ffs_alloc.c revision 1.2 1 /* $NetBSD: ffs_alloc.c,v 1.2 2001/10/28 13:14:06 lukem Exp $ */
2 /* From: NetBSD: ffs_alloc.c,v 1.50 2001/09/06 02:16:01 lukem Exp */
3
4 /*
5 * Copyright (c) 1982, 1986, 1989, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
37 */
38
39 #include <sys/cdefs.h>
40 #ifndef __lint
41 __RCSID("$NetBSD: ffs_alloc.c,v 1.2 2001/10/28 13:14:06 lukem Exp $");
42 #endif /* !__lint */
43
44 #include <sys/param.h>
45 #include <sys/time.h>
46
47 #include <err.h>
48 #include <errno.h>
49
50 #include <ufs/ufs/ufs_bswap.h>
51 #include <ufs/ufs/inode.h>
52 #include <ufs/ffs/fs.h>
53
54 #include "ffs/buf.h"
55 #include "ffs/ffs_extern.h"
56
57
58 static int scanc(u_int, const u_char *, const u_char *, int);
59
60 static ufs_daddr_t ffs_alloccg(struct inode *, int, ufs_daddr_t, int);
61 static ufs_daddr_t ffs_alloccgblk(struct inode *, struct buf *, ufs_daddr_t);
62 static u_long ffs_hashalloc(struct inode *, int, long, int,
63 ufs_daddr_t (*)(struct inode *, int, ufs_daddr_t, int));
64 static ufs_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs_daddr_t, int);
65
66 /* in ffs_tables.c */
67 extern const int inside[], around[];
68 extern const u_char * const fragtbl[];
69
70 /*
71 * Allocate a block in the file system.
72 *
73 * The size of the requested block is given, which must be some
74 * multiple of fs_fsize and <= fs_bsize.
75 * A preference may be optionally specified. If a preference is given
76 * the following hierarchy is used to allocate a block:
77 * 1) allocate the requested block.
78 * 2) allocate a rotationally optimal block in the same cylinder.
79 * 3) allocate a block in the same cylinder group.
80 * 4) quadradically rehash into other cylinder groups, until an
81 * available block is located.
82 * If no block preference is given the following hierarchy is used
83 * to allocate a block:
84 * 1) allocate a block in the cylinder group that contains the
85 * inode for the file.
86 * 2) quadradically rehash into other cylinder groups, until an
87 * available block is located.
88 */
89 int
90 ffs_alloc(struct inode *ip, ufs_daddr_t lbn, ufs_daddr_t bpref, int size,
91 ufs_daddr_t *bnp)
92 {
93 struct fs *fs = ip->i_fs;
94 ufs_daddr_t bno;
95 int cg;
96
97 *bnp = 0;
98 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
99 errx(1, "ffs_alloc: bad size: bsize %d size %d",
100 fs->fs_bsize, size);
101 }
102 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
103 goto nospace;
104 if (bpref >= fs->fs_size)
105 bpref = 0;
106 if (bpref == 0)
107 cg = ino_to_cg(fs, ip->i_number);
108 else
109 cg = dtog(fs, bpref);
110 bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
111 ffs_alloccg);
112 if (bno > 0) {
113 ip->i_ffs_blocks += btodb(size);
114 *bnp = bno;
115 return (0);
116 }
117 nospace:
118 return (ENOSPC);
119 }
120
121 /*
122 * Select the desired position for the next block in a file. The file is
123 * logically divided into sections. The first section is composed of the
124 * direct blocks. Each additional section contains fs_maxbpg blocks.
125 *
126 * If no blocks have been allocated in the first section, the policy is to
127 * request a block in the same cylinder group as the inode that describes
128 * the file. If no blocks have been allocated in any other section, the
129 * policy is to place the section in a cylinder group with a greater than
130 * average number of free blocks. An appropriate cylinder group is found
131 * by using a rotor that sweeps the cylinder groups. When a new group of
132 * blocks is needed, the sweep begins in the cylinder group following the
133 * cylinder group from which the previous allocation was made. The sweep
134 * continues until a cylinder group with greater than the average number
135 * of free blocks is found. If the allocation is for the first block in an
136 * indirect block, the information on the previous allocation is unavailable;
137 * here a best guess is made based upon the logical block number being
138 * allocated.
