtbl[fs->fs_frag],
    571 			(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
    572 		if (loc == 0) {
    573 			errx(1,
    574     "ffs_alloccg: map corrupted: start %d len %d offset %d %ld",
    575 				ostart, olen,
    576 				ufs_rw32(cgp->cg_freeoff, needswap),
    577 				(long)cg_blksfree(cgp, needswap) - (long)cgp);
    578 			/* NOTREACHED */
    579 		}
    580 	}
    581 	bno = (start + len - loc) * NBBY;
    582 	cgp->cg_frotor = ufs_rw32(bno, needswap);
    583 	/*
    584 	 * found the byte in the map
    585 	 * sift through the bits to find the selected frag
    586 	 */
    587 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
    588 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bno);
    589 		blk <<= 1;
    590 		field = around[allocsiz];
    591 		subfield = inside[allocsiz];
    592 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
    593 			if ((blk & field) == subfield)
    594 				return (bno + pos);
    595 			field <<= 1;
    596 			subfield <<= 1;
    597 		}
    598 	}
    599 	errx(1, "ffs_alloccg: block not in map: bno %lld", (long long)bno);
    600 	return (-1);
    601 }
    602 
    603 /*
    604  * Update the cluster map because of an allocation or free.
    605  *
    606  * Cnt == 1 means free; cnt == -1 means allocating.
    607  */
    608 void
    609 ffs_clusteracct(struct fs *fs, struct cg *cgp, int32_t blkno, int cnt)
    610 {
    611 	int32_t *sump;
    612 	int32_t *lp;
    613 	u_char *freemapp, *mapp;
    614 	int i, start, end, forw, back, map, bit;
    615 	const int needswap = UFS_FSNEEDSWAP(fs);
    616 
    617 	if (fs->fs_contigsumsize <= 0)
    618 		return;
    619 	freemapp = cg_clustersfree(cgp, needswap);
    620 	sump = cg_clustersum(cgp, needswap);
    621 	/*
    622 	 * Allocate or clear the actual block.
    623 	 */
    624 	if (cnt > 0)
    625 		setbit(freemapp, blkno);
    626 	else
    627 		clrbit(freemapp, blkno);
    628 	/*
    629 	 * Find the size of the cluster going forward.
    630 	 */
    631 	start = blkno + 1;
    632 	end = start + fs->fs_contigsumsize;
    633 	if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
    634 		end = ufs_rw32(cgp->cg_nclusterblks, needswap);
    635 	mapp = &freemapp[start / NBBY];
    636 	map = *mapp++;
    637 	bit = 1 << (start % NBBY);
    638 	for (i = start; i < end; i++) {
    639 		if ((map & bit) == 0)
    640 			break;
    641 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
    642 			bit <<= 1;
    643 		} else {
    644 			map = *mapp++;
    645 			bit = 1;
    646 		}
    647 	}
    648 	forw = i - start;
    649 	/*
    650 	 * Find the size of the cluster going backward.
    651 	 */
    652 	start = blkno - 1;
    653 	end = start - fs->fs_contigsumsize;
    654 	if (end < 0)
    655 		end = -1;
    656 	mapp = &freemapp[start / NBBY];
    657 	map = *mapp--;
    658 	bit = 1 << (start % NBBY);
    659 	for (i = start; i > end; i--) {
    660 		if ((map & bit) == 0)
    661 			break;
    662 		if ((i & (NBBY - 1)) != 0) {
    663 			bit >>= 1;
    664 		} else {
    665 			map = *mapp--;
    666 			bit = 1 << (NBBY - 1);
    667 		}
    668 	}
    669 	back = start - i;
    670 	/*
    671 	 * Account for old cluster and the possibly new forward and
    672 	 * back clusters.
    673 	 */
    674 	i = back + forw + 1;
    675 	if (i > fs->fs_contigsumsize)
    676 		i = fs->fs_contigsumsize;
    677 	ufs_add32(sump[i], cnt, needswap);
    678 	if (back > 0)
    679 		ufs_add32(sump[back], -cnt, needswap);
    680 	if (forw > 0)
    681 		ufs_add32(sump[forw], -cnt, needswap);
    682 
    683 	/*
    684 	 * Update cluster summary information.
    685 	 */
    686 	lp = &sump[fs->fs_contigsumsize];
    687 	for (i = fs->fs_contigsumsize; i > 0; i--)
    688 		if (ufs_rw32(*lp--, needswap) > 0)
    689 			break;
    690 	fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
    691 }
    692