ffs_alloc.c revision 1.6 1 /* $NetBSD: ffs_alloc.c,v 1.6 2002/01/07 16:56:27 lukem Exp $ */
2 /* From: NetBSD: ffs_alloc.c,v 1.50 2001/09/06 02:16:01 lukem Exp */
3
4 /*
5 * Copyright (c) 1982, 1986, 1989, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
37 */
38
39 #include <sys/cdefs.h>
40 #ifndef __lint
41 __RCSID("$NetBSD: ffs_alloc.c,v 1.6 2002/01/07 16:56:27 lukem Exp $");
42 #endif /* !__lint */
43
44 #include <sys/param.h>
45 #include <sys/time.h>
46
47 #include <err.h>
48 #include <errno.h>
49
50 #include "makefs.h"
51
52 #include <ufs/ufs/ufs_bswap.h>
53 #include <ufs/ffs/fs.h>
54
55 #include "ffs/buf.h"
56 #include "ffs/ufs_inode.h"
57 #include "ffs/ffs_extern.h"
58
59
60 static int scanc(u_int, const u_char *, const u_char *, int);
61
62 static ufs_daddr_t ffs_alloccg(struct inode *, int, ufs_daddr_t, int);
63 static ufs_daddr_t ffs_alloccgblk(struct inode *, struct buf *, ufs_daddr_t);
64 static u_long ffs_hashalloc(struct inode *, int, long, int,
65 ufs_daddr_t (*)(struct inode *, int, ufs_daddr_t, int));
66 static ufs_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs_daddr_t, int);
67
68 /* in ffs_tables.c */
69 extern const int inside[], around[];
70 extern const u_char * const fragtbl[];
71
72 /*
73 * Allocate a block in the file system.
74 *
75 * The size of the requested block is given, which must be some
76 * multiple of fs_fsize and <= fs_bsize.
77 * A preference may be optionally specified. If a preference is given
78 * the following hierarchy is used to allocate a block:
79 * 1) allocate the requested block.
80 * 2) allocate a rotationally optimal block in the same cylinder.
81 * 3) allocate a block in the same cylinder group.
82 * 4) quadradically rehash into other cylinder groups, until an
83 * available block is located.
84 * If no block preference is given the following hierarchy is used
85 * to allocate a block:
86 * 1) allocate a block in the cylinder group that contains the
87 * inode for the file.
88 * 2) quadradically rehash into other cylinder groups, until an
89 * available block is located.
90 */
91 int
92 ffs_alloc(struct inode *ip, ufs_daddr_t lbn, ufs_daddr_t bpref, int size,
93 ufs_daddr_t *bnp)
94 {
95 struct fs *fs = ip->i_fs;
96 ufs_daddr_t bno;
97 int cg;
98
99 *bnp = 0;
100 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
101 errx(1, "ffs_alloc: bad size: bsize %d size %d",
102 fs->fs_bsize, size);
103 }
104 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
105 goto nospace;
106 if (bpref >= fs->fs_size)
107 bpref = 0;
108 if (bpref == 0)
109 cg = ino_to_cg(fs, ip->i_number);
110 else
111 cg = dtog(fs, bpref);
112 bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
113 ffs_alloccg);
114 if (bno > 0) {
115 ip->i_ffs_blocks += btodb(size);
116 *bnp = bno;
117 return (0);
118 }
119 nospace:
120 return (ENOSPC);
121 }
122
123 /*
124 * Select the desired position for the next block in a file. The file is
125 * logically divided into sections. The first section is composed of the
126 * direct blocks. Each additional section contains fs_maxbpg blocks.
127 *
128 * If no blocks have been allocated in the first section, the policy is to
129 * request a block in the same cylinder group as the inode that describes
130 * the file. If no blocks have been allocated in any other section, the
131 * policy is to place the section in a cylinder group with a greater than
132 * average number of free blocks. An appropriate cylinder group is found
133 * by using a rotor that sweeps the cylinder groups. When a new group of
134 * blocks is needed, the sweep begins in the cylinder group following the
135 * cylinder group from which the previous allocation was made. The sweep
136 * continues until a cylinder group with greater than the average number
137 * of free blocks is found. If the allocation is for the first block in an
138 * indirect block, the information on the previous allocation is unavailable;
139 * here a best guess is made based upon the logical block number being
140 * allocated.