139 *
140 * If a section is already partially allocated, the policy is to
141 * contiguously allocate fs_maxcontig blocks. The end of one of these
142 * contiguous blocks and the beginning of the next is physically separated
143 * so that the disk head will be in transit between them for at least
144 * fs_rotdelay milliseconds. This is to allow time for the processor to
145 * schedule another I/O transfer.
146 */
147 ufs_daddr_t
148 ffs_blkpref(struct inode *ip, ufs_daddr_t lbn, int indx, ufs_daddr_t *bap)
149 {
150 struct fs *fs;
151 int cg;
152 int avgbfree, startcg;
153 ufs_daddr_t nextblk;
154
155 fs = ip->i_fs;
156 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
157 if (lbn < NDADDR + NINDIR(fs)) {
158 cg = ino_to_cg(fs, ip->i_number);
159 return (fs->fs_fpg * cg + fs->fs_frag);
160 }
161 /*
162 * Find a cylinder with greater than average number of
163 * unused data blocks.
164 */
165 if (indx == 0 || bap[indx - 1] == 0)
166 startcg =
167 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
168 else
169 startcg = dtog(fs,
170 ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
171 startcg %= fs->fs_ncg;
172 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
173 for (cg = startcg; cg < fs->fs_ncg; cg++)
174 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
175 fs->fs_cgrotor = cg;
176 return (fs->fs_fpg * cg + fs->fs_frag);
177 }
178 for (cg = 0; cg <= startcg; cg++)
179 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
180 fs->fs_cgrotor = cg;
181 return (fs->fs_fpg * cg + fs->fs_frag);
182 }
183 return (0);
184 }
185 /*
186 * One or more previous blocks have been laid out. If less
187 * than fs_maxcontig previous blocks are contiguous, the
188 * next block is requested contiguously, otherwise it is
189 * requested rotationally delayed by fs_rotdelay milliseconds.
190 */
191 nextblk = ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
192 if (indx < fs->fs_maxcontig ||
193 ufs_rw32(bap[indx - fs->fs_maxcontig], UFS_FSNEEDSWAP(fs)) +
194 blkstofrags(fs, fs->fs_maxcontig) != nextblk)
195 return (nextblk);
196 if (fs->fs_rotdelay != 0)
197 /*
198 * Here we convert ms of delay to frags as:
199 * (frags) = (ms) * (rev/sec) * (sect/rev) /
200 * ((sect/frag) * (ms/sec))
201 * then round up to the next block.
202 */
203 nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
204 (NSPF(fs) * 1000), fs->fs_frag);
205 return (nextblk);
206 }
207
208 /*
209 * Implement the cylinder overflow algorithm.
210 *
211 * The policy implemented by this algorithm is:
212 * 1) allocate the block in its requested cylinder group.
213 * 2) quadradically rehash on the cylinder group number.
214 * 3) brute force search for a free block.
215 *
216 * `size': size for data blocks, mode for inodes
217 */
218 /*VARARGS5*/
219 static u_long
220 ffs_hashalloc(struct inode *ip, int cg, long pref, int size,
221 ufs_daddr_t (*allocator)(struct inode *, int, ufs_daddr_t, int))
222 {
223 struct fs *fs;
224 long result;
225 int i, icg = cg;
226
227 fs = ip->i_fs;
228 /*
229 * 1: preferred cylinder group
230 */
231 result = (*allocator)(ip, cg, pref, size);
232 if (result)
233 return (result);
234 /*
235 * 2: quadratic rehash
236 */
237 for (i = 1; i < fs->fs_ncg; i *= 2) {
238 cg += i;
239 if (cg >= fs->fs_ncg)
240 cg -= fs->fs_ncg;
241 result = (*allocator)(ip, cg, 0, size);
242 if (result)
243 return (result);
244 }
245 /*
246 * 3: brute force search
247 * Note that we start at i == 2, since 0 was checked initially,
248 * and 1 is always checked in the quadratic rehash.
