ffs_balloc.c revision 1.12 1 1.12 agc /* $NetBSD: ffs_balloc.c,v 1.12 2003/08/07 11:25:33 agc Exp $ */
2 1.1 lukem /* From NetBSD: ffs_balloc.c,v 1.25 2001/08/08 08:36:36 lukem Exp */
3 1.1 lukem
4 1.1 lukem /*
5 1.1 lukem * Copyright (c) 1982, 1986, 1989, 1993
6 1.1 lukem * The Regents of the University of California. All rights reserved.
7 1.1 lukem *
8 1.1 lukem * Redistribution and use in source and binary forms, with or without
9 1.1 lukem * modification, are permitted provided that the following conditions
10 1.1 lukem * are met:
11 1.1 lukem * 1. Redistributions of source code must retain the above copyright
12 1.1 lukem * notice, this list of conditions and the following disclaimer.
13 1.1 lukem * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 lukem * notice, this list of conditions and the following disclaimer in the
15 1.1 lukem * documentation and/or other materials provided with the distribution.
16 1.12 agc * 3. Neither the name of the University nor the names of its contributors
17 1.1 lukem * may be used to endorse or promote products derived from this software
18 1.1 lukem * without specific prior written permission.
19 1.1 lukem *
20 1.1 lukem * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 1.1 lukem * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 1.1 lukem * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 1.1 lukem * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 1.1 lukem * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 1.1 lukem * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 1.1 lukem * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 1.1 lukem * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 1.1 lukem * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 1.1 lukem * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 1.1 lukem * SUCH DAMAGE.
31 1.1 lukem *
32 1.1 lukem * @(#)ffs_balloc.c 8.8 (Berkeley) 6/16/95
33 1.1 lukem */
34 1.2 lukem
35 1.2 lukem #include <sys/cdefs.h>
36 1.9 tv #if defined(__RCSID) && !defined(__lint)
37 1.12 agc __RCSID("$NetBSD: ffs_balloc.c,v 1.12 2003/08/07 11:25:33 agc Exp $");
38 1.2 lukem #endif /* !__lint */
39 1.1 lukem
40 1.1 lukem #include <sys/param.h>
41 1.1 lukem #include <sys/time.h>
42 1.1 lukem
43 1.1 lukem #include <assert.h>
44 1.1 lukem #include <errno.h>
45 1.1 lukem #include <stdio.h>
46 1.4 thorpej #include <stdlib.h>
47 1.1 lukem #include <string.h>
48 1.5 lukem
49 1.5 lukem #include "makefs.h"
50 1.1 lukem
51 1.8 lukem #include <ufs/ufs/dinode.h>
52 1.6 lukem #include <ufs/ufs/ufs_bswap.h>
53 1.6 lukem #include <ufs/ffs/fs.h>
54 1.1 lukem
55 1.1 lukem #include "ffs/buf.h"
56 1.7 lukem #include "ffs/ufs_inode.h"
57 1.1 lukem #include "ffs/ffs_extern.h"
58 1.1 lukem
59 1.11 fvdl static int ffs_balloc_ufs1(struct inode *, off_t, int, struct buf **);
60 1.11 fvdl static int ffs_balloc_ufs2(struct inode *, off_t, int, struct buf **);
61 1.11 fvdl
62 1.1 lukem /*
63 1.1 lukem * Balloc defines the structure of file system storage
64 1.1 lukem * by allocating the physical blocks on a device given
65 1.1 lukem * the inode and the logical block number in a file.