141 *
142 * If a section is already partially allocated, the policy is to
143 * contiguously allocate fs_maxcontig blocks. The end of one of these
144 * contiguous blocks and the beginning of the next is physically separated
145 * so that the disk head will be in transit between them for at least
146 * fs_rotdelay milliseconds. This is to allow time for the processor to
147 * schedule another I/O transfer.
148 */
149 ufs_daddr_t
150 ffs_blkpref(struct inode *ip, ufs_daddr_t lbn, int indx, ufs_daddr_t *bap)
151 {
152 struct fs *fs;
153 int cg;
154 int avgbfree, startcg;
155 ufs_daddr_t nextblk;
156
157 fs = ip->i_fs;
158 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
159 if (lbn < NDADDR + NINDIR(fs)) {
160 cg = ino_to_cg(fs, ip->i_number);
161 return (fs->fs_fpg * cg + fs->fs_frag);
162 }
163 /*
164 * Find a cylinder with greater than average number of
165 * unused data blocks.
166 */
167 if (indx == 0 || bap[indx - 1] == 0)
168 startcg =
169 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
170 else
171 startcg = dtog(fs,
172 ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
173 startcg %= fs->fs_ncg;
174 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
175 for (cg = startcg; cg < fs->fs_ncg; cg++)
176 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
177 fs->fs_cgrotor = cg;
178 return (fs->fs_fpg * cg + fs->fs_frag);
179 }
180 for (cg = 0; cg <= startcg; cg++)
181 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
182 fs->fs_cgrotor = cg;
183 return (fs->fs_fpg * cg + fs->fs_frag);
184 }
185 return (0);
186 }
187 /*
188 * One or more previous blocks have been laid out. If less
189 * than fs_maxcontig previous blocks are contiguous, the
190 * next block is requested contiguously, otherwise it is
191 * requested rotationally delayed by fs_rotdelay milliseconds.
192 */
193 nextblk = ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
194 if (indx < fs->fs_maxcontig ||
195 ufs_rw32(bap[indx - fs->fs_maxcontig], UFS_FSNEEDSWAP(fs)) +
196 blkstofrags(fs, fs->fs_maxcontig) != nextblk)
197 return (nextblk);
198 if (fs->fs_rotdelay != 0)
199 /*
200 * Here we convert ms of delay to frags as:
201 * (frags) = (ms) * (rev/sec) * (sect/rev) /
202 * ((sect/frag) * (ms/sec))
203 * then round up to the next block.
204 */
205 nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
206 (NSPF(fs) * 1000), fs->fs_frag);
207 return (nextblk);
208 }
209
210 /*
211 * Implement the cylinder overflow algorithm.
212 *
213 * The policy implemented by this algorithm is:
214 * 1) allocate the block in its requested cylinder group.
215 * 2) quadradically rehash on the cylinder group number.
216 * 3) brute force search for a free block.
217 *
218 * `size': size for data blocks, mode for inodes
219 */
220 /*VARARGS5*/
221 static u_long
222 ffs_hashalloc(struct inode *ip, int cg, long pref, int size,
223 ufs_daddr_t (*allocator)(struct inode *, int, ufs_daddr_t, int))
224 {
225 struct fs *fs;
226 long result;
227 int i, icg = cg;
228
229 fs = ip->i_fs;
230 /*
231 * 1: preferred cylinder group
232 */
233 result = (*allocator)(ip, cg, pref, size);
234 if (result)
235 return (result);
236 /*
237 * 2: quadratic rehash
238 */
239 for (i = 1; i < fs->fs_ncg; i *= 2) {
240 cg += i;
241 if (cg >= fs->fs_ncg)
242 cg -= fs->fs_ncg;
243 result = (*allocator)(ip, cg, 0, size);
244 if (result)
245 return (result);
246 }
247 /*
248 * 3: brute force search
249 * Note that we start at i == 2, since 0 was checked initially,
250 * and 1 is always checked in the quadratic rehash.