249 */
250 cg = (icg + 2) % fs->fs_ncg;
251 for (i = 2; i < fs->fs_ncg; i++) {
252 result = (*allocator)(ip, cg, 0, size);
253 if (result)
254 return (result);
255 cg++;
256 if (cg == fs->fs_ncg)
257 cg = 0;
258 }
259 return (0);
260 }
261
262 /*
263 * Determine whether a block can be allocated.
264 *
265 * Check to see if a block of the appropriate size is available,
266 * and if it is, allocate it.
267 */
268 static ufs_daddr_t
269 ffs_alloccg(struct inode *ip, int cg, ufs_daddr_t bpref, int size)
270 {
271 struct cg *cgp;
272 struct buf *bp;
273 ufs_daddr_t bno, blkno;
274 int error, frags, allocsiz, i;
275 struct fs *fs = ip->i_fs;
276 const int needswap = UFS_FSNEEDSWAP(fs);
277
278 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
279 return (0);
280 error = bread(ip->i_fd, ip->i_fs, fsbtodb(fs, cgtod(fs, cg)),
281 (int)fs->fs_cgsize, &bp);
282 if (error) {
283 brelse(bp);
284 return (0);
285 }
286 cgp = (struct cg *)bp->b_data;
287 if (!cg_chkmagic(cgp, needswap) ||
288 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
289 brelse(bp);
290 return (0);
291 }
292 if (size == fs->fs_bsize) {
293 bno = ffs_alloccgblk(ip, bp, bpref);
294 bdwrite(bp);
295 return (bno);
296 }
297 /*
298 * check to see if any fragments are already available
299 * allocsiz is the size which will be allocated, hacking
300 * it down to a smaller size if necessary
301 */
302 frags = numfrags(fs, size);
303 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
304 if (cgp->cg_frsum[allocsiz] != 0)
305 break;
306 if (allocsiz == fs->fs_frag) {
307 /*
308 * no fragments were available, so a block will be
309 * allocated, and hacked up
310 */
311 if (cgp->cg_cs.cs_nbfree == 0) {
312 brelse(bp);
313 return (0);
314 }
315 bno = ffs_alloccgblk(ip, bp, bpref);
316 bpref = dtogd(fs, bno);
317 for (i = frags; i < fs->fs_frag; i++)
318 setbit(cg_blksfree(cgp, needswap), bpref + i);
319 i = fs->fs_frag - frags;
320 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
321 fs->fs_cstotal.cs_nffree += i;
322 fs->fs_cs(fs, cg).cs_nffree += i;
323 fs->fs_fmod = 1;
324 ufs_add32(cgp->cg_frsum[i], 1, needswap);
325 bdwrite(bp);
326 return (bno);
327 }
328 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
329 for (i = 0; i < frags; i++)
330 clrbit(cg_blksfree(cgp, needswap), bno + i);
331 ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
332 fs->fs_cstotal.cs_nffree -= frags;
333 fs->fs_cs(fs, cg).cs_nffree -= frags;
334 fs->fs_fmod = 1;
335 ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
336 if (frags != allocsiz)
337 ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
338 blkno = cg * fs->fs_fpg + bno;
339 bdwrite(bp);
340 return blkno;
341 }
342
343 /*
344 * Allocate a block in a cylinder group.
345 *
346 * This algorithm implements the following policy:
347 * 1) allocate the requested block.
348 * 2) allocate a rotationally optimal block in the same cylinder.
349 * 3) allocate the next available block on the block rotor for the
350 * specified cylinder group.
351 * Note that this routine only allocates fs_bsize blocks; these
352 * blocks may be fragmented by the routine that allocates them.
353 */
354 static ufs_daddr_t
355 ffs_alloccgblk(struct inode *ip, struct buf *bp, ufs_daddr_t bpref)
356 {
357 struct cg *cgp;
358 ufs_daddr_t bno, blkno;
359 int cylno, pos, delta;
360 short *cylbp;
361 int i;
362 struct fs *fs = ip->i_fs;
363 const int needswap = UFS_FSNEEDSWAP(fs);
364
365 cgp = (struct cg *)bp->b_data;
366 if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
367 bpref = ufs_rw32(cgp->cg_rotor, needswap);
368 goto norot;
369 }
370 bpref = blknum(fs, bpref);
371 bpref = dtogd(fs, bpref);
372 /*
373 * if the requested block is available, use it
374 */
375 if (ffs_isblock(fs, cg_blksfree(cgp, needswap),
376 fragstoblks(fs, bpref))) {
377 bno = bpref;
378 goto gotit;
379 }
380 if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
381 /*
382 * Block layout information is not available.
