mkfs.c revision 1.1 1 /* $NetBSD: mkfs.c,v 1.1 2001/10/26 06:21:57 lukem Exp $ */
2 /* From NetBSD: mkfs.c,v 1.55 2001/09/06 02:16:01 lukem Exp $ */
3
4 /*
5 * Copyright (c) 1980, 1989, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 */
36
37 #include <sys/cdefs.h>
38 #ifndef lint
39 #if 0
40 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95";
41 #else
42 __RCSID("$NetBSD: mkfs.c,v 1.1 2001/10/26 06:21:57 lukem Exp $");
43 #endif
44 #endif /* not lint */
45
46 #include <sys/param.h>
47 #include <sys/time.h>
48 #include <sys/resource.h>
49
50 #include <err.h>
51 #include <stdio.h>
52 #include <stdlib.h>
53 #include <string.h>
54 #include <unistd.h>
55
56 #include <ufs/ufs/dir.h>
57 #include <ufs/ufs/inode.h>
58 #include <ufs/ufs/ufs_bswap.h>
59 #include <ufs/ffs/fs.h>
60
61 #include "makefs.h"
62
63 #include "ffs/ffs_extern.h"
64 #include "ffs/newfs_extern.h"
65
66 static void initcg(int, time_t, const fsinfo_t *);
67 static int32_t calcipg(int32_t, int32_t, off_t *);
68 static void swap_cg(struct cg *, struct cg *);
69
70 static int count_digits(int);
71
72 /*
73 * make file system for cylinder-group style file systems
74 */
75
76 /*
77 * We limit the size of the inode map to be no more than a
78 * third of the cylinder group space, since we must leave at
79 * least an equal amount of space for the block map.
80 *
81 * N.B.: MAXIPG must be a multiple of INOPB(fs).
82 */
83 #define MAXIPG(fs) roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs))
84
85 #define UMASK 0755
86 #define POWEROF2(num) (((num) & ((num) - 1)) == 0)
87
88 union {
89 struct fs fs;
90 char pad[SBSIZE];
91 } fsun;
92 #define sblock fsun.fs
93
94 union {
95 struct cg cg;
96 char pad[MAXBSIZE];
97 } cgun;
98 #define acg cgun.cg
99
100 struct dinode zino[MAXBSIZE / DINODE_SIZE];
101
102 char writebuf[MAXBSIZE];
103
104 static int Oflag; /* format as an 4.3BSD file system */
105 static int fssize; /* file system size */
106 static int ntracks; /* # tracks/cylinder */
107 static int nsectors; /* # sectors/track */
108 static int nphyssectors; /* # sectors/track including spares */
109 static int secpercyl; /* sectors per cylinder */
110 static int sectorsize; /* bytes/sector */
111 static int rpm; /* revolutions/minute of drive */
112 static int interleave; /* hardware sector interleave */
113 static int trackskew; /* sector 0 skew, per track */
114 static int fsize; /* fragment size */
115 static int bsize; /* block size */
116 static int cpg; /* cylinders/cylinder group */
117 static int cpgflg; /* cylinders/cylinder group flag was given */
118 static int minfree; /* free space threshold */
119 static int opt; /* optimization preference (space or time) */
120 static int density; /* number of bytes per inode */
121 static int maxcontig; /* max contiguous blocks to allocate */
122 static int rotdelay; /* rotational delay between blocks */
123 static int maxbpg; /* maximum blocks per file in a cyl group */
124 static int nrpos; /* # of distinguished rotational positions */
125 static int bbsize; /* boot block size */
126 static int sbsize; /* superblock size */
127 static int avgfilesize; /* expected average file size */
128 static int avgfpdir; /* expected number of files per directory */
129
130
131 struct fs *
132 ffs_mkfs(const char *fsys, const fsinfo_t *fsopts)
133 {
134 int32_t i, mincpc, mincpg, inospercg;
135 int32_t cylno, rpos, blk, j, warned = 0;
136 int32_t used, mincpgcnt, bpcg;
137 off_t usedb;
138 int32_t mapcramped, inodecramped;
139 int32_t postblsize, rotblsize, totalsbsize;
140 long long sizepb;
141 void *space;
142 int size, blks;
143 int nprintcols, printcolwidth;
144
145 Oflag = 0;
146 fssize = fsopts->size / fsopts->sectorsize;
147 ntracks = fsopts->ntracks;
148 nsectors = fsopts->nsectors;
149 nphyssectors = fsopts->nsectors; /* XXX: no trackspares */
150 secpercyl = nsectors * ntracks;
151 sectorsize = fsopts->sectorsize;
152 rpm = fsopts->rpm;
153 interleave = 1; /* XXX: HCD */
154 trackskew = 0; /* XXX: HCD */
155 fsize = fsopts->fsize;
156 bsize = fsopts->bsize;
157 cpg = fsopts->cpg;
158 cpgflg = 1;
159 minfree = fsopts->minfree;
160 opt = fsopts->optimization;
161 density = fsopts->density;
162 maxcontig = fsopts->maxcontig;
163 rotdelay = fsopts->rotdelay;
164 maxbpg = fsopts->maxbpg;
165 nrpos = fsopts->nrpos;
166 bbsize = BBSIZE;
167 sbsize = SBSIZE;
168 avgfilesize = fsopts->avgfilesize;
169 avgfpdir = fsopts->avgfpdir;
170
171 if (Oflag) {
172 sblock.fs_inodefmt = FS_42INODEFMT;
173 sblock.fs_maxsymlinklen = 0;
174 } else {
175 sblock.fs_inodefmt = FS_44INODEFMT;
176 sblock.fs_maxsymlinklen = MAXSYMLINKLEN;
177 }
178 /*
179 * Validate the given file system size.
