ffs_alloc.c revision 1.7 1 /* $NetBSD: ffs_alloc.c,v 1.7 2002/01/08 06:00:14 lukem Exp $ */
2 /* From: NetBSD: ffs_alloc.c,v 1.50 2001/09/06 02:16:01 lukem Exp */
3
4 /*
5 * Copyright (c) 1982, 1986, 1989, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
37 */
38
39 #include <sys/cdefs.h>
40 #ifndef __lint
41 __RCSID("$NetBSD: ffs_alloc.c,v 1.7 2002/01/08 06:00:14 lukem Exp $");
42 #endif /* !__lint */
43
44 #include <sys/param.h>
45 #include <sys/time.h>
46
47 #include <err.h>
48 #include <errno.h>
49
50 #include "makefs.h"
51
52 #include <ufs/ufs/dinode.h>
53 #include <ufs/ufs/ufs_bswap.h>
54 #include <ufs/ffs/fs.h>
55
56 #include "ffs/buf.h"
57 #include "ffs/ufs_inode.h"
58 #include "ffs/ffs_extern.h"
59
60
61 static int scanc(u_int, const u_char *, const u_char *, int);
62
63 static ufs_daddr_t ffs_alloccg(struct inode *, int, ufs_daddr_t, int);
64 static ufs_daddr_t ffs_alloccgblk(struct inode *, struct buf *, ufs_daddr_t);
65 static u_long ffs_hashalloc(struct inode *, int, long, int,
66 ufs_daddr_t (*)(struct inode *, int, ufs_daddr_t, int));
67 static ufs_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs_daddr_t, int);
68
69 /* in ffs_tables.c */
70 extern const int inside[], around[];
71 extern const u_char * const fragtbl[];
72
73 /*
74 * Allocate a block in the file system.
75 *
76 * The size of the requested block is given, which must be some
77 * multiple of fs_fsize and <= fs_bsize.
78 * A preference may be optionally specified. If a preference is given
79 * the following hierarchy is used to allocate a block:
80 * 1) allocate the requested block.
81 * 2) allocate a rotationally optimal block in the same cylinder.
82 * 3) allocate a block in the same cylinder group.
83 * 4) quadradically rehash into other cylinder groups, until an
84 * available block is located.
85 * If no block preference is given the following hierarchy is used
86 * to allocate a block:
87 * 1) allocate a block in the cylinder group that contains the
88 * inode for the file.
89 * 2) quadradically rehash into other cylinder groups, until an
90 * available block is located.
91 */
92 int
93 ffs_alloc(struct inode *ip, ufs_daddr_t lbn, ufs_daddr_t bpref, int size,
94 ufs_daddr_t *bnp)
95 {
96 struct fs *fs = ip->i_fs;
97 ufs_daddr_t bno;
98 int cg;
99
100 *bnp = 0;
101 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
102 errx(1, "ffs_alloc: bad size: bsize %d size %d",
103 fs->fs_bsize, size);
104 }
105 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
106 goto nospace;
107 if (bpref >= fs->fs_size)
108 bpref = 0;
109 if (bpref == 0)
110 cg = ino_to_cg(fs, ip->i_number);
111 else
112 cg = dtog(fs, bpref);
113 bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
114 ffs_alloccg);
115 if (bno > 0) {
116 ip->i_ffs_blocks += btodb(size);
117 *bnp = bno;
118 return (0);
119 }
120 nospace:
121 return (ENOSPC);
122 }
123
124 /*
125 * Select the desired position for the next block in a file. The file is
126 * logically divided into sections. The first section is composed of the
127 * direct blocks. Each additional section contains fs_maxbpg blocks.
128 *
129 * If no blocks have been allocated in the first section, the policy is to
130 * request a block in the same cylinder group as the inode that describes
131 * the file. If no blocks have been allocated in any other section, the
132 * policy is to place the section in a cylinder group with a greater than
133 * average number of free blocks. An appropriate cylinder group is found
134 * by using a rotor that sweeps the cylinder groups. When a new group of
135 * blocks is needed, the sweep begins in the cylinder group following the
136 * cylinder group from which the previous allocation was made. The sweep
137 * continues until a cylinder group with greater than the average number
138 * of free blocks is found. If the allocation is for the first block in an
139 * indirect block, the information on the previous allocation is unavailable;
140 * here a best guess is made based upon the logical block number being
141 * allocated.