251 */
252 cg = (icg + 2) % fs->fs_ncg;
253 for (i = 2; i < fs->fs_ncg; i++) {
254 result = (*allocator)(ip, cg, 0, size);
255 if (result)
256 return (result);
257 cg++;
258 if (cg == fs->fs_ncg)
259 cg = 0;
260 }
261 return (0);
262 }
263
264 /*
265 * Determine whether a block can be allocated.
266 *
267 * Check to see if a block of the appropriate size is available,
268 * and if it is, allocate it.
269 */
270 static ufs_daddr_t
271 ffs_alloccg(struct inode *ip, int cg, ufs_daddr_t bpref, int size)
272 {
273 struct cg *cgp;
274 struct buf *bp;
275 ufs_daddr_t bno, blkno;
276 int error, frags, allocsiz, i;
277 struct fs *fs = ip->i_fs;
278 const int needswap = UFS_FSNEEDSWAP(fs);
279
280 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
281 return (0);
282 error = bread(ip->i_fd, ip->i_fs, fsbtodb(fs, cgtod(fs, cg)),
283 (int)fs->fs_cgsize, &bp);
284 if (error) {
285 brelse(bp);
286 return (0);
287 }
288 cgp = (struct cg *)bp->b_data;
289 if (!cg_chkmagic(cgp, needswap) ||
290 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
291 brelse(bp);
292 return (0);
293 }
294 if (size == fs->fs_bsize) {
295 bno = ffs_alloccgblk(ip, bp, bpref);
296 bdwrite(bp);
297 return (bno);
298 }
299 /*
300 * check to see if any fragments are already available
301 * allocsiz is the size which will be allocated, hacking
302 * it down to a smaller size if necessary
303 */
304 frags = numfrags(fs, size);
305 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
306 if (cgp->cg_frsum[allocsiz] != 0)
307 break;
308 if (allocsiz == fs->fs_frag) {
309 /*
310 * no fragments were available, so a block will be
311 * allocated, and hacked up
312 */
313 if (cgp->cg_cs.cs_nbfree == 0) {
314 brelse(bp);
315 return (0);
316 }
317 bno = ffs_alloccgblk(ip, bp, bpref);
318 bpref = dtogd(fs, bno);
319 for (i = frags; i < fs->fs_frag; i++)
320 setbit(cg_blksfree(cgp, needswap), bpref + i);
321 i = fs->fs_frag - frags;
322 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
323 fs->fs_cstotal.cs_nffree += i;
324 fs->fs_cs(fs, cg).cs_nffree += i;
325 fs->fs_fmod = 1;
326 ufs_add32(cgp->cg_frsum[i], 1, needswap);
327 bdwrite(bp);
328 return (bno);
329 }
330 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
331 for (i = 0; i < frags; i++)
332 clrbit(cg_blksfree(cgp, needswap), bno + i);
333 ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
334 fs->fs_cstotal.cs_nffree -= frags;
335 fs->fs_cs(fs, cg).cs_nffree -= frags;
336 fs->fs_fmod = 1;
337 ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
338 if (frags != allocsiz)
339 ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
340 blkno = cg * fs->fs_fpg + bno;
341 bdwrite(bp);
342 return blkno;
343 }
344
345 /*
346 * Allocate a block in a cylinder group.
347 *
348 * This algorithm implements the following policy:
349 * 1) allocate the requested block.
350 * 2) allocate a rotationally optimal block in the same cylinder.
351 * 3) allocate the next available block on the block rotor for the
352 * specified cylinder group.
353 * Note that this routine only allocates fs_bsize blocks; these
354 * blocks may be fragmented by the routine that allocates them.
355 */
356 static ufs_daddr_t
357 ffs_alloccgblk(struct inode *ip, struct buf *bp, ufs_daddr_t bpref)
358 {
359 struct cg *cgp;
360 ufs_daddr_t bno, blkno;
361 int cylno, pos, delta;
362 short *cylbp;
363 int i;
364 struct fs *fs = ip->i_fs;
365 const int needswap = UFS_FSNEEDSWAP(fs);
366
367 cgp = (struct cg *)bp->b_data;
368 if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
369 bpref = ufs_rw32(cgp->cg_rotor, needswap);
370 goto norot;
371 }
372 bpref = blknum(fs, bpref);
373 bpref = dtogd(fs, bpref);
374 /*
375 * if the requested block is available, use it
376 */
377 if (ffs_isblock(fs, cg_blksfree(cgp, needswap),
378 fragstoblks(fs, bpref))) {
379 bno = bpref;
380 goto gotit;
381 }
382 if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
383 /*
384 * Block layout information is not available.