180 * Verify that its last block can actually be accessed.
181 */
182 if (fssize <= 0)
183 printf("preposterous size %d\n", fssize), exit(13);
184 ffs_wtfs(fssize - 1, sectorsize, (char *)&sblock, fsopts);
185
186 /*
187 * collect and verify the sector and track info
188 */
189 sblock.fs_nsect = nsectors;
190 sblock.fs_ntrak = ntracks;
191 if (sblock.fs_ntrak <= 0)
192 printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14);
193 if (sblock.fs_nsect <= 0)
194 printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15);
195 /*
196 * collect and verify the filesystem density info
197 */
198 sblock.fs_avgfilesize = avgfilesize;
199 sblock.fs_avgfpdir = avgfpdir;
200 if (sblock.fs_avgfilesize <= 0)
201 printf("illegal expected average file size %d\n",
202 sblock.fs_avgfilesize), exit(14);
203 if (sblock.fs_avgfpdir <= 0)
204 printf("illegal expected number of files per directory %d\n",
205 sblock.fs_avgfpdir), exit(15);
206 /*
207 * collect and verify the block and fragment sizes
208 */
209 sblock.fs_bsize = bsize;
210 sblock.fs_fsize = fsize;
211 if (!POWEROF2(sblock.fs_bsize)) {
212 printf("block size must be a power of 2, not %d\n",
213 sblock.fs_bsize);
214 exit(16);
215 }
216 if (!POWEROF2(sblock.fs_fsize)) {
217 printf("fragment size must be a power of 2, not %d\n",
218 sblock.fs_fsize);
219 exit(17);
220 }
221 if (sblock.fs_fsize < sectorsize) {
222 printf("fragment size %d is too small, minimum is %d\n",
223 sblock.fs_fsize, sectorsize);
224 exit(18);
225 }
226 if (sblock.fs_bsize < MINBSIZE) {
227 printf("block size %d is too small, minimum is %d\n",
228 sblock.fs_bsize, MINBSIZE);
229 exit(19);
230 }
231 if (sblock.fs_bsize < sblock.fs_fsize) {
232 printf("block size (%d) cannot be smaller than fragment size (%d)\n",
233 sblock.fs_bsize, sblock.fs_fsize);
234 exit(20);
235 }
236 sblock.fs_bmask = ~(sblock.fs_bsize - 1);
237 sblock.fs_fmask = ~(sblock.fs_fsize - 1);
238 sblock.fs_qbmask = ~sblock.fs_bmask;
239 sblock.fs_qfmask = ~sblock.fs_fmask;
240 for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
241 sblock.fs_bshift++;
242 for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
243 sblock.fs_fshift++;
244 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
245 for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
246 sblock.fs_fragshift++;
247 if (sblock.fs_frag > MAXFRAG) {
248 printf("fragment size %d is too small, "
249 "minimum with block size %d is %d\n",
250 sblock.fs_fsize, sblock.fs_bsize,
251 sblock.fs_bsize / MAXFRAG);
252 exit(21);
253 }
254 sblock.fs_nrpos = nrpos;
255 sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t);
256 sblock.fs_inopb = sblock.fs_bsize / DINODE_SIZE;
257 sblock.fs_nspf = sblock.fs_fsize / sectorsize;
258 for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1)
259 sblock.fs_fsbtodb++;
260 sblock.fs_sblkno =
261 roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag);
262 sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
263 roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag));
264 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
265 sblock.fs_cgoffset = roundup(
266 howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag);
267 for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1)
268 sblock.fs_cgmask <<= 1;
269 if (!POWEROF2(sblock.fs_ntrak))
270 sblock.fs_cgmask <<= 1;
271 sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
272 for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
273 sizepb *= NINDIR(&sblock);
274 sblock.fs_maxfilesize += sizepb;
275 }
276 /*
277 * Validate specified/determined secpercyl
278 * and calculate minimum cylinders per group.