383 * Leaving bpref unchanged means we take the
384 * next available free block following the one
385 * we just allocated. Hopefully this will at
386 * least hit a track cache on drives of unknown
387 * geometry (e.g. SCSI).
388 */
389 goto norot;
390 }
391 /*
392 * check for a block available on the same cylinder
393 */
394 cylno = cbtocylno(fs, bpref);
395 if (cg_blktot(cgp, needswap)[cylno] == 0)
396 goto norot;
397 /*
398 * check the summary information to see if a block is
399 * available in the requested cylinder starting at the
400 * requested rotational position and proceeding around.
401 */
402 cylbp = cg_blks(fs, cgp, cylno, needswap);
403 pos = cbtorpos(fs, bpref);
404 for (i = pos; i < fs->fs_nrpos; i++)
405 if (ufs_rw16(cylbp[i], needswap) > 0)
406 break;
407 if (i == fs->fs_nrpos)
408 for (i = 0; i < pos; i++)
409 if (ufs_rw16(cylbp[i], needswap) > 0)
410 break;
411 if (ufs_rw16(cylbp[i], needswap) > 0) {
412 /*
413 * found a rotational position, now find the actual
414 * block. A panic if none is actually there.
415 */
416 pos = cylno % fs->fs_cpc;
417 bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
418 if (fs_postbl(fs, pos)[i] == -1) {
419 errx(1,
420 "ffs_alloccgblk: cyl groups corrupted: pos %d i %d",
421 pos, i);
422 }
423 for (i = fs_postbl(fs, pos)[i];; ) {
424 if (ffs_isblock(fs, cg_blksfree(cgp, needswap), bno + i)) {
425 bno = blkstofrags(fs, (bno + i));
426 goto gotit;
427 }
428 delta = fs_rotbl(fs)[i];
429 if (delta <= 0 ||
430 delta + i > fragstoblks(fs, fs->fs_fpg))
431 break;
432 i += delta;
433 }
434 errx(1, "ffs_alloccgblk: can't find blk in cyl: pos %d i %d",
435 pos, i);
436 }
437 norot:
438 /*
439 * no blocks in the requested cylinder, so take next
440 * available one in this cylinder group.
441 */
442 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
443 if (bno < 0)
444 return (0);
445 cgp->cg_rotor = ufs_rw32(bno, needswap);
446 gotit:
447 blkno = fragstoblks(fs, bno);
448 ffs_clrblock(fs, cg_blksfree(cgp, needswap), (long)blkno);
449 ffs_clusteracct(fs, cgp, blkno, -1);
450 ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
451 fs->fs_cstotal.cs_nbfree--;
452 fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
453 cylno = cbtocylno(fs, bno);
454 ufs_add16(cg_blks(fs, cgp, cylno, needswap)[cbtorpos(fs, bno)], -1,
455 needswap);
456 ufs_add32(cg_blktot(cgp, needswap)[cylno], -1, needswap);
457 fs->fs_fmod = 1;
458 blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
459 return (blkno);
460 }
461
462 /*
463 * Free a block or fragment.
464 *
465 * The specified block or fragment is placed back in the
466 * free map. If a fragment is deallocated, a possible
467 * block reassembly is checked.
