ffs_alloc.c revision 1.19 1 /* $NetBSD: ffs_alloc.c,v 1.19 2012/04/19 17:28:26 christos Exp $ */
2 /* From: NetBSD: ffs_alloc.c,v 1.50 2001/09/06 02:16:01 lukem Exp */
3
4 /*
5 * Copyright (c) 2002 Networks Associates Technology, Inc.
6 * All rights reserved.
7 *
8 * This software was developed for the FreeBSD Project by Marshall
9 * Kirk McKusick and Network Associates Laboratories, the Security
10 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
11 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
12 * research program
13 *
14 * Copyright (c) 1982, 1986, 1989, 1993
15 * The Regents of the University of California. All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions
19 * are met:
20 * 1. Redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution.
25 * 3. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
42 */
43
44 #if HAVE_NBTOOL_CONFIG_H
45 #include "nbtool_config.h"
46 #endif
47
48 #include <sys/cdefs.h>
49 #if defined(__RCSID) && !defined(__lint)
50 __RCSID("$NetBSD: ffs_alloc.c,v 1.19 2012/04/19 17:28:26 christos Exp $");
51 #endif /* !__lint */
52
53 #include <sys/param.h>
54 #include <sys/time.h>
55
56 #include <errno.h>
57
58 #include "makefs.h"
59
60 #include <ufs/ufs/dinode.h>
61 #include <ufs/ufs/ufs_bswap.h>
62 #include <ufs/ffs/fs.h>
63
64 #include "ffs/buf.h"
65 #include "ffs/ufs_inode.h"
66 #include "ffs/ffs_extern.h"
67
68
69 static int scanc(u_int, const u_char *, const u_char *, int);
70
71 static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int);
72 static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t);
73 static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int,
74 daddr_t (*)(struct inode *, int, daddr_t, int));
75 static int32_t ffs_mapsearch(struct fs *, struct cg *, daddr_t, int);
76
77 /* in ffs_tables.c */
78 extern const int inside[], around[];
79 extern const u_char * const fragtbl[];
80
81 /*
82 * Allocate a block in the file system.
83 *
84 * The size of the requested block is given, which must be some
85 * multiple of fs_fsize and <= fs_bsize.
86 * A preference may be optionally specified. If a preference is given
87 * the following hierarchy is used to allocate a block:
88 * 1) allocate the requested block.
89 * 2) allocate a rotationally optimal block in the same cylinder.
90 * 3) allocate a block in the same cylinder group.
91 * 4) quadradically rehash into other cylinder groups, until an
92 * available block is located.
93 * If no block preference is given the following hierarchy is used
94 * to allocate a block:
95 * 1) allocate a block in the cylinder group that contains the
96 * inode for the file.
97 * 2) quadradically rehash into other cylinder groups, until an
98 * available block is located.
99 */
100 int
101 ffs_alloc(struct inode *ip, daddr_t lbn __unused, daddr_t bpref, int size,
102 daddr_t *bnp)
103 {
104 struct fs *fs = ip->i_fs;
105 daddr_t bno;
106 int cg;
107
108 *bnp = 0;
109 if (size > fs->fs_bsize || fragoff(fs, size) != 0) {
110 errx(1, "ffs_alloc: bad size: bsize %d size %d",
111 fs->fs_bsize, size);
112 }
113 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
114 goto nospace;
115 if (bpref >= fs->fs_size)
116 bpref = 0;
117 if (bpref == 0)
118 cg = ino_to_cg(fs, ip->i_number);
119 else
120 cg = dtog(fs, bpref);
121 bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg);
122 if (bno > 0) {
123 DIP_ADD(ip, blocks, size / DEV_BSIZE);
124 *bnp = bno;
125 return (0);
126 }
127 nospace:
128 return (ENOSPC);
129 }
130
131 /*
132 * Select the desired position for the next block in a file. The file is
133 * logically divided into sections. The first section is composed of the
134 * direct blocks. Each additional section contains fs_maxbpg blocks.