279 */
280 sblock.fs_spc = secpercyl;
281 for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc;
282 sblock.fs_cpc > 1 && (i & 1) == 0;
283 sblock.fs_cpc >>= 1, i >>= 1)
284 /* void */;
285 mincpc = sblock.fs_cpc;
286 bpcg = sblock.fs_spc * sectorsize;
287 inospercg = roundup(bpcg / DINODE_SIZE, INOPB(&sblock));
288 if (inospercg > MAXIPG(&sblock))
289 inospercg = MAXIPG(&sblock);
290 used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock);
291 mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used,
292 sblock.fs_spc);
293 mincpg = roundup(mincpgcnt, mincpc);
294 /*
295 * Ensure that cylinder group with mincpg has enough space
296 * for block maps.
297 */
298 sblock.fs_cpg = mincpg;
299 sblock.fs_ipg = inospercg;
300 if (maxcontig > 1)
301 sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG);
302 mapcramped = 0;
303 while (CGSIZE(&sblock) > sblock.fs_bsize) {
304 mapcramped = 1;
305 if (sblock.fs_bsize < MAXBSIZE) {
306 sblock.fs_bsize <<= 1;
307 if ((i & 1) == 0) {
308 i >>= 1;
309 } else {
310 sblock.fs_cpc <<= 1;
311 mincpc <<= 1;
312 mincpg = roundup(mincpgcnt, mincpc);
313 sblock.fs_cpg = mincpg;
314 }
315 sblock.fs_frag <<= 1;
316 sblock.fs_fragshift += 1;
317 if (sblock.fs_frag <= MAXFRAG)
318 continue;
319 }
320 if (sblock.fs_fsize == sblock.fs_bsize) {
321 printf("There is no block size that");
322 printf(" can support this disk\n");
323 exit(22);
324 }
325 sblock.fs_frag >>= 1;
326 sblock.fs_fragshift -= 1;
327 sblock.fs_fsize <<= 1;
328 sblock.fs_nspf <<= 1;
329 }
330 /*
331 * Ensure that cylinder group with mincpg has enough space for inodes.
332 */
333 inodecramped = 0;
334 inospercg = calcipg(mincpg, bpcg, &usedb);
335 sblock.fs_ipg = inospercg;
336 while (inospercg > MAXIPG(&sblock)) {
337 inodecramped = 1;
338 if (mincpc == 1 || sblock.fs_frag == 1 ||
339 sblock.fs_bsize == MINBSIZE)
340 break;
341 printf("With a block size of %d %s %d\n", sblock.fs_bsize,
342 "minimum bytes per inode is",
343 (int)((mincpg * (off_t)bpcg - usedb)
344 / MAXIPG(&sblock) + 1));
345 sblock.fs_bsize >>= 1;
346 sblock.fs_frag >>= 1;
347 sblock.fs_fragshift -= 1;
348 mincpc >>= 1;
349 sblock.fs_cpg = roundup(mincpgcnt, mincpc);
350 if (CGSIZE(&sblock) > sblock.fs_bsize) {
351 sblock.fs_bsize <<= 1;
352 break;
353 }
354 mincpg = sblock.fs_cpg;
355 inospercg = calcipg(mincpg, bpcg, &usedb);
356 sblock.fs_ipg = inospercg;
357 }
358 if (inodecramped) {
359 if (inospercg > MAXIPG(&sblock)) {
360 printf("Minimum bytes per inode is %d\n",
361 (int)((mincpg * (off_t)bpcg - usedb)
362 / MAXIPG(&sblock) + 1));
363 } else if (!mapcramped) {
364 printf("With %d bytes per inode, ", density);
365 printf("minimum cylinders per group is %d\n", mincpg);
366 }
367 }
368 if (mapcramped) {
369 printf("With %d sectors per cylinder, ", sblock.fs_spc);
370 printf("minimum cylinders per group is %d\n", mincpg);
371 }
372 if (inodecramped || mapcramped) {
373 if (sblock.fs_bsize != bsize)
374 printf("%s to be changed from %d to %d\n",
375 "This requires the block size",
376 bsize, sblock.fs_bsize);
377 if (sblock.fs_fsize != fsize)
378 printf("\t%s to be changed from %d to %d\n",
379 "and the fragment size",
380 fsize, sblock.fs_fsize);
381 exit(23);
382 }
383 /*
384 * Calculate the number of cylinders per group
385 */
386 sblock.fs_cpg = cpg;
387 if (sblock.fs_cpg % mincpc != 0) {
388 printf("%s groups must have a multiple of %d cylinders\n",
389 cpgflg ? "Cylinder" : "Warning: cylinder", mincpc);
390 sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc);
391 if (!cpgflg)
392 cpg = sblock.fs_cpg;
393 }
394 /*
395 * Must ensure there is enough space for inodes.