66 1.1 lukem *
67 1.1 lukem * Assume: flags == B_SYNC | B_CLRBUF
68 1.1 lukem */
69 1.11 fvdl
70 1.1 lukem int
71 1.1 lukem ffs_balloc(struct inode *ip, off_t offset, int bufsize, struct buf **bpp)
72 1.1 lukem {
73 1.11 fvdl if (ip->i_fs->fs_magic == FS_UFS2_MAGIC)
74 1.11 fvdl return ffs_balloc_ufs2(ip, offset, bufsize, bpp);
75 1.11 fvdl else
76 1.11 fvdl return ffs_balloc_ufs1(ip, offset, bufsize, bpp);
77 1.11 fvdl }
78 1.11 fvdl
79 1.11 fvdl static int
80 1.11 fvdl ffs_balloc_ufs1(struct inode *ip, off_t offset, int bufsize, struct buf **bpp)
81 1.11 fvdl {
82 1.11 fvdl daddr_t lbn, lastlbn;
83 1.1 lukem int size;
84 1.11 fvdl int32_t nb;
85 1.1 lukem struct buf *bp, *nbp;
86 1.1 lukem struct fs *fs = ip->i_fs;
87 1.1 lukem struct indir indirs[NIADDR + 2];
88 1.10 fvdl daddr_t newb, pref;
89 1.11 fvdl int32_t *bap;
90 1.1 lukem int osize, nsize, num, i, error;
91 1.11 fvdl int32_t *allocblk, allociblk[NIADDR + 1];
92 1.11 fvdl int32_t *allocib;
93 1.1 lukem const int needswap = UFS_FSNEEDSWAP(fs);
94 1.1 lukem
95 1.1 lukem lbn = lblkno(fs, offset);
96 1.1 lukem size = blkoff(fs, offset) + bufsize;
97 1.1 lukem if (bpp != NULL) {
98 1.1 lukem *bpp = NULL;
99 1.1 lukem }
100 1.1 lukem
101 1.1 lukem assert(size <= fs->fs_bsize);
102 1.1 lukem if (lbn < 0)
103 1.1 lukem return (EFBIG);
104 1.1 lukem
105 1.1 lukem /*
106 1.1 lukem * If the next write will extend the file into a new block,
107 1.1 lukem * and the file is currently composed of a fragment
108 1.1 lukem * this fragment has to be extended to be a full block.
109 1.1 lukem */
110 1.1 lukem
111 1.11 fvdl lastlbn = lblkno(fs, ip->i_ffs1_size);
112 1.11 fvdl if (lastlbn < NDADDR && lastlbn < lbn) {
113 1.11 fvdl nb = lastlbn;
114 1.1 lukem osize = blksize(fs, ip, nb);
115 1.1 lukem if (osize < fs->fs_bsize && osize > 0) {
116 1.1 lukem warnx("need to ffs_realloccg; not supported!");
117 1.1 lukem abort();
118 1.1 lukem }
119 1.1 lukem }
120 1.1 lukem
121 1.1 lukem /*
122 1.1 lukem * The first NDADDR blocks are direct blocks
123 1.1 lukem */
124 1.1 lukem
125 1.1 lukem if (lbn < NDADDR) {
126 1.11 fvdl nb = ufs_rw32(ip->i_ffs1_db[lbn], needswap);
127 1.11 fvdl if (nb != 0 && ip->i_ffs1_size >= lblktosize(fs, lbn + 1)) {
128 1.1 lukem
129 1.1 lukem /*
130 1.1 lukem * The block is an already-allocated direct block
131 1.1 lukem * and the file already extends past this block,
132 1.1 lukem * thus this must be a whole block.
133 1.1 lukem * Just read the block (if requested).
134 1.1 lukem */
135 1.1 lukem
136 1.1 lukem if (bpp != NULL) {
137 1.1 lukem error = bread(ip->i_fd, ip->i_fs, lbn,
138 1.1 lukem fs->fs_bsize, bpp);
139 1.1 lukem if (error) {
140 1.1 lukem brelse(*bpp);
141 1.1 lukem return (error);
142 1.1 lukem }
143 1.1 lukem }
144 1.1 lukem return (0);
145 1.1 lukem }
146 1.1 lukem if (nb != 0) {
147 1.1 lukem
148 1.1 lukem /*
149 1.1 lukem * Consider need to reallocate a fragment.
150 1.1 lukem */
151 1.1 lukem
152 1.11 fvdl osize = fragroundup(fs, blkoff(fs, ip->i_ffs1_size));
153 1.1 lukem nsize = fragroundup(fs, size);
154 1.1 lukem if (nsize <= osize) {
155 1.1 lukem
156 1.1 lukem /*
157 1.1 lukem * The existing block is already
158 1.1 lukem * at least as big as we want.
159 1.1 lukem * Just read the block (if requested).