385 * Leaving bpref unchanged means we take the
386 * next available free block following the one
387 * we just allocated. Hopefully this will at
388 * least hit a track cache on drives of unknown
389 * geometry (e.g. SCSI).
390 */
391 goto norot;
392 }
393 /*
394 * check for a block available on the same cylinder
395 */
396 cylno = cbtocylno(fs, bpref);
397 if (cg_blktot(cgp, needswap)[cylno] == 0)
398 goto norot;
399 /*
400 * check the summary information to see if a block is
401 * available in the requested cylinder starting at the
402 * requested rotational position and proceeding around.
403 */
404 cylbp = cg_blks(fs, cgp, cylno, needswap);
405 pos = cbtorpos(fs, bpref);
406 for (i = pos; i < fs->fs_nrpos; i++)
407 if (ufs_rw16(cylbp[i], needswap) > 0)
408 break;
409 if (i == fs->fs_nrpos)
410 for (i = 0; i < pos; i++)
411 if (ufs_rw16(cylbp[i], needswap) > 0)
412 break;
413 if (ufs_rw16(cylbp[i], needswap) > 0) {
414 /*
415 * found a rotational position, now find the actual
416 * block. A panic if none is actually there.
417 */
418 pos = cylno % fs->fs_cpc;
419 bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
420 if (fs_postbl(fs, pos)[i] == -1) {
421 errx(1,
422 "ffs_alloccgblk: cyl groups corrupted: pos %d i %d",
423 pos, i);
424 }
425 for (i = fs_postbl(fs, pos)[i];; ) {
426 if (ffs_isblock(fs, cg_blksfree(cgp, needswap), bno + i)) {
427 bno = blkstofrags(fs, (bno + i));
428 goto gotit;
429 }
430 delta = fs_rotbl(fs)[i];
431 if (delta <= 0 ||
432 delta + i > fragstoblks(fs, fs->fs_fpg))
433 break;
434 i += delta;
435 }
436 errx(1, "ffs_alloccgblk: can't find blk in cyl: pos %d i %d",
437 pos, i);
438 }
439 norot:
440 /*
441 * no blocks in the requested cylinder, so take next
442 * available one in this cylinder group.
443 */
444 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
445 if (bno < 0)
446 return (0);
447 cgp->cg_rotor = ufs_rw32(bno, needswap);
448 gotit:
449 blkno = fragstoblks(fs, bno);
450 ffs_clrblock(fs, cg_blksfree(cgp, needswap), (long)blkno);
451 ffs_clusteracct(fs, cgp, blkno, -1);
452 ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
453 fs->fs_cstotal.cs_nbfree--;
454 fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
455 cylno = cbtocylno(fs, bno);
456 ufs_add16(cg_blks(fs, cgp, cylno, needswap)[cbtorpos(fs, bno)], -1,
457 needswap);
458 ufs_add32(cg_blktot(cgp, needswap)[cylno], -1, needswap);
459 fs->fs_fmod = 1;
460 blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
461 return (blkno);
462 }
463
464 /*
465 * Free a block or fragment.
466 *
467 * The specified block or fragment is placed back in the
468 * free map. If a fragment is deallocated, a possible
469 * block reassembly is checked.