142 *
143 * If a section is already partially allocated, the policy is to
144 * contiguously allocate fs_maxcontig blocks. The end of one of these
145 * contiguous blocks and the beginning of the next is physically separated
146 * so that the disk head will be in transit between them for at least
147 * fs_rotdelay milliseconds. This is to allow time for the processor to
148 * schedule another I/O transfer.
149 */
150 ufs_daddr_t
151 ffs_blkpref(struct inode *ip, ufs_daddr_t lbn, int indx, ufs_daddr_t *bap)
152 {
153 struct fs *fs;
154 int cg;
155 int avgbfree, startcg;
156 ufs_daddr_t nextblk;
157
158 fs = ip->i_fs;
159 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
160 if (lbn < NDADDR + NINDIR(fs)) {
161 cg = ino_to_cg(fs, ip->i_number);
162 return (fs->fs_fpg * cg + fs->fs_frag);
163 }
164 /*
165 * Find a cylinder with greater than average number of
166 * unused data blocks.
167 */
168 if (indx == 0 || bap[indx - 1] == 0)
169 startcg =
170 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
171 else
172 startcg = dtog(fs,
173 ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
174 startcg %= fs->fs_ncg;
175 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
176 for (cg = startcg; cg < fs->fs_ncg; cg++)
177 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
178 fs->fs_cgrotor = cg;
179 return (fs->fs_fpg * cg + fs->fs_frag);
180 }
181 for (cg = 0; cg <= startcg; cg++)
182 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
183 fs->fs_cgrotor = cg;
184 return (fs->fs_fpg * cg + fs->fs_frag);
185 }
186 return (0);
187 }
188 /*
189 * One or more previous blocks have been laid out. If less
190 * than fs_maxcontig previous blocks are contiguous, the
191 * next block is requested contiguously, otherwise it is
192 * requested rotationally delayed by fs_rotdelay milliseconds.
193 */
194 nextblk = ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
195 if (indx < fs->fs_maxcontig ||
196 ufs_rw32(bap[indx - fs->fs_maxcontig], UFS_FSNEEDSWAP(fs)) +
197 blkstofrags(fs, fs->fs_maxcontig) != nextblk)
198 return (nextblk);
199 if (fs->fs_rotdelay != 0)
200 /*
201 * Here we convert ms of delay to frags as:
202 * (frags) = (ms) * (rev/sec) * (sect/rev) /
203 * ((sect/frag) * (ms/sec))
204 * then round up to the next block.
205 */
206 nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
207 (NSPF(fs) * 1000), fs->fs_frag);
208 return (nextblk);
209 }
210
211 /*
212 * Implement the cylinder overflow algorithm.
213 *
214 * The policy implemented by this algorithm is:
215 * 1) allocate the block in its requested cylinder group.
216 * 2) quadradically rehash on the cylinder group number.
217 * 3) brute force search for a free block.
218 *
219 * `size': size for data blocks, mode for inodes
220 */
221 /*VARARGS5*/
222 static u_long
223 ffs_hashalloc(struct inode *ip, int cg, long pref, int size,
224 ufs_daddr_t (*allocator)(struct inode *, int, ufs_daddr_t, int))
225 {
226 struct fs *fs;
227 long result;
228 int i, icg = cg;
229
230 fs = ip->i_fs;
231 /*
232 * 1: preferred cylinder group
233 */
234 result = (*allocator)(ip, cg, pref, size);
235 if (result)
236 return (result);
237 /*
238 * 2: quadratic rehash
239 */
240 for (i = 1; i < fs->fs_ncg; i *= 2) {
241 cg += i;
242 if (cg >= fs->fs_ncg)
243 cg -= fs->fs_ncg;
244 result = (*allocator)(ip, cg, 0, size);
245 if (result)
246 return (result);
247 }
248 /*
249 * 3: brute force search
250 * Note that we start at i == 2, since 0 was checked initially,
251 * and 1 is always checked in the quadratic rehash.