160 1.1 lukem */
161 1.1 lukem
162 1.1 lukem if (bpp != NULL) {
163 1.1 lukem error = bread(ip->i_fd, ip->i_fs, lbn,
164 1.1 lukem osize, bpp);
165 1.1 lukem if (error) {
166 1.1 lukem brelse(*bpp);
167 1.1 lukem return (error);
168 1.1 lukem }
169 1.1 lukem }
170 1.1 lukem return 0;
171 1.1 lukem } else {
172 1.1 lukem warnx("need to ffs_realloccg; not supported!");
173 1.1 lukem abort();
174 1.1 lukem }
175 1.1 lukem } else {
176 1.1 lukem
177 1.1 lukem /*
178 1.1 lukem * the block was not previously allocated,
179 1.1 lukem * allocate a new block or fragment.
180 1.1 lukem */
181 1.1 lukem
182 1.11 fvdl if (ip->i_ffs1_size < lblktosize(fs, lbn + 1))
183 1.1 lukem nsize = fragroundup(fs, size);
184 1.1 lukem else
185 1.1 lukem nsize = fs->fs_bsize;
186 1.1 lukem error = ffs_alloc(ip, lbn,
187 1.11 fvdl ffs_blkpref_ufs1(ip, lbn, (int)lbn,
188 1.11 fvdl &ip->i_ffs1_db[0]),
189 1.1 lukem nsize, &newb);
190 1.1 lukem if (error)
191 1.1 lukem return (error);
192 1.1 lukem if (bpp != NULL) {
193 1.1 lukem bp = getblk(ip->i_fd, ip->i_fs, lbn, nsize);
194 1.1 lukem bp->b_blkno = fsbtodb(fs, newb);
195 1.1 lukem clrbuf(bp);
196 1.1 lukem *bpp = bp;
197 1.1 lukem }
198 1.1 lukem }
199 1.11 fvdl ip->i_ffs1_db[lbn] = ufs_rw32((int32_t)newb, needswap);
200 1.1 lukem return (0);
201 1.1 lukem }
202 1.11 fvdl
203 1.1 lukem /*
204 1.1 lukem * Determine the number of levels of indirection.
205 1.1 lukem */
206 1.11 fvdl
207 1.1 lukem pref = 0;
208 1.1 lukem if ((error = ufs_getlbns(ip, lbn, indirs, &num)) != 0)
209 1.11 fvdl return (error);
210 1.1 lukem
211 1.1 lukem if (num < 1) {
212 1.1 lukem warnx("ffs_balloc: ufs_getlbns returned indirect block");
213 1.1 lukem abort();
214 1.1 lukem }
215 1.11 fvdl
216 1.1 lukem /*
217 1.1 lukem * Fetch the first indirect block allocating if necessary.
218 1.1 lukem */
219 1.11 fvdl
220 1.1 lukem --num;
221 1.11 fvdl nb = ufs_rw32(ip->i_ffs1_ib[indirs[0].in_off], needswap);
222 1.1 lukem allocib = NULL;
223 1.1 lukem allocblk = allociblk;
224 1.1 lukem if (nb == 0) {
225 1.11 fvdl pref = ffs_blkpref_ufs1(ip, lbn, 0, (int32_t *)0);
226 1.1 lukem error = ffs_alloc(ip, lbn, pref, (int)fs->fs_bsize, &newb);
227 1.1 lukem if (error)
228 1.11 fvdl return error;
229 1.1 lukem nb = newb;
230 1.1 lukem *allocblk++ = nb;
231 1.1 lukem bp = getblk(ip->i_fd, ip->i_fs, indirs[1].in_lbn, fs->fs_bsize);
232 1.1 lukem bp->b_blkno = fsbtodb(fs, nb);
233 1.1 lukem clrbuf(bp);
234 1.1 lukem /*
235 1.1 lukem * Write synchronously so that indirect blocks
236 1.1 lukem * never point at garbage.
237 1.1 lukem */
238 1.1 lukem if ((error = bwrite(bp)) != 0)
239 1.11 fvdl return error;
240 1.11 fvdl allocib = &ip->i_ffs1_ib[indirs[0].in_off];
241 1.10 fvdl *allocib = ufs_rw32((int32_t)nb, needswap);
242 1.1 lukem }
243 1.11 fvdl
244 1.1 lukem /*
245 1.1 lukem * Fetch through the indirect blocks, allocating as necessary.