470 */
471 void
472 ffs_blkfree(struct inode *ip, ufs_daddr_t bno, long size)
473 {
474 struct cg *cgp;
475 struct buf *bp;
476 ufs_daddr_t blkno;
477 int i, error, cg, blk, frags, bbase;
478 struct fs *fs = ip->i_fs;
479 const int needswap = UFS_FSNEEDSWAP(fs);
480
481 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
482 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
483 errx(1, "blkfree: bad size: bno %u bsize %d size %ld",
484 bno, fs->fs_bsize, size);
485 }
486 cg = dtog(fs, bno);
487 if ((u_int)bno >= fs->fs_size) {
488 warnx("bad block %d, ino %d\n", bno, ip->i_number);
489 return;
490 }
491 error = bread(ip->i_fd, ip->i_fs, fsbtodb(fs, cgtod(fs, cg)),
492 (int)fs->fs_cgsize, &bp);
493 if (error) {
494 brelse(bp);
495 return;
496 }
497 cgp = (struct cg *)bp->b_data;
498 if (!cg_chkmagic(cgp, needswap)) {
499 brelse(bp);
500 return;
501 }
502 bno = dtogd(fs, bno);
503 if (size == fs->fs_bsize) {
504 blkno = fragstoblks(fs, bno);
505 if (!ffs_isfreeblock(fs, cg_blksfree(cgp, needswap), blkno)) {
506 errx(1, "blkfree: freeing free block %d", bno);
507 }
508 ffs_setblock(fs, cg_blksfree(cgp, needswap), blkno);
509 ffs_clusteracct(fs, cgp, blkno, 1);
510 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
511 fs->fs_cstotal.cs_nbfree++;
512 fs->fs_cs(fs, cg).cs_nbfree++;
513 i = cbtocylno(fs, bno);
514 ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bno)], 1,
515 needswap);
516 ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
517 } else {
518 bbase = bno - fragnum(fs, bno);
519 /*
520 * decrement the counts associated with the old frags
521 */
522 blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
523 ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
524 /*
525 * deallocate the fragment
526 */
527 frags = numfrags(fs, size);
528 for (i = 0; i < frags; i++) {
529 if (isset(cg_blksfree(cgp, needswap), bno + i)) {
530 errx(1, "blkfree: freeing free frag: block %d",
531 bno + i);
532 }
533 setbit(cg_blksfree(cgp, needswap), bno + i);
534 }
535 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
536 fs->fs_cstotal.cs_nffree += i;
537 fs->fs_cs(fs, cg).cs_nffree += i;
538 /*
539 * add back in counts associated with the new frags
540 */
541 blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
542 ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
543 /*
544 * if a complete block has been reassembled, account for it
545 */
546 blkno = fragstoblks(fs, bbase);
547 if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
548 ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
549 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
550 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
551 ffs_clusteracct(fs, cgp, blkno, 1);
552 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
553 fs->fs_cstotal.cs_nbfree++;
554 fs->fs_cs(fs, cg).cs_nbfree++;
555 i = cbtocylno(fs, bbase);
556 ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs,
557 bbase)], 1,
558 needswap);
559 ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
560 }
561 }
562 fs->fs_fmod = 1;
563 bdwrite(bp);
564 }
565
566
567 static int
568 scanc(u_int size, const u_char *cp, const u_char table[], int mask)
569 {
570 const u_char *end = &cp[size];
571
572 while (cp < end && (table[*cp] & mask) == 0)
573 cp++;
574 return (end - cp);
575 }
576
577 /*
578 * Find a block of the specified size in the specified cylinder group.
579 *
580 * It is a panic if a request is made to find a block if none are
581 * available.