135 *
136 * If no blocks have been allocated in the first section, the policy is to
137 * request a block in the same cylinder group as the inode that describes
138 * the file. If no blocks have been allocated in any other section, the
139 * policy is to place the section in a cylinder group with a greater than
140 * average number of free blocks. An appropriate cylinder group is found
141 * by using a rotor that sweeps the cylinder groups. When a new group of
142 * blocks is needed, the sweep begins in the cylinder group following the
143 * cylinder group from which the previous allocation was made. The sweep
144 * continues until a cylinder group with greater than the average number
145 * of free blocks is found. If the allocation is for the first block in an
146 * indirect block, the information on the previous allocation is unavailable;
147 * here a best guess is made based upon the logical block number being
148 * allocated.
149 *
150 * If a section is already partially allocated, the policy is to
151 * contiguously allocate fs_maxcontig blocks. The end of one of these
152 * contiguous blocks and the beginning of the next is physically separated
153 * so that the disk head will be in transit between them for at least
154 * fs_rotdelay milliseconds. This is to allow time for the processor to
155 * schedule another I/O transfer.
156 */
157 /* XXX ondisk32 */
158 daddr_t
159 ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int32_t *bap)
160 {
161 struct fs *fs;
162 int cg;
163 int avgbfree, startcg;
164
165 fs = ip->i_fs;
166 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
167 if (lbn < NDADDR + NINDIR(fs)) {
168 cg = ino_to_cg(fs, ip->i_number);
169 return (fs->fs_fpg * cg + fs->fs_frag);
170 }
171 /*
172 * Find a cylinder with greater than average number of
173 * unused data blocks.
174 */
175 if (indx == 0 || bap[indx - 1] == 0)
176 startcg =
177 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
178 else
179 startcg = dtog(fs,
180 ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
181 startcg %= fs->fs_ncg;
182 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
183 for (cg = startcg; cg < fs->fs_ncg; cg++)
184 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree)
185 return (fs->fs_fpg * cg + fs->fs_frag);
186 for (cg = 0; cg <= startcg; cg++)
187 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree)
188 return (fs->fs_fpg * cg + fs->fs_frag);
189 return (0);
190 }
191 /*
192 * We just always try to lay things out contiguously.
193 */
194 return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
195 }
196
197 daddr_t
198 ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int64_t *bap)
199 {
200 struct fs *fs;
201 int cg;
202 int avgbfree, startcg;
203
204 fs = ip->i_fs;
205 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
206 if (lbn < NDADDR + NINDIR(fs)) {
207 cg = ino_to_cg(fs, ip->i_number);
208 return (fs->fs_fpg * cg + fs->fs_frag);
209 }
210 /*
211 * Find a cylinder with greater than average number of
212 * unused data blocks.
213 */
214 if (indx == 0 || bap[indx - 1] == 0)
215 startcg =
216 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
217 else
218 startcg = dtog(fs,
219 ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
220 startcg %= fs->fs_ncg;
221 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
222 for (cg = startcg; cg < fs->fs_ncg; cg++)
223 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
224 return (fs->fs_fpg * cg + fs->fs_frag);
225 }
226 for (cg = 0; cg < startcg; cg++)
227 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
228 return (fs->fs_fpg * cg + fs->fs_frag);
229 }
230 return (0);
231 }
232 /*
233 * We just always try to lay things out contiguously.
234 */
235 return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
236 }
237
238 /*
239 * Implement the cylinder overflow algorithm.
240 *
241 * The policy implemented by this algorithm is:
242 * 1) allocate the block in its requested cylinder group.
243 * 2) quadradically rehash on the cylinder group number.
244 * 3) brute force search for a free block.