396 */
397 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
398 while (sblock.fs_ipg > MAXIPG(&sblock)) {
399 inodecramped = 1;
400 sblock.fs_cpg -= mincpc;
401 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
402 }
403 /*
404 * Must ensure there is enough space to hold block map.
405 */
406 while (CGSIZE(&sblock) > sblock.fs_bsize) {
407 mapcramped = 1;
408 sblock.fs_cpg -= mincpc;
409 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
410 }
411 sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock);
412 if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) {
413 printf("panic (fs_cpg * fs_spc) %% NSPF != 0");
414 exit(24);
415 }
416 if (sblock.fs_cpg < mincpg) {
417 printf("cylinder groups must have at least %d cylinders\n",
418 mincpg);
419 exit(25);
420 } else if (sblock.fs_cpg != cpg) {
421 if (!cpgflg)
422 printf("Warning: ");
423 else if (!mapcramped && !inodecramped)
424 exit(26);
425 if (mapcramped && inodecramped)
426 printf("Block size and bytes per inode restrict");
427 else if (mapcramped)
428 printf("Block size restricts");
429 else
430 printf("Bytes per inode restrict");
431 printf(" cylinders per group to %d.\n", sblock.fs_cpg);
432 if (cpgflg)
433 exit(27);
434 }
435 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
436 /*
437 * Now have size for file system and nsect and ntrak.
438 * Determine number of cylinders and blocks in the file system.
439 */
440 sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
441 sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc;
442 if (fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
443 sblock.fs_ncyl++;
444 warned = 1;
445 }
446 if (sblock.fs_ncyl < 1) {
447 printf("file systems must have at least one cylinder\n");
448 exit(28);
449 }
450 /*
451 * Determine feasability/values of rotational layout tables.
452 *
453 * The size of the rotational layout tables is limited by the
454 * size of the superblock, SBSIZE. The amount of space available
455 * for tables is calculated as (SBSIZE - sizeof (struct fs)).
456 * The size of these tables is inversely proportional to the block
457 * size of the file system. The size increases if sectors per track
458 * are not powers of two, because more cylinders must be described
459 * by the tables before the rotational pattern repeats (fs_cpc).
460 */
461 sblock.fs_interleave = interleave;
462 sblock.fs_trackskew = trackskew;
463 sblock.fs_npsect = nphyssectors;
464 sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT;
465 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
466 if (sblock.fs_ntrak == 1) {
467 sblock.fs_cpc = 0;
468 goto next;
469 }
470 postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(int16_t);
471 rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock);
472 totalsbsize = sizeof(struct fs) + rotblsize;
473 if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) {
474 /* use old static table space */
475 sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) -
476 (char *)(&sblock.fs_firstfield);
477 sblock.fs_rotbloff = &sblock.fs_space[0] -
478 (u_char *)(&sblock.fs_firstfield);
479 } else {
480 /* use dynamic table space */
481 sblock.fs_postbloff = &sblock.fs_space[0] -
482 (u_char *)(&sblock.fs_firstfield);
483 sblock.fs_rotbloff = sblock.fs_postbloff + postblsize;
484 totalsbsize += postblsize;
485 }
486 if (totalsbsize > SBSIZE ||
487 sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) {
488 printf("%s %s %d %s %d.%s",
489 "Warning: insufficient space in super block for\n",
490 "rotational layout tables with nsect", sblock.fs_nsect,
491 "and ntrak", sblock.fs_ntrak,
492 "\nFile system performance may be impaired.\n");
493 sblock.fs_cpc = 0;
494 goto next;
495 }
496 sblock.fs_sbsize = fragroundup(&sblock, totalsbsize);
497 /*
498 * calculate the available blocks for each rotational position
499 */
500 for (cylno = 0; cylno < sblock.fs_cpc; cylno++)
501 for (rpos = 0; rpos < sblock.fs_nrpos; rpos++)
502 fs_postbl(&sblock, cylno)[rpos] = -1;
503 for (i = (rotblsize - 1) * sblock.fs_frag;
504 i >= 0; i -= sblock.fs_frag) {
505 cylno = cbtocylno(&sblock, i);
506 rpos = cbtorpos(&sblock, i);
507 blk = fragstoblks(&sblock, i);
508 if (fs_postbl(&sblock, cylno)[rpos] == -1)
509 fs_rotbl(&sblock)[blk] = 0;
510 else
511 fs_rotbl(&sblock)[blk] = fs_postbl(&sblock, cylno)[rpos] - blk;
512 fs_postbl(&sblock, cylno)[rpos] = blk;
513 }
514 next:
515 /*
516 * Compute/validate number of cylinder groups.