582 */
583 static ufs_daddr_t
584 ffs_mapsearch(struct fs *fs, struct cg *cgp, ufs_daddr_t bpref, int allocsiz)
585 {
586 ufs_daddr_t bno;
587 int start, len, loc, i;
588 int blk, field, subfield, pos;
589 int ostart, olen;
590 const int needswap = UFS_FSNEEDSWAP(fs);
591
592 /*
593 * find the fragment by searching through the free block
594 * map for an appropriate bit pattern
595 */
596 if (bpref)
597 start = dtogd(fs, bpref) / NBBY;
598 else
599 start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
600 len = howmany(fs->fs_fpg, NBBY) - start;
601 ostart = start;
602 olen = len;
603 loc = scanc((u_int)len,
604 (const u_char *)&cg_blksfree(cgp, needswap)[start],
605 (const u_char *)fragtbl[fs->fs_frag],
606 (1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
607 if (loc == 0) {
608 len = start + 1;
609 start = 0;
610 loc = scanc((u_int)len,
611 (const u_char *)&cg_blksfree(cgp, needswap)[0],
612 (const u_char *)fragtbl[fs->fs_frag],
613 (1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
614 if (loc == 0) {
615 errx(1,
616 "ffs_alloccg: map corrupted: start %d len %d offset %d %ld",
617 ostart, olen,
618 ufs_rw32(cgp->cg_freeoff, needswap),
619 (long)cg_blksfree(cgp, needswap) - (long)cgp);
620 /* NOTREACHED */
621 }
622 }
623 bno = (start + len - loc) * NBBY;
624 cgp->cg_frotor = ufs_rw32(bno, needswap);
625 /*
626 * found the byte in the map
627 * sift through the bits to find the selected frag
628 */
629 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
630 blk = blkmap(fs, cg_blksfree(cgp, needswap), bno);
631 blk <<= 1;
632 field = around[allocsiz];
633 subfield = inside[allocsiz];
634 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
635 if ((blk & field) == subfield)
636 return (bno + pos);
637 field <<= 1;
638 subfield <<= 1;
639 }
640 }
641 errx(1, "ffs_alloccg: block not in map: bno %d", bno);
642 return (-1);
643 }
644
645 /*
646 * Update the cluster map because of an allocation or free.
647 *
648 * Cnt == 1 means free; cnt == -1 means allocating.
649 */
650 void
651 ffs_clusteracct(struct fs *fs, struct cg *cgp, ufs_daddr_t blkno, int cnt)
652 {
653 int32_t *sump;
654 int32_t *lp;
655 u_char *freemapp, *mapp;
656 int i, start, end, forw, back, map, bit;
657 const int needswap = UFS_FSNEEDSWAP(fs);
658
659 if (fs->fs_contigsumsize <= 0)
660 return;
661 freemapp = cg_clustersfree(cgp, needswap);
662 sump = cg_clustersum(cgp, needswap);
663 /*
664 * Allocate or clear the actual block.
665 */
666 if (cnt > 0)
667 setbit(freemapp, blkno);
668 else
669 clrbit(freemapp, blkno);
670 /*
671 * Find the size of the cluster going forward.
672 */
673 start = blkno + 1;
674 end = start + fs->fs_contigsumsize;
675 if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
676 end = ufs_rw32(cgp->cg_nclusterblks, needswap);
677 mapp = &freemapp[start / NBBY];
678 map = *mapp++;
679 bit = 1 << (start % NBBY);
680 for (i = start; i < end; i++) {
681 if ((map & bit) == 0)
682 break;
683 if ((i & (NBBY - 1)) != (NBBY - 1)) {
684 bit <<= 1;
685 } else {
686 map = *mapp++;
687 bit = 1;
688 }
689 }
690 forw = i - start;
691 /*
692 * Find the size of the cluster going backward.
693 */
694 start = blkno - 1;
695 end = start - fs->fs_contigsumsize;
696 if (end < 0)
697 end = -1;
698 mapp = &freemapp[start / NBBY];
699 map = *mapp--;
700 bit = 1 << (start % NBBY);
701 for (i = start; i > end; i--) {
702 if ((map & bit) == 0)
703 break;
704 if ((i & (NBBY - 1)) != 0) {
705 bit >>= 1;
706 } else {
707 map = *mapp--;
708 bit = 1 << (NBBY - 1);
709 }
710 }
711 back = start - i;
712 /*
713 * Account for old cluster and the possibly new forward and
714 * back clusters.
715 */
716 i = back + forw + 1;
717 if (i > fs->fs_contigsumsize)
718 i = fs->fs_contigsumsize;
719 ufs_add32(sump[i], cnt, needswap);
720 if (back > 0)
721 ufs_add32(sump[back], -cnt, needswap);
722 if (forw > 0)
723 ufs_add32(sump[forw], -cnt, needswap);
724
725 /*
726 * Update cluster summary information.
727 */
728 lp = &sump[fs->fs_contigsumsize];
729 for (i = fs->fs_contigsumsize; i > 0; i--)
730 if (ufs_rw32(*lp--, needswap) > 0)
731 break;
732 fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
733 }
734