245 *
246 * `size': size for data blocks, mode for inodes
247 */
248 /*VARARGS5*/
249 static daddr_t
250 ffs_hashalloc(struct inode *ip, int cg, daddr_t pref, int size,
251 daddr_t (*allocator)(struct inode *, int, daddr_t, int))
252 {
253 struct fs *fs;
254 daddr_t result;
255 int i, icg = cg;
256
257 fs = ip->i_fs;
258 /*
259 * 1: preferred cylinder group
260 */
261 result = (*allocator)(ip, cg, pref, size);
262 if (result)
263 return (result);
264 /*
265 * 2: quadratic rehash
266 */
267 for (i = 1; i < fs->fs_ncg; i *= 2) {
268 cg += i;
269 if (cg >= fs->fs_ncg)
270 cg -= fs->fs_ncg;
271 result = (*allocator)(ip, cg, 0, size);
272 if (result)
273 return (result);
274 }
275 /*
276 * 3: brute force search
277 * Note that we start at i == 2, since 0 was checked initially,
278 * and 1 is always checked in the quadratic rehash.
279 */
280 cg = (icg + 2) % fs->fs_ncg;
281 for (i = 2; i < fs->fs_ncg; i++) {
282 result = (*allocator)(ip, cg, 0, size);
283 if (result)
284 return (result);
285 cg++;
286 if (cg == fs->fs_ncg)
287 cg = 0;
288 }
289 return (0);
290 }
291
292 /*
293 * Determine whether a block can be allocated.
294 *
295 * Check to see if a block of the appropriate size is available,
296 * and if it is, allocate it.
297 */
298 static daddr_t
299 ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size)
300 {
301 struct cg *cgp;
302 struct buf *bp;
303 daddr_t bno, blkno;
304 int error, frags, allocsiz, i;
305 struct fs *fs = ip->i_fs;
306 const int needswap = UFS_FSNEEDSWAP(fs);
307
308 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
309 return (0);
310 error = bread(ip->i_fd, ip->i_fs, fsbtodb(fs, cgtod(fs, cg)),
311 (int)fs->fs_cgsize, &bp);
312 if (error) {
313 brelse(bp);
314 return (0);
315 }
316 cgp = (struct cg *)bp->b_data;
317 if (!cg_chkmagic(cgp, needswap) ||
318 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
319 brelse(bp);
320 return (0);
321 }
322 if (size == fs->fs_bsize) {
323 bno = ffs_alloccgblk(ip, bp, bpref);
324 bdwrite(bp);
325 return (bno);
326 }
327 /*
328 * check to see if any fragments are already available
329 * allocsiz is the size which will be allocated, hacking
330 * it down to a smaller size if necessary
331 */
332 frags = numfrags(fs, size);
333 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
334 if (cgp->cg_frsum[allocsiz] != 0)
335 break;
336 if (allocsiz == fs->fs_frag) {
337 /*
338 * no fragments were available, so a block will be
339 * allocated, and hacked up
340 */
341 if (cgp->cg_cs.cs_nbfree == 0) {
342 brelse(bp);
343 return (0);
344 }
345 bno = ffs_alloccgblk(ip, bp, bpref);
346 bpref = dtogd(fs, bno);
347 for (i = frags; i < fs->fs_frag; i++)
348 setbit(cg_blksfree(cgp, needswap), bpref + i);
349 i = fs->fs_frag - frags;
350 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
351 fs->fs_cstotal.cs_nffree += i;
352 fs->fs_cs(fs, cg).cs_nffree += i;
353 fs->fs_fmod = 1;
354 ufs_add32(cgp->cg_frsum[i], 1, needswap);
355 bdwrite(bp);
356 return (bno);
357 }
358 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
359 for (i = 0; i < frags; i++)
360 clrbit(cg_blksfree(cgp, needswap), bno + i);
361 ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
362 fs->fs_cstotal.cs_nffree -= frags;
363 fs->fs_cs(fs, cg).cs_nffree -= frags;
364 fs->fs_fmod = 1;
365 ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
366 if (frags != allocsiz)
367 ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
368 blkno = cg * fs->fs_fpg + bno;
369 bdwrite(bp);
370 return blkno;
371 }
372
373 /*
374 * Allocate a block in a cylinder group.