246 1.1 lukem */
247 1.11 fvdl
248 1.1 lukem for (i = 1;;) {
249 1.11 fvdl error = bread(ip->i_fd, ip->i_fs, indirs[i].in_lbn,
250 1.11 fvdl fs->fs_bsize, &bp);
251 1.1 lukem if (error) {
252 1.1 lukem brelse(bp);
253 1.11 fvdl return error;
254 1.1 lukem }
255 1.10 fvdl bap = (int32_t *)bp->b_data;
256 1.1 lukem nb = ufs_rw32(bap[indirs[i].in_off], needswap);
257 1.1 lukem if (i == num)
258 1.1 lukem break;
259 1.1 lukem i++;
260 1.1 lukem if (nb != 0) {
261 1.1 lukem brelse(bp);
262 1.1 lukem continue;
263 1.1 lukem }
264 1.1 lukem if (pref == 0)
265 1.11 fvdl pref = ffs_blkpref_ufs1(ip, lbn, 0, (int32_t *)0);
266 1.1 lukem error = ffs_alloc(ip, lbn, pref, (int)fs->fs_bsize, &newb);
267 1.1 lukem if (error) {
268 1.1 lukem brelse(bp);
269 1.11 fvdl return error;
270 1.1 lukem }
271 1.1 lukem nb = newb;
272 1.1 lukem *allocblk++ = nb;
273 1.1 lukem nbp = getblk(ip->i_fd, ip->i_fs, indirs[i].in_lbn,
274 1.1 lukem fs->fs_bsize);
275 1.1 lukem nbp->b_blkno = fsbtodb(fs, nb);
276 1.1 lukem clrbuf(nbp);
277 1.1 lukem /*
278 1.1 lukem * Write synchronously so that indirect blocks
279 1.1 lukem * never point at garbage.
280 1.1 lukem */
281 1.11 fvdl
282 1.1 lukem if ((error = bwrite(nbp)) != 0) {
283 1.1 lukem brelse(bp);
284 1.11 fvdl return error;
285 1.1 lukem }
286 1.1 lukem bap[indirs[i - 1].in_off] = ufs_rw32(nb, needswap);
287 1.11 fvdl
288 1.11 fvdl bwrite(bp);
289 1.11 fvdl }
290 1.11 fvdl
291 1.11 fvdl /*
292 1.11 fvdl * Get the data block, allocating if necessary.
293 1.11 fvdl */
294 1.11 fvdl
295 1.11 fvdl if (nb == 0) {
296 1.11 fvdl pref = ffs_blkpref_ufs1(ip, lbn, indirs[num].in_off, &bap[0]);
297 1.11 fvdl error = ffs_alloc(ip, lbn, pref, (int)fs->fs_bsize, &newb);
298 1.11 fvdl if (error) {
299 1.11 fvdl brelse(bp);
300 1.11 fvdl return error;
301 1.11 fvdl }
302 1.11 fvdl nb = newb;
303 1.11 fvdl *allocblk++ = nb;
304 1.11 fvdl if (bpp != NULL) {
305 1.11 fvdl nbp = getblk(ip->i_fd, ip->i_fs, lbn, fs->fs_bsize);
306 1.11 fvdl nbp->b_blkno = fsbtodb(fs, nb);
307 1.11 fvdl clrbuf(nbp);
308 1.11 fvdl *bpp = nbp;
309 1.11 fvdl }
310 1.11 fvdl bap[indirs[num].in_off] = ufs_rw32(nb, needswap);
311 1.11 fvdl
312 1.1 lukem /*
313 1.1 lukem * If required, write synchronously, otherwise use
314 1.1 lukem * delayed write.