468 */
469 void
470 ffs_blkfree(struct inode *ip, ufs_daddr_t bno, long size)
471 {
472 struct cg *cgp;
473 struct buf *bp;
474 ufs_daddr_t blkno;
475 int i, error, cg, blk, frags, bbase;
476 struct fs *fs = ip->i_fs;
477 const int needswap = UFS_FSNEEDSWAP(fs);
478
479 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
480 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
481 errx(1, "blkfree: bad size: bno %u bsize %d size %ld",
482 bno, fs->fs_bsize, size);
483 }
484 cg = dtog(fs, bno);
485 if ((u_int)bno >= fs->fs_size) {
486 warnx("bad block %d, ino %d\n", bno, ip->i_number);
487 return;
488 }
489 error = bread(ip->i_fd, ip->i_fs, fsbtodb(fs, cgtod(fs, cg)),
490 (int)fs->fs_cgsize, &bp);
491 if (error) {
492 brelse(bp);
493 return;
494 }
495 cgp = (struct cg *)bp->b_data;
496 if (!cg_chkmagic(cgp, needswap)) {
497 brelse(bp);
498 return;
499 }
500 bno = dtogd(fs, bno);
501 if (size == fs->fs_bsize) {
502 blkno = fragstoblks(fs, bno);
503 if (!ffs_isfreeblock(fs, cg_blksfree(cgp, needswap), blkno)) {
504 errx(1, "blkfree: freeing free block %d", bno);
505 }
506 ffs_setblock(fs, cg_blksfree(cgp, needswap), blkno);
507 ffs_clusteracct(fs, cgp, blkno, 1);
508 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
509 fs->fs_cstotal.cs_nbfree++;
510 fs->fs_cs(fs, cg).cs_nbfree++;
511 i = cbtocylno(fs, bno);
512 ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bno)], 1,
513 needswap);
514 ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
515 } else {
516 bbase = bno - fragnum(fs, bno);
517 /*
518 * decrement the counts associated with the old frags
519 */
520 blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
521 ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
522 /*
523 * deallocate the fragment
524 */
525 frags = numfrags(fs, size);
526 for (i = 0; i < frags; i++) {
527 if (isset(cg_blksfree(cgp, needswap), bno + i)) {
528 errx(1, "blkfree: freeing free frag: block %d",
529 bno + i);
530 }
531 setbit(cg_blksfree(cgp, needswap), bno + i);
532 }
533 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
534 fs->fs_cstotal.cs_nffree += i;
535 fs->fs_cs(fs, cg).cs_nffree += i;
536 /*
537 * add back in counts associated with the new frags
538 */
539 blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
540 ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
541 /*
542 * if a complete block has been reassembled, account for it
543 */
544 blkno = fragstoblks(fs, bbase);
545 if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
546 ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
547 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
548 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
549 ffs_clusteracct(fs, cgp, blkno, 1);
550 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
551 fs->fs_cstotal.cs_nbfree++;
552 fs->fs_cs(fs, cg).cs_nbfree++;
553 i = cbtocylno(fs, bbase);
554 ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs,
555 bbase)], 1,
556 needswap);
557 ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
558 }
559 }
560 fs->fs_fmod = 1;
561 bdwrite(bp);
562 }
563
564
565 static int
566 scanc(u_int size, const u_char *cp, const u_char table[], int mask)
567 {
568 const u_char *end = &cp[size];
569
570 while (cp < end && (table[*cp] & mask) == 0)
571 cp++;
572 return (end - cp);
573 }
574
575 /*
576 * Find a block of the specified size in the specified cylinder group.
577 *
578 * It is a panic if a request is made to find a block if none are
579 * available.