252 */
253 cg = (icg + 2) % fs->fs_ncg;
254 for (i = 2; i < fs->fs_ncg; i++) {
255 result = (*allocator)(ip, cg, 0, size);
256 if (result)
257 return (result);
258 cg++;
259 if (cg == fs->fs_ncg)
260 cg = 0;
261 }
262 return (0);
263 }
264
265 /*
266 * Determine whether a block can be allocated.
267 *
268 * Check to see if a block of the appropriate size is available,
269 * and if it is, allocate it.
270 */
271 static ufs_daddr_t
272 ffs_alloccg(struct inode *ip, int cg, ufs_daddr_t bpref, int size)
273 {
274 struct cg *cgp;
275 struct buf *bp;
276 ufs_daddr_t bno, blkno;
277 int error, frags, allocsiz, i;
278 struct fs *fs = ip->i_fs;
279 const int needswap = UFS_FSNEEDSWAP(fs);
280
281 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
282 return (0);
283 error = bread(ip->i_fd, ip->i_fs, fsbtodb(fs, cgtod(fs, cg)),
284 (int)fs->fs_cgsize, &bp);
285 if (error) {
286 brelse(bp);
287 return (0);
288 }
289 cgp = (struct cg *)bp->b_data;
290 if (!cg_chkmagic(cgp, needswap) ||
291 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
292 brelse(bp);
293 return (0);
294 }
295 if (size == fs->fs_bsize) {
296 bno = ffs_alloccgblk(ip, bp, bpref);
297 bdwrite(bp);
298 return (bno);
299 }
300 /*
301 * check to see if any fragments are already available
302 * allocsiz is the size which will be allocated, hacking
303 * it down to a smaller size if necessary
304 */
305 frags = numfrags(fs, size);
306 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
307 if (cgp->cg_frsum[allocsiz] != 0)
308 break;
309 if (allocsiz == fs->fs_frag) {
310 /*
311 * no fragments were available, so a block will be
312 * allocated, and hacked up
313 */
314 if (cgp->cg_cs.cs_nbfree == 0) {
315 brelse(bp);
316 return (0);
317 }
318 bno = ffs_alloccgblk(ip, bp, bpref);
319 bpref = dtogd(fs, bno);
320 for (i = frags; i < fs->fs_frag; i++)
321 setbit(cg_blksfree(cgp, needswap), bpref + i);
322 i = fs->fs_frag - frags;
323 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
324 fs->fs_cstotal.cs_nffree += i;
325 fs->fs_cs(fs, cg).cs_nffree += i;
326 fs->fs_fmod = 1;
327 ufs_add32(cgp->cg_frsum[i], 1, needswap);
328 bdwrite(bp);
329 return (bno);
330 }
331 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
332 for (i = 0; i < frags; i++)
333 clrbit(cg_blksfree(cgp, needswap), bno + i);
334 ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
335 fs->fs_cstotal.cs_nffree -= frags;
336 fs->fs_cs(fs, cg).cs_nffree -= frags;
337 fs->fs_fmod = 1;
338 ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
339 if (frags != allocsiz)
340 ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
341 blkno = cg * fs->fs_fpg + bno;
342 bdwrite(bp);
343 return blkno;
344 }
345
346 /*
347 * Allocate a block in a cylinder group.
348 *
349 * This algorithm implements the following policy:
350 * 1) allocate the requested block.
351 * 2) allocate a rotationally optimal block in the same cylinder.
352 * 3) allocate the next available block on the block rotor for the
353 * specified cylinder group.
354 * Note that this routine only allocates fs_bsize blocks; these
355 * blocks may be fragmented by the routine that allocates them.
356 */
357 static ufs_daddr_t
358 ffs_alloccgblk(struct inode *ip, struct buf *bp, ufs_daddr_t bpref)
359 {
360 struct cg *cgp;
361 ufs_daddr_t bno, blkno;
362 int cylno, pos, delta;
363 short *cylbp;
364 int i;
365 struct fs *fs = ip->i_fs;
366 const int needswap = UFS_FSNEEDSWAP(fs);
367
368 cgp = (struct cg *)bp->b_data;
369 if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
370 bpref = ufs_rw32(cgp->cg_rotor, needswap);
371 goto norot;
372 }
373 bpref = blknum(fs, bpref);
374 bpref = dtogd(fs, bpref);
375 /*
376 * if the requested block is available, use it
377 */
378 if (ffs_isblock(fs, cg_blksfree(cgp, needswap),
379 fragstoblks(fs, bpref))) {
380 bno = bpref;
381 goto gotit;
382 }
383 if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
384 /*
385 * Block layout information is not available.