315 1.1 lukem */
316 1.1 lukem bwrite(bp);
317 1.11 fvdl return (0);
318 1.11 fvdl }
319 1.11 fvdl brelse(bp);
320 1.11 fvdl if (bpp != NULL) {
321 1.11 fvdl error = bread(ip->i_fd, ip->i_fs, lbn, (int)fs->fs_bsize, &nbp);
322 1.11 fvdl if (error) {
323 1.11 fvdl brelse(nbp);
324 1.11 fvdl return error;
325 1.11 fvdl }
326 1.11 fvdl *bpp = nbp;
327 1.11 fvdl }
328 1.11 fvdl return (0);
329 1.11 fvdl }
330 1.11 fvdl
331 1.11 fvdl static int
332 1.11 fvdl ffs_balloc_ufs2(struct inode *ip, off_t offset, int bufsize, struct buf **bpp)
333 1.11 fvdl {
334 1.11 fvdl daddr_t lbn, lastlbn;
335 1.11 fvdl int size;
336 1.11 fvdl struct buf *bp, *nbp;
337 1.11 fvdl struct fs *fs = ip->i_fs;
338 1.11 fvdl struct indir indirs[NIADDR + 2];
339 1.11 fvdl daddr_t newb, pref, nb;
340 1.11 fvdl int64_t *bap;
341 1.11 fvdl int osize, nsize, num, i, error;
342 1.11 fvdl int64_t *allocblk, allociblk[NIADDR + 1];
343 1.11 fvdl int64_t *allocib;
344 1.11 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
345 1.11 fvdl
346 1.11 fvdl lbn = lblkno(fs, offset);
347 1.11 fvdl size = blkoff(fs, offset) + bufsize;
348 1.11 fvdl if (bpp != NULL) {
349 1.11 fvdl *bpp = NULL;
350 1.1 lukem }
351 1.11 fvdl
352 1.11 fvdl assert(size <= fs->fs_bsize);
353 1.11 fvdl if (lbn < 0)
354 1.11 fvdl return (EFBIG);
355 1.11 fvdl
356 1.11 fvdl /*
357 1.11 fvdl * If the next write will extend the file into a new block,
358 1.11 fvdl * and the file is currently composed of a fragment
359 1.11 fvdl * this fragment has to be extended to be a full block.
360 1.11 fvdl */
361 1.11 fvdl
362 1.11 fvdl lastlbn = lblkno(fs, ip->i_ffs2_size);
363 1.11 fvdl if (lastlbn < NDADDR && lastlbn < lbn) {
364 1.11 fvdl nb = lastlbn;
365 1.11 fvdl osize = blksize(fs, ip, nb);
366 1.11 fvdl if (osize < fs->fs_bsize && osize > 0) {
367 1.11 fvdl warnx("need to ffs_realloccg; not supported!");
368 1.11 fvdl abort();
369 1.11 fvdl }
370 1.11 fvdl }
371 1.11 fvdl
372 1.11 fvdl /*
373 1.11 fvdl * The first NDADDR blocks are direct blocks
374 1.11 fvdl */
375 1.11 fvdl
376 1.11 fvdl if (lbn < NDADDR) {
377 1.11 fvdl nb = ufs_rw64(ip->i_ffs2_db[lbn], needswap);
378 1.11 fvdl if (nb != 0 && ip->i_ffs2_size >= lblktosize(fs, lbn + 1)) {
379 1.11 fvdl
380 1.11 fvdl /*
381 1.11 fvdl * The block is an already-allocated direct block
382 1.11 fvdl * and the file already extends past this block,
383 1.11 fvdl * thus this must be a whole block.
384 1.11 fvdl * Just read the block (if requested).
385 1.11 fvdl */
386 1.11 fvdl
387 1.11 fvdl if (bpp != NULL) {
388 1.11 fvdl error = bread(ip->i_fd, ip->i_fs, lbn,
389 1.11 fvdl fs->fs_bsize, bpp);
390 1.11 fvdl if (error) {
391 1.11 fvdl brelse(*bpp);
392 1.11 fvdl return (error);
393 1.11 fvdl }
394 1.11 fvdl }
395 1.11 fvdl return (0);
396 1.11 fvdl }
397 1.11 fvdl if (nb != 0) {
398 1.11 fvdl
399 1.11 fvdl /*
400 1.11 fvdl * Consider need to reallocate a fragment.
401 1.11 fvdl */
402 1.11 fvdl
403 1.11 fvdl osize = fragroundup(fs, blkoff(fs, ip->i_ffs2_size));
404 1.11 fvdl nsize = fragroundup(fs, size);
405 1.11 fvdl if (nsize <= osize) {
406 1.11 fvdl
407 1.11 fvdl /*
408 1.11 fvdl * The existing block is already
409 1.11 fvdl * at least as big as we want.
410 1.11 fvdl * Just read the block (if requested).