580 */
581 static ufs_daddr_t
582 ffs_mapsearch(struct fs *fs, struct cg *cgp, ufs_daddr_t bpref, int allocsiz)
583 {
584 ufs_daddr_t bno;
585 int start, len, loc, i;
586 int blk, field, subfield, pos;
587 int ostart, olen;
588 const int needswap = UFS_FSNEEDSWAP(fs);
589
590 /*
591 * find the fragment by searching through the free block
592 * map for an appropriate bit pattern
593 */
594 if (bpref)
595 start = dtogd(fs, bpref) / NBBY;
596 else
597 start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
598 len = howmany(fs->fs_fpg, NBBY) - start;
599 ostart = start;
600 olen = len;
601 loc = scanc((u_int)len,
602 (const u_char *)&cg_blksfree(cgp, needswap)[start],
603 (const u_char *)fragtbl[fs->fs_frag],
604 (1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
605 if (loc == 0) {
606 len = start + 1;
607 start = 0;
608 loc = scanc((u_int)len,
609 (const u_char *)&cg_blksfree(cgp, needswap)[0],
610 (const u_char *)fragtbl[fs->fs_frag],
611 (1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
612 if (loc == 0) {
613 errx(1,
614 "ffs_alloccg: map corrupted: start %d len %d offset %d %ld",
615 ostart, olen,
616 ufs_rw32(cgp->cg_freeoff, needswap),
617 (long)cg_blksfree(cgp, needswap) - (long)cgp);
618 /* NOTREACHED */
619 }
620 }
621 bno = (start + len - loc) * NBBY;
622 cgp->cg_frotor = ufs_rw32(bno, needswap);
623 /*
624 * found the byte in the map
625 * sift through the bits to find the selected frag
626 */
627 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
628 blk = blkmap(fs, cg_blksfree(cgp, needswap), bno);
629 blk <<= 1;
630 field = around[allocsiz];
631 subfield = inside[allocsiz];
632 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
633 if ((blk & field) == subfield)
634 return (bno + pos);
635 field <<= 1;
636 subfield <<= 1;
637 }
638 }
639 errx(1, "ffs_alloccg: block not in map: bno %d", bno);
640 return (-1);
641 }
642
643 /*
644 * Update the cluster map because of an allocation or free.
645 *
646 * Cnt == 1 means free; cnt == -1 means allocating.
647 */
648 void
649 ffs_clusteracct(struct fs *fs, struct cg *cgp, ufs_daddr_t blkno, int cnt)
650 {
651 int32_t *sump;
652 int32_t *lp;
653 u_char *freemapp, *mapp;
654 int i, start, end, forw, back, map, bit;
655 const int needswap = UFS_FSNEEDSWAP(fs);
656
657 if (fs->fs_contigsumsize <= 0)
658 return;
659 freemapp = cg_clustersfree(cgp, needswap);
660 sump = cg_clustersum(cgp, needswap);
661 /*
662 * Allocate or clear the actual block.
663 */
664 if (cnt > 0)
665 setbit(freemapp, blkno);
666 else
667 clrbit(freemapp, blkno);
668 /*
669 * Find the size of the cluster going forward.
670 */
671 start = blkno + 1;
672 end = start + fs->fs_contigsumsize;
673 if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
674 end = ufs_rw32(cgp->cg_nclusterblks, needswap);
675 mapp = &freemapp[start / NBBY];
676 map = *mapp++;
677 bit = 1 << (start % NBBY);
678 for (i = start; i < end; i++) {
679 if ((map & bit) == 0)
680 break;
681 if ((i & (NBBY - 1)) != (NBBY - 1)) {
682 bit <<= 1;
683 } else {
684 map = *mapp++;
685 bit = 1;
686 }
687 }
688 forw = i - start;
689 /*
690 * Find the size of the cluster going backward.
691 */
692 start = blkno - 1;
693 end = start - fs->fs_contigsumsize;
694 if (end < 0)
695 end = -1;
696 mapp = &freemapp[start / NBBY];
697 map = *mapp--;
698 bit = 1 << (start % NBBY);
699 for (i = start; i > end; i--) {
700 if ((map & bit) == 0)
701 break;
702 if ((i & (NBBY - 1)) != 0) {
703 bit >>= 1;
704 } else {
705 map = *mapp--;
706 bit = 1 << (NBBY - 1);
707 }
708 }
709 back = start - i;
710 /*
711 * Account for old cluster and the possibly new forward and
712 * back clusters.
713 */
714 i = back + forw + 1;
715 if (i > fs->fs_contigsumsize)
716 i = fs->fs_contigsumsize;
717 ufs_add32(sump[i], cnt, needswap);
718 if (back > 0)
719 ufs_add32(sump[back], -cnt, needswap);
720 if (forw > 0)
721 ufs_add32(sump[forw], -cnt, needswap);
722
723 /*
724 * Update cluster summary information.
725 */
726 lp = &sump[fs->fs_contigsumsize];
727 for (i = fs->fs_contigsumsize; i > 0; i--)
728 if (ufs_rw32(*lp--, needswap) > 0)
729 break;
730 fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
731 }
732