386 * Leaving bpref unchanged means we take the
387 * next available free block following the one
388 * we just allocated. Hopefully this will at
389 * least hit a track cache on drives of unknown
390 * geometry (e.g. SCSI).
391 */
392 goto norot;
393 }
394 /*
395 * check for a block available on the same cylinder
396 */
397 cylno = cbtocylno(fs, bpref);
398 if (cg_blktot(cgp, needswap)[cylno] == 0)
399 goto norot;
400 /*
401 * check the summary information to see if a block is
402 * available in the requested cylinder starting at the
403 * requested rotational position and proceeding around.
404 */
405 cylbp = cg_blks(fs, cgp, cylno, needswap);
406 pos = cbtorpos(fs, bpref);
407 for (i = pos; i < fs->fs_nrpos; i++)
408 if (ufs_rw16(cylbp[i], needswap) > 0)
409 break;
410 if (i == fs->fs_nrpos)
411 for (i = 0; i < pos; i++)
412 if (ufs_rw16(cylbp[i], needswap) > 0)
413 break;
414 if (ufs_rw16(cylbp[i], needswap) > 0) {
415 /*
416 * found a rotational position, now find the actual
417 * block. A panic if none is actually there.
418 */
419 pos = cylno % fs->fs_cpc;
420 bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
421 if (fs_postbl(fs, pos)[i] == -1) {
422 errx(1,
423 "ffs_alloccgblk: cyl groups corrupted: pos %d i %d",
424 pos, i);
425 }
426 for (i = fs_postbl(fs, pos)[i];; ) {
427 if (ffs_isblock(fs, cg_blksfree(cgp, needswap), bno + i)) {
428 bno = blkstofrags(fs, (bno + i));
429 goto gotit;
430 }
431 delta = fs_rotbl(fs)[i];
432 if (delta <= 0 ||
433 delta + i > fragstoblks(fs, fs->fs_fpg))
434 break;
435 i += delta;
436 }
437 errx(1, "ffs_alloccgblk: can't find blk in cyl: pos %d i %d",
438 pos, i);
439 }
440 norot:
441 /*
442 * no blocks in the requested cylinder, so take next
443 * available one in this cylinder group.
444 */
445 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
446 if (bno < 0)
447 return (0);
448 cgp->cg_rotor = ufs_rw32(bno, needswap);
449 gotit:
450 blkno = fragstoblks(fs, bno);
451 ffs_clrblock(fs, cg_blksfree(cgp, needswap), (long)blkno);
452 ffs_clusteracct(fs, cgp, blkno, -1);
453 ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
454 fs->fs_cstotal.cs_nbfree--;
455 fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
456 cylno = cbtocylno(fs, bno);
457 ufs_add16(cg_blks(fs, cgp, cylno, needswap)[cbtorpos(fs, bno)], -1,
458 needswap);
459 ufs_add32(cg_blktot(cgp, needswap)[cylno], -1, needswap);
460 fs->fs_fmod = 1;
461 blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
462 return (blkno);
463 }
464
465 /*
466 * Free a block or fragment.
467 *
468 * The specified block or fragment is placed back in the
469 * free map. If a fragment is deallocated, a possible
470 * block reassembly is checked.