517 */
518 sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
519 if (sblock.fs_ncyl % sblock.fs_cpg)
520 sblock.fs_ncg++;
521 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
522 i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1);
523 if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) {
524 printf("inode blocks/cyl group (%d) >= data blocks (%d)\n",
525 cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag,
526 sblock.fs_fpg / sblock.fs_frag);
527 printf("number of cylinders per cylinder group (%d) %s.\n",
528 sblock.fs_cpg, "must be increased");
529 exit(29);
530 }
531 j = sblock.fs_ncg - 1;
532 if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg &&
533 cgdmin(&sblock, j) - cgbase(&sblock, j) > i) {
534 if (j == 0) {
535 printf("File system must have at least %d sectors\n",
536 NSPF(&sblock) *
537 (cgdmin(&sblock, 0) + 3 * sblock.fs_frag));
538 exit(30);
539 }
540 printf("Warning: inode blocks/cyl group (%d) >= "
541 "data blocks (%d) in last\n",
542 (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag,
543 i / sblock.fs_frag);
544 printf(" cylinder group. This implies %d sector(s) "
545 "cannot be allocated.\n",
546 i * NSPF(&sblock));
547 sblock.fs_ncg--;
548 sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
549 sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc /
550 NSPF(&sblock);
551 warned = 0;
552 }
553 if (warned) {
554 printf("Warning: %d sector(s) in last cylinder unallocated\n",
555 sblock.fs_spc -
556 (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1)
557 * sblock.fs_spc));
558 }
559 /*
560 * fill in remaining fields of the super block
561 */
562 sblock.fs_csaddr = cgdmin(&sblock, 0);
563 sblock.fs_cssize =
564 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
565 /*
566 * The superblock fields 'fs_csmask' and 'fs_csshift' are no
567 * longer used. However, we still initialise them so that the
568 * filesystem remains compatible with old kernels.
569 */
570 i = sblock.fs_bsize / sizeof(struct csum);
571 sblock.fs_csmask = ~(i - 1);
572 for (sblock.fs_csshift = 0; i > 1; i >>= 1)
573 sblock.fs_csshift++;
574
575 /*
576 * Setup memory for temporary in-core cylgroup summaries.
577 * Cribbed from ffs_mountfs().
578 */
579 size = sblock.fs_cssize;
580 blks = howmany(size, sblock.fs_fsize);
581 if (sblock.fs_contigsumsize > 0)
582 size += sblock.fs_ncg * sizeof(int32_t);
583 if ((space = (char *)calloc(1, size)) == NULL)
584 err(1, "memory allocation error for cg summaries");
585 sblock.fs_csp = space;
586 space = (char *)space + sblock.fs_cssize;
587 if (sblock.fs_contigsumsize > 0) {
588 int32_t *lp;
589
590 sblock.fs_maxcluster = lp = space;
591 for (i = 0; i < sblock.fs_ncg; i++)
592 *lp++ = sblock.fs_contigsumsize;
593 }
594
595 sblock.fs_magic = FS_MAGIC;
596 sblock.fs_rotdelay = rotdelay;
597 sblock.fs_minfree = minfree;
598 sblock.fs_maxcontig = maxcontig;
599 sblock.fs_maxbpg = maxbpg;
600 sblock.fs_rps = rpm / 60;
601 sblock.fs_optim = opt;
602 sblock.fs_cgrotor = 0;
603 sblock.fs_cstotal.cs_ndir = 0;
604 sblock.fs_cstotal.cs_nbfree = 0;
605 sblock.fs_cstotal.cs_nifree = 0;
606 sblock.fs_cstotal.cs_nffree = 0;
607 sblock.fs_fmod = 0;
608 sblock.fs_clean = FS_ISCLEAN;
609 sblock.fs_ronly = 0;
610
611 /*
612 * Dump out summary information about file system.