375 *
376 * This algorithm implements the following policy:
377 * 1) allocate the requested block.
378 * 2) allocate a rotationally optimal block in the same cylinder.
379 * 3) allocate the next available block on the block rotor for the
380 * specified cylinder group.
381 * Note that this routine only allocates fs_bsize blocks; these
382 * blocks may be fragmented by the routine that allocates them.
383 */
384 static daddr_t
385 ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref)
386 {
387 struct cg *cgp;
388 daddr_t blkno;
389 int32_t bno;
390 struct fs *fs = ip->i_fs;
391 const int needswap = UFS_FSNEEDSWAP(fs);
392 u_int8_t *blksfree;
393
394 cgp = (struct cg *)bp->b_data;
395 blksfree = cg_blksfree(cgp, needswap);
396 if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
397 bpref = ufs_rw32(cgp->cg_rotor, needswap);
398 } else {
399 bpref = blknum(fs, bpref);
400 bno = dtogd(fs, bpref);
401 /*
402 * if the requested block is available, use it
403 */
404 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
405 goto gotit;
406 }
407 /*
408 * Take the next available one in this cylinder group.
409 */
410 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
411 if (bno < 0)
412 return (0);
413 cgp->cg_rotor = ufs_rw32(bno, needswap);
414 gotit:
415 blkno = fragstoblks(fs, bno);
416 ffs_clrblock(fs, blksfree, (long)blkno);
417 ffs_clusteracct(fs, cgp, blkno, -1);
418 ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
419 fs->fs_cstotal.cs_nbfree--;
420 fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
421 fs->fs_fmod = 1;
422 blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
423 return (blkno);
424 }
425
426 /*
427 * Free a block or fragment.
428 *
429 * The specified block or fragment is placed back in the
430 * free map. If a fragment is deallocated, a possible
431 * block reassembly is checked.
432 */
433 void
434 ffs_blkfree(struct inode *ip, daddr_t bno, long size)
435 {
436 struct cg *cgp;
437 struct buf *bp;
438 int32_t fragno, cgbno;
439 int i, error, cg, blk, frags, bbase;
440 struct fs *fs = ip->i_fs;
441 const int needswap = UFS_FSNEEDSWAP(fs);
442
443 if (size > fs->fs_bsize || fragoff(fs, size) != 0 ||
444 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
445 errx(1, "blkfree: bad size: bno %lld bsize %d size %ld",
446 (long long)bno, fs->fs_bsize, size);
447 }
448 cg = dtog(fs, bno);
449 if (bno >= fs->fs_size) {
450 warnx("bad block %lld, ino %llu", (long long)bno,
451 (unsigned long long)ip->i_number);
452 return;
453 }
454 error = bread(ip->i_fd, ip->i_fs, fsbtodb(fs, cgtod(fs, cg)),
455 (int)fs->fs_cgsize, &bp);
456 if (error) {
457 brelse(bp);
458 return;
459 }
460 cgp = (struct cg *)bp->b_data;
461 if (!cg_chkmagic(cgp, needswap)) {
462 brelse(bp);
463 return;
464 }
465 cgbno = dtogd(fs, bno);
466 if (size == fs->fs_bsize) {
467 fragno = fragstoblks(fs, cgbno);
468 if (!ffs_isfreeblock(fs, cg_blksfree(cgp, needswap), fragno)) {
469 errx(1, "blkfree: freeing free block %lld",
470 (long long)bno);
471 }
472 ffs_setblock(fs, cg_blksfree(cgp, needswap), fragno);
473 ffs_clusteracct(fs, cgp, fragno, 1);
474 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
475 fs->fs_cstotal.cs_nbfree++;
476 fs->fs_cs(fs, cg).cs_nbfree++;
477 } else {
478 bbase = cgbno - fragnum(fs, cgbno);
479 /*
480 * decrement the counts associated with the old frags
481 */
482 blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
483 ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