411 1.11 fvdl */
412 1.11 fvdl
413 1.11 fvdl if (bpp != NULL) {
414 1.11 fvdl error = bread(ip->i_fd, ip->i_fs, lbn,
415 1.11 fvdl osize, bpp);
416 1.11 fvdl if (error) {
417 1.11 fvdl brelse(*bpp);
418 1.11 fvdl return (error);
419 1.11 fvdl }
420 1.11 fvdl }
421 1.11 fvdl return 0;
422 1.11 fvdl } else {
423 1.11 fvdl warnx("need to ffs_realloccg; not supported!");
424 1.11 fvdl abort();
425 1.11 fvdl }
426 1.11 fvdl } else {
427 1.11 fvdl
428 1.11 fvdl /*
429 1.11 fvdl * the block was not previously allocated,
430 1.11 fvdl * allocate a new block or fragment.
431 1.11 fvdl */
432 1.11 fvdl
433 1.11 fvdl if (ip->i_ffs2_size < lblktosize(fs, lbn + 1))
434 1.11 fvdl nsize = fragroundup(fs, size);
435 1.11 fvdl else
436 1.11 fvdl nsize = fs->fs_bsize;
437 1.11 fvdl error = ffs_alloc(ip, lbn,
438 1.11 fvdl ffs_blkpref_ufs2(ip, lbn, (int)lbn,
439 1.11 fvdl &ip->i_ffs2_db[0]),
440 1.11 fvdl nsize, &newb);
441 1.11 fvdl if (error)
442 1.11 fvdl return (error);
443 1.11 fvdl if (bpp != NULL) {
444 1.11 fvdl bp = getblk(ip->i_fd, ip->i_fs, lbn, nsize);
445 1.11 fvdl bp->b_blkno = fsbtodb(fs, newb);
446 1.11 fvdl clrbuf(bp);
447 1.11 fvdl *bpp = bp;
448 1.11 fvdl }
449 1.11 fvdl }
450 1.11 fvdl ip->i_ffs2_db[lbn] = ufs_rw64(newb, needswap);
451 1.11 fvdl return (0);
452 1.11 fvdl }
453 1.11 fvdl
454 1.11 fvdl /*
455 1.11 fvdl * Determine the number of levels of indirection.
456 1.11 fvdl */
457 1.11 fvdl
458 1.11 fvdl pref = 0;
459 1.11 fvdl if ((error = ufs_getlbns(ip, lbn, indirs, &num)) != 0)
460 1.11 fvdl return (error);
461 1.11 fvdl
462 1.11 fvdl if (num < 1) {
463 1.11 fvdl warnx("ffs_balloc: ufs_getlbns returned indirect block");
464 1.11 fvdl abort();
465 1.11 fvdl }
466 1.11 fvdl
467 1.11 fvdl /*
468 1.11 fvdl * Fetch the first indirect block allocating if necessary.
469 1.11 fvdl */
470 1.11 fvdl
471 1.11 fvdl --num;
472 1.11 fvdl nb = ufs_rw64(ip->i_ffs2_ib[indirs[0].in_off], needswap);
473 1.11 fvdl allocib = NULL;
474 1.11 fvdl allocblk = allociblk;
475 1.11 fvdl if (nb == 0) {
476 1.11 fvdl pref = ffs_blkpref_ufs2(ip, lbn, 0, (int64_t *)0);
477 1.11 fvdl error = ffs_alloc(ip, lbn, pref, (int)fs->fs_bsize, &newb);
478 1.11 fvdl if (error)
479 1.11 fvdl return error;
480 1.11 fvdl nb = newb;
481 1.11 fvdl *allocblk++ = nb;
482 1.11 fvdl bp = getblk(ip->i_fd, ip->i_fs, indirs[1].in_lbn, fs->fs_bsize);
483 1.11 fvdl bp->b_blkno = fsbtodb(fs, nb);
484 1.11 fvdl clrbuf(bp);
485 1.11 fvdl /*
486 1.11 fvdl * Write synchronously so that indirect blocks
487 1.11 fvdl * never point at garbage.
488 1.11 fvdl */
489 1.11 fvdl if ((error = bwrite(bp)) != 0)
490 1.11 fvdl return error;
491 1.11 fvdl allocib = &ip->i_ffs2_ib[indirs[0].in_off];
492 1.11 fvdl *allocib = ufs_rw64(nb, needswap);
493 1.11 fvdl }
494 1.11 fvdl
495 1.11 fvdl /*
496 1.11 fvdl * Fetch through the indirect blocks, allocating as necessary.