471 */
472 void
473 ffs_blkfree(struct inode *ip, ufs_daddr_t bno, long size)
474 {
475 struct cg *cgp;
476 struct buf *bp;
477 ufs_daddr_t blkno;
478 int i, error, cg, blk, frags, bbase;
479 struct fs *fs = ip->i_fs;
480 const int needswap = UFS_FSNEEDSWAP(fs);
481
482 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
483 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
484 errx(1, "blkfree: bad size: bno %u bsize %d size %ld",
485 bno, fs->fs_bsize, size);
486 }
487 cg = dtog(fs, bno);
488 if ((u_int)bno >= fs->fs_size) {
489 warnx("bad block %d, ino %d\n", bno, ip->i_number);
490 return;
491 }
492 error = bread(ip->i_fd, ip->i_fs, fsbtodb(fs, cgtod(fs, cg)),
493 (int)fs->fs_cgsize, &bp);
494 if (error) {
495 brelse(bp);
496 return;
497 }
498 cgp = (struct cg *)bp->b_data;
499 if (!cg_chkmagic(cgp, needswap)) {
500 brelse(bp);
501 return;
502 }
503 bno = dtogd(fs, bno);
504 if (size == fs->fs_bsize) {
505 blkno = fragstoblks(fs, bno);
506 if (!ffs_isfreeblock(fs, cg_blksfree(cgp, needswap), blkno)) {
507 errx(1, "blkfree: freeing free block %d", bno);
508 }
509 ffs_setblock(fs, cg_blksfree(cgp, needswap), blkno);
510 ffs_clusteracct(fs, cgp, blkno, 1);
511 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
512 fs->fs_cstotal.cs_nbfree++;
513 fs->fs_cs(fs, cg).cs_nbfree++;
514 i = cbtocylno(fs, bno);
515 ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bno)], 1,
516 needswap);
517 ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
518 } else {
519 bbase = bno - fragnum(fs, bno);
520 /*
521 * decrement the counts associated with the old frags
522 */
523 blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
524 ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
525 /*
526 * deallocate the fragment
527 */
528 frags = numfrags(fs, size);
529 for (i = 0; i < frags; i++) {
530 if (isset(cg_blksfree(cgp, needswap), bno + i)) {
531 errx(1, "blkfree: freeing free frag: block %d",
532 bno + i);
533 }
534 setbit(cg_blksfree(cgp, needswap), bno + i);
535 }
536 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
537 fs->fs_cstotal.cs_nffree += i;
538 fs->fs_cs(fs, cg).cs_nffree += i;
539 /*
540 * add back in counts associated with the new frags
541 */
542 blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
543 ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
544 /*
545 * if a complete block has been reassembled, account for it
546 */
547 blkno = fragstoblks(fs, bbase);
548 if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
549 ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
550 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
551 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
552 ffs_clusteracct(fs, cgp, blkno, 1);
553 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
554 fs->fs_cstotal.cs_nbfree++;
555 fs->fs_cs(fs, cg).cs_nbfree++;
556 i = cbtocylno(fs, bbase);
557 ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs,
558 bbase)], 1,
559 needswap);
560 ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
561 }
562 }
563 fs->fs_fmod = 1;
564 bdwrite(bp);
565 }
566
567
568 static int
569 scanc(u_int size, const u_char *cp, const u_char table[], int mask)
570 {
571 const u_char *end = &cp[size];
572
573 while (cp < end && (table[*cp] & mask) == 0)
574 cp++;
575 return (end - cp);
576 }
577
578 /*
579 * Find a block of the specified size in the specified cylinder group.
580 *
581 * It is a panic if a request is made to find a block if none are
582 * available.