484 /*
485 * deallocate the fragment
486 */
487 frags = numfrags(fs, size);
488 for (i = 0; i < frags; i++) {
489 if (isset(cg_blksfree(cgp, needswap), cgbno + i)) {
490 errx(1, "blkfree: freeing free frag: block %lld",
491 (long long)(cgbno + i));
492 }
493 setbit(cg_blksfree(cgp, needswap), cgbno + i);
494 }
495 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
496 fs->fs_cstotal.cs_nffree += i;
497 fs->fs_cs(fs, cg).cs_nffree += i;
498 /*
499 * add back in counts associated with the new frags
500 */
501 blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
502 ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
503 /*
504 * if a complete block has been reassembled, account for it
505 */
506 fragno = fragstoblks(fs, bbase);
507 if (ffs_isblock(fs, cg_blksfree(cgp, needswap), fragno)) {
508 ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
509 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
510 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
511 ffs_clusteracct(fs, cgp, fragno, 1);
512 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
513 fs->fs_cstotal.cs_nbfree++;
514 fs->fs_cs(fs, cg).cs_nbfree++;
515 }
516 }
517 fs->fs_fmod = 1;
518 bdwrite(bp);
519 }
520
521
522 static int
523 scanc(u_int size, const u_char *cp, const u_char table[], int mask)
524 {
525 const u_char *end = &cp[size];
526
527 while (cp < end && (table[*cp] & mask) == 0)
528 cp++;
529 return (end - cp);
530 }
531
532 /*
533 * Find a block of the specified size in the specified cylinder group.
534 *
535 * It is a panic if a request is made to find a block if none are
536 * available.
537 */
538 static int32_t
539 ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
540 {
541 int32_t bno;
542 int start, len, loc, i;
543 int blk, field, subfield, pos;
544 int ostart, olen;
545 const int needswap = UFS_FSNEEDSWAP(fs);
546
547 /*
548 * find the fragment by searching through the free block
549 * map for an appropriate bit pattern
550 */
551 if (bpref)
552 start = dtogd(fs, bpref) / NBBY;
553 else
554 start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
555 len = howmany(fs->fs_fpg, NBBY) - start;
556 ostart = start;
557 olen = len;
558 loc = scanc((u_int)len,
559 (const u_char *)&cg_blksfree(cgp, needswap)[start],
560 (const u_char *)fragtbl[fs->fs_frag],
561 (1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
562 if (loc == 0) {
563 len = start + 1;
564 start = 0;
565 loc = scanc((u_int)len,
566 (const u_char *)&cg_blksfree(cgp, needswap)[0],
567 (const u_char *)fragtbl[fs->fs_frag],
568 (1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
569 if (loc == 0) {
570 errx(1,
571 "ffs_alloccg: map corrupted: start %d len %d offset %d %ld",
572 ostart, olen,
573 ufs_rw32(cgp->cg_freeoff, needswap),
574 (long)cg_blksfree(cgp, needswap) - (long)cgp);
575 /* NOTREACHED */
576 }
577 }
578 bno = (start + len - loc) * NBBY;
579 cgp->cg_frotor = ufs_rw32(bno, needswap);
580 /*
581 * found the byte in the map
582 * sift through the bits to find the selected frag
583 */
584 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
585 blk = blkmap(fs, cg_blksfree(cgp, needswap), bno);
586 blk <<= 1;
587 field = around[allocsiz];
588 subfield = inside[allocsiz];
589 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
590 if ((blk & field) == subfield)
591 return (bno + pos);
592 field <<= 1;
593 subfield <<= 1;
594 }
595 }
596 errx(1, "ffs_alloccg: block not in map: bno %lld", (long long)bno);
597 return (-1);
598 }
599