613 */
614 printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n",
615 fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
616 "cylinders", sblock.fs_ntrak, sblock.fs_nsect);
617 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
618 printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n",
619 (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
620 sblock.fs_ncg, sblock.fs_cpg,
621 (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
622 sblock.fs_ipg);
623 #undef B2MBFACTOR
624 /*
625 * Now determine how wide each column will be, and calculate how
626 * many columns will fit in a 76 char line. 76 is the width of the
627 * subwindows in sysinst.
628 */
629 printcolwidth = count_digits(
630 fsbtodb(&sblock, cgsblock(&sblock, sblock.fs_ncg -1)));
631 nprintcols = 76 / (printcolwidth + 2);
632 /*
633 * Now build the cylinders group blocks and
634 * then print out indices of cylinder groups.
635 */
636 printf("super-block backups (for fsck -b #) at:");
637 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
638 initcg(cylno, start_time.tv_sec, fsopts);
639 if (cylno % nprintcols == 0)
640 printf("\n");
641 printf(" %*d,", printcolwidth,
642 fsbtodb(&sblock, cgsblock(&sblock, cylno)));
643 fflush(stdout);
644 }
645 printf("\n");
646
647 /*
648 * Now construct the initial file system,
649 * then write out the super-block.
650 */
651 sblock.fs_time = start_time.tv_sec;
652 if (fsopts->needswap)
653 sblock.fs_flags |= FS_SWAPPED;
654 ffs_write_superblock(&sblock, fsopts);
655 return (&sblock);
656 }
657
658 /*
659 * Write out the superblock and its duplicates,
660 * and the cylinder group summaries
661 */
662 void
663 ffs_write_superblock(struct fs *fs, const fsinfo_t *fsopts)
664 {
665 int cylno, size, blks, i, saveflag;
666 void *space;
667 char *wrbuf;
668
669 saveflag = fs->fs_flags & FS_INTERNAL;
670 fs->fs_flags &= ~FS_INTERNAL;
671
672 /* Write out the master super block */
673 memcpy(writebuf, fs, sbsize);
674 if (fsopts->needswap)
675 ffs_sb_swap(fs, (struct fs*)writebuf);
676 ffs_wtfs((int)SBOFF / sectorsize, sbsize, writebuf, fsopts);
677
678 /* Write out the duplicate super blocks */
679 for (cylno = 0; cylno < sblock.fs_ncg; cylno++)
680 ffs_wtfs(fsbtodb(fs, cgsblock(fs, cylno)),
681 sbsize, writebuf, fsopts);
682
683 /* Write out the cylinder group summaries */
684 size = fs->fs_cssize;
685 blks = howmany(size, fs->fs_fsize);
686 space = (void *)fs->fs_csp;
687 if ((wrbuf = malloc(size)) == NULL)
688 err(1, "ffs_write_superblock: malloc %d", size);
689 for (i = 0; i < blks; i+= fs->fs_frag) {
690 size = fs->fs_bsize;
691 if (i + fs->fs_frag > blks)
692 size = (blks - i) * fs->fs_fsize;
693 if (fsopts->needswap)
694 ffs_csum_swap((struct csum *)space,
695 (struct csum *)wrbuf, size);
696 else
697 memcpy(wrbuf, space, (u_int)size);
698 ffs_wtfs(fsbtodb(fs, fs->fs_csaddr + i), size, wrbuf, fsopts);
699 space = (char *)space + size;
700 }
701 free(wrbuf);
702 fs->fs_flags |= saveflag;
703 }
704
705
706 /*
707 * Initialize a cylinder group.
708 */
709 static void
710 initcg(int cylno, time_t utime, const fsinfo_t *fsopts)
711 {
712 daddr_t cbase, d, dlower, dupper, dmax, blkno;
713 int32_t i;
714
715 /*
716 * Determine block bounds for cylinder group.
717 * Allow space for super block summary information in first
718 * cylinder group.