583 */
584 static ufs_daddr_t
585 ffs_mapsearch(struct fs *fs, struct cg *cgp, ufs_daddr_t bpref, int allocsiz)
586 {
587 ufs_daddr_t bno;
588 int start, len, loc, i;
589 int blk, field, subfield, pos;
590 int ostart, olen;
591 const int needswap = UFS_FSNEEDSWAP(fs);
592
593 /*
594 * find the fragment by searching through the free block
595 * map for an appropriate bit pattern
596 */
597 if (bpref)
598 start = dtogd(fs, bpref) / NBBY;
599 else
600 start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
601 len = howmany(fs->fs_fpg, NBBY) - start;
602 ostart = start;
603 olen = len;
604 loc = scanc((u_int)len,
605 (const u_char *)&cg_blksfree(cgp, needswap)[start],
606 (const u_char *)fragtbl[fs->fs_frag],
607 (1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
608 if (loc == 0) {
609 len = start + 1;
610 start = 0;
611 loc = scanc((u_int)len,
612 (const u_char *)&cg_blksfree(cgp, needswap)[0],
613 (const u_char *)fragtbl[fs->fs_frag],
614 (1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
615 if (loc == 0) {
616 errx(1,
617 "ffs_alloccg: map corrupted: start %d len %d offset %d %ld",
618 ostart, olen,
619 ufs_rw32(cgp->cg_freeoff, needswap),
620 (long)cg_blksfree(cgp, needswap) - (long)cgp);
621 /* NOTREACHED */
622 }
623 }
624 bno = (start + len - loc) * NBBY;
625 cgp->cg_frotor = ufs_rw32(bno, needswap);
626 /*
627 * found the byte in the map
628 * sift through the bits to find the selected frag
629 */
630 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
631 blk = blkmap(fs, cg_blksfree(cgp, needswap), bno);
632 blk <<= 1;
633 field = around[allocsiz];
634 subfield = inside[allocsiz];
635 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
636 if ((blk & field) == subfield)
637 return (bno + pos);
638 field <<= 1;
639 subfield <<= 1;
640 }
641 }
642 errx(1, "ffs_alloccg: block not in map: bno %d", bno);
643 return (-1);
644 }
645
646 /*
647 * Update the cluster map because of an allocation or free.
648 *
649 * Cnt == 1 means free; cnt == -1 means allocating.
650 */
651 void
652 ffs_clusteracct(struct fs *fs, struct cg *cgp, ufs_daddr_t blkno, int cnt)
653 {
654 int32_t *sump;
655 int32_t *lp;
656 u_char *freemapp, *mapp;
657 int i, start, end, forw, back, map, bit;
658 const int needswap = UFS_FSNEEDSWAP(fs);
659
660 if (fs->fs_contigsumsize <= 0)
661 return;
662 freemapp = cg_clustersfree(cgp, needswap);
663 sump = cg_clustersum(cgp, needswap);
664 /*
665 * Allocate or clear the actual block.
666 */
667 if (cnt > 0)
668 setbit(freemapp, blkno);
669 else
670 clrbit(freemapp, blkno);
671 /*
672 * Find the size of the cluster going forward.
673 */
674 start = blkno + 1;
675 end = start + fs->fs_contigsumsize;
676 if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
677 end = ufs_rw32(cgp->cg_nclusterblks, needswap);
678 mapp = &freemapp[start / NBBY];
679 map = *mapp++;
680 bit = 1 << (start % NBBY);
681 for (i = start; i < end; i++) {
682 if ((map & bit) == 0)
683 break;
684 if ((i & (NBBY - 1)) != (NBBY - 1)) {
685 bit <<= 1;
686 } else {
687 map = *mapp++;
688 bit = 1;
689 }
690 }
691 forw = i - start;
692 /*
693 * Find the size of the cluster going backward.
694 */
695 start = blkno - 1;
696 end = start - fs->fs_contigsumsize;
697 if (end < 0)
698 end = -1;
699 mapp = &freemapp[start / NBBY];
700 map = *mapp--;
701 bit = 1 << (start % NBBY);
702 for (i = start; i > end; i--) {
703 if ((map & bit) == 0)
704 break;
705 if ((i & (NBBY - 1)) != 0) {
706 bit >>= 1;
707 } else {
708 map = *mapp--;
709 bit = 1 << (NBBY - 1);
710 }
711 }
712 back = start - i;
713 /*
714 * Account for old cluster and the possibly new forward and
715 * back clusters.
716 */
717 i = back + forw + 1;
718 if (i > fs->fs_contigsumsize)
719 i = fs->fs_contigsumsize;
720 ufs_add32(sump[i], cnt, needswap);
721 if (back > 0)
722 ufs_add32(sump[back], -cnt, needswap);
723 if (forw > 0)
724 ufs_add32(sump[forw], -cnt, needswap);
725
726 /*
727 * Update cluster summary information.
728 */
729 lp = &sump[fs->fs_contigsumsize];
730 for (i = fs->fs_contigsumsize; i > 0; i--)
731 if (ufs_rw32(*lp--, needswap) > 0)
732 break;
733 fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
734 }
735