497 1.11 fvdl */
498 1.11 fvdl
499 1.11 fvdl for (i = 1;;) {
500 1.11 fvdl error = bread(ip->i_fd, ip->i_fs, indirs[i].in_lbn,
501 1.11 fvdl fs->fs_bsize, &bp);
502 1.11 fvdl if (error) {
503 1.11 fvdl brelse(bp);
504 1.11 fvdl return error;
505 1.11 fvdl }
506 1.11 fvdl bap = (int64_t *)bp->b_data;
507 1.11 fvdl nb = ufs_rw64(bap[indirs[i].in_off], needswap);
508 1.11 fvdl if (i == num)
509 1.11 fvdl break;
510 1.11 fvdl i++;
511 1.11 fvdl if (nb != 0) {
512 1.11 fvdl brelse(bp);
513 1.11 fvdl continue;
514 1.11 fvdl }
515 1.11 fvdl if (pref == 0)
516 1.11 fvdl pref = ffs_blkpref_ufs2(ip, lbn, 0, (int64_t *)0);
517 1.11 fvdl error = ffs_alloc(ip, lbn, pref, (int)fs->fs_bsize, &newb);
518 1.11 fvdl if (error) {
519 1.11 fvdl brelse(bp);
520 1.11 fvdl return error;
521 1.11 fvdl }
522 1.11 fvdl nb = newb;
523 1.11 fvdl *allocblk++ = nb;
524 1.11 fvdl nbp = getblk(ip->i_fd, ip->i_fs, indirs[i].in_lbn,
525 1.11 fvdl fs->fs_bsize);
526 1.11 fvdl nbp->b_blkno = fsbtodb(fs, nb);
527 1.11 fvdl clrbuf(nbp);
528 1.11 fvdl /*
529 1.11 fvdl * Write synchronously so that indirect blocks
530 1.11 fvdl * never point at garbage.
531 1.11 fvdl */
532 1.11 fvdl
533 1.11 fvdl if ((error = bwrite(nbp)) != 0) {
534 1.11 fvdl brelse(bp);
535 1.11 fvdl return error;
536 1.11 fvdl }
537 1.11 fvdl bap[indirs[i - 1].in_off] = ufs_rw64(nb, needswap);
538 1.11 fvdl
539 1.11 fvdl bwrite(bp);
540 1.11 fvdl }
541 1.11 fvdl
542 1.1 lukem /*
543 1.1 lukem * Get the data block, allocating if necessary.
544 1.1 lukem */
545 1.11 fvdl
546 1.1 lukem if (nb == 0) {
547 1.11 fvdl pref = ffs_blkpref_ufs2(ip, lbn, indirs[num].in_off, &bap[0]);
548 1.1 lukem error = ffs_alloc(ip, lbn, pref, (int)fs->fs_bsize, &newb);
549 1.1 lukem if (error) {
550 1.1 lukem brelse(bp);
551 1.11 fvdl return error;
552 1.1 lukem }
553 1.1 lukem nb = newb;
554 1.1 lukem *allocblk++ = nb;
555 1.1 lukem if (bpp != NULL) {
556 1.1 lukem nbp = getblk(ip->i_fd, ip->i_fs, lbn, fs->fs_bsize);
557 1.1 lukem nbp->b_blkno = fsbtodb(fs, nb);
558 1.1 lukem clrbuf(nbp);
559 1.1 lukem *bpp = nbp;
560 1.1 lukem }
561 1.11 fvdl bap[indirs[num].in_off] = ufs_rw64(nb, needswap);
562 1.11 fvdl
563 1.1 lukem /*
564 1.1 lukem * If required, write synchronously, otherwise use
565 1.1 lukem * delayed write.
566 1.1 lukem */
567 1.1 lukem bwrite(bp);
568 1.1 lukem return (0);
569 1.1 lukem }
570 1.1 lukem brelse(bp);
571 1.1 lukem if (bpp != NULL) {
572 1.11 fvdl error = bread(ip->i_fd, ip->i_fs, lbn, (int)fs->fs_bsize, &nbp);
573 1.11 fvdl if (error) {
574 1.11 fvdl brelse(nbp);
575 1.11 fvdl return error;
576 1.11 fvdl }
577 1.1 lukem *bpp = nbp;
578 1.1 lukem }
579 1.1 lukem return (0);
580 1.1 lukem }
581