719 */
720 cbase = cgbase(&sblock, cylno);
721 dmax = cbase + sblock.fs_fpg;
722 if (dmax > sblock.fs_size)
723 dmax = sblock.fs_size;
724 dlower = cgsblock(&sblock, cylno) - cbase;
725 dupper = cgdmin(&sblock, cylno) - cbase;
726 if (cylno == 0)
727 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
728 memset(&acg, 0, sblock.fs_cgsize);
729 acg.cg_time = utime;
730 acg.cg_magic = CG_MAGIC;
731 acg.cg_cgx = cylno;
732 if (cylno == sblock.fs_ncg - 1)
733 acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
734 else
735 acg.cg_ncyl = sblock.fs_cpg;
736 acg.cg_niblk = sblock.fs_ipg;
737 acg.cg_ndblk = dmax - cbase;
738 if (sblock.fs_contigsumsize > 0)
739 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
740 acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
741 acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t);
742 acg.cg_iusedoff = acg.cg_boff +
743 sblock.fs_cpg * sblock.fs_nrpos * sizeof(int16_t);
744 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
745 if (sblock.fs_contigsumsize <= 0) {
746 acg.cg_nextfreeoff = acg.cg_freeoff +
747 howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY);
748 } else {
749 acg.cg_clustersumoff = acg.cg_freeoff + howmany
750 (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) -
751 sizeof(int32_t);
752 acg.cg_clustersumoff =
753 roundup(acg.cg_clustersumoff, sizeof(int32_t));
754 acg.cg_clusteroff = acg.cg_clustersumoff +
755 (sblock.fs_contigsumsize + 1) * sizeof(int32_t);
756 acg.cg_nextfreeoff = acg.cg_clusteroff + howmany
757 (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY);
758 }
759 if (acg.cg_nextfreeoff > sblock.fs_cgsize) {
760 printf("Panic: cylinder group too big\n");
761 exit(37);
762 }
763 acg.cg_cs.cs_nifree += sblock.fs_ipg;
764 if (cylno == 0)
765 for (i = 0; i < ROOTINO; i++) {
766 setbit(cg_inosused(&acg, 0), i);
767 acg.cg_cs.cs_nifree--;
768 }
769 for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag)
770 ffs_wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
771 sblock.fs_bsize, (char *)zino, fsopts);
772 if (cylno > 0) {
773 /*
774 * In cylno 0, beginning space is reserved
775 * for boot and super blocks.
776 */
777 for (d = 0; d < dlower; d += sblock.fs_frag) {
778 blkno = d / sblock.fs_frag;
779 ffs_setblock(&sblock, cg_blksfree(&acg, 0), blkno);
780 if (sblock.fs_contigsumsize > 0)
781 setbit(cg_clustersfree(&acg, 0), blkno);
782 acg.cg_cs.cs_nbfree++;
783 cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]++;
784 cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0)
785 [cbtorpos(&sblock, d)]++;
786 }
787 sblock.fs_dsize += dlower;
788 }
789 sblock.fs_dsize += acg.cg_ndblk - dupper;
790 if ((i = (dupper % sblock.fs_frag)) != 0) {
791 acg.cg_frsum[sblock.fs_frag - i]++;
792 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
793 setbit(cg_blksfree(&acg, 0), dupper);
794 acg.cg_cs.cs_nffree++;
795 }
796 }
797 for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
798 blkno = d / sblock.fs_frag;
799 ffs_setblock(&sblock, cg_blksfree(&acg, 0), blkno);
800 if (sblock.fs_contigsumsize > 0)
801 setbit(cg_clustersfree(&acg, 0), blkno);
802 acg.cg_cs.cs_nbfree++;
803 cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]++;
804 cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0)
805 [cbtorpos(&sblock, d)]++;
806 d += sblock.fs_frag;
807 }
808 if (d < dmax - cbase) {
809 acg.cg_frsum[dmax - cbase - d]++;
810 for (; d < dmax - cbase; d++) {
811 setbit(cg_blksfree(&acg, 0), d);
812 acg.cg_cs.cs_nffree++;
813 }
814 }
815 if (sblock.fs_contigsumsize > 0) {
816 int32_t *sump = cg_clustersum(&acg, 0);
817 u_char *mapp = cg_clustersfree(&acg, 0);
818 int map = *mapp++;
819 int bit = 1;
820 int run = 0;
821
822 for (i = 0; i < acg.cg_nclusterblks; i++) {
823 if ((map & bit) != 0) {
824 run++;
825 } else if (run != 0) {
826 if (run > sblock.fs_contigsumsize)
827 run = sblock.fs_contigsumsize;
828 sump[run]++;
829 run = 0;
830 }
831 if ((i & (NBBY - 1)) != (NBBY - 1)) {
832 bit <<= 1;
833 } else {
834 map = *mapp++;
835 bit = 1;
836 }
837 }
838 if (run != 0) {
839 if (run > sblock.fs_contigsumsize)
840 run = sblock.fs_contigsumsize;
841 sump[run]++;
842 }
843 }
844 sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
845 sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
846 sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
847 sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
848 sblock.fs_cs(&sblock, cylno) = acg.cg_cs;
849 memcpy(writebuf, &acg, sblock.fs_bsize);
850 if (fsopts->needswap)
851 swap_cg(&acg, (struct cg*)writebuf);
852 ffs_wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
853 sblock.fs_bsize,
854 writebuf, fsopts);
855 }
856
857 /*
858 * Calculate number of inodes per group.
859 */
860 static int32_t
861 calcipg(int32_t cylpg, int32_t bpcg, off_t *usedbp)
862 {
863 int i;
864 int32_t ipg, new_ipg, ncg, ncyl;
865 off_t usedb;
866
867 /*
868 * Prepare to scale by fssize / (number of sectors in cylinder groups).
869 * Note that fssize is still in sectors, not file system blocks.
870 */
871 ncyl = howmany(fssize, secpercyl);
872 ncg = howmany(ncyl, cylpg);
873 /*
874 * Iterate a few times to allow for ipg depending on itself.
875 */
876 ipg = 0;
877 for (i = 0; i < 10; i++) {
878 usedb = (sblock.fs_iblkno + ipg / INOPF(&sblock))
879 * NSPF(&sblock) * (off_t)sectorsize;
880 if (cylpg * (long long)bpcg < usedb) {
881 warnx("Too many inodes per cyl group!");
882 return (MAXIPG(&sblock)+1);
883 }
884 new_ipg = (cylpg * (long long)bpcg - usedb) /
885 ((long long)density * fssize / (ncg * secpercyl * cylpg));
886 if (new_ipg <= 0)
887 new_ipg = 1; /* ensure ipg > 0 */
888 new_ipg = roundup(new_ipg, INOPB(&sblock));
889 if (new_ipg == ipg)
890 break;
891 ipg = new_ipg;
892 }
893 *usedbp = usedb;
894 return (ipg);
895 }
896
897
898 /*
899 * read a block from the file system
900 */
901 void
902 ffs_rdfs(daddr_t bno, int size, void *bf, const fsinfo_t *fsopts)
903 {
904 int n;
905 off_t offset;
906
907 offset = bno;
908 offset *= fsopts->sectorsize;
909 if (lseek(fsopts->fd, offset, SEEK_SET) < 0)
910 err(1, "ffs_rdfs: seek error: %d\n", bno);
911 n = read(fsopts->fd, bf, size);
912 if (n == -1)
913 err(1, "ffs_rdfs: read error bno %d size %d\n", bno, size);
914 else if (n != size)
915 errx(1,
916 "ffs_rdfs: read error bno %d size %d: short read of %d\n",
917 bno, size, n);
918 }
919
920 /*
921 * write a block to the file system
922 */
923 void
924 ffs_wtfs(daddr_t bno, int size, void *bf, const fsinfo_t *fsopts)
925 {
926 int n;
927 off_t offset;
928
929 offset = bno;
930 offset *= fsopts->sectorsize;
931 if (lseek(fsopts->fd, offset, SEEK_SET) < 0)
932 err(1, "ffs_wtfs: seek error: %d\n", bno);
933 n = write(fsopts->fd, bf, size);
934 if (n == -1)
935 err(1, "ffs_wtfs: write error bno %d size %d\n", bno, size);
936 else if (n != size)
937 errx(1,
938 "ffs_wtfs: write error bno %d size %d: short write of %d\n",
939 bno, size, n);
940 }
941
942 /* swap byte order of cylinder group */
943 static void
944 swap_cg(struct cg *o, struct cg *n)
945 {
946 int i, btotsize, fbsize;
947 u_int32_t *n32, *o32;
948 u_int16_t *n16, *o16;
949
950 n->cg_firstfield = bswap32(o->cg_firstfield);
951 n->cg_magic = bswap32(o->cg_magic);
952 n->cg_time = bswap32(o->cg_time);
953 n->cg_cgx = bswap32(o->cg_cgx);
954 n->cg_ncyl = bswap16(o->cg_ncyl);
955 n->cg_niblk = bswap16(o->cg_niblk);
956 n->cg_ndblk = bswap32(o->cg_ndblk);
957 n->cg_cs.cs_ndir = bswap32(o->cg_cs.cs_ndir);
958 n->cg_cs.cs_nbfree = bswap32(o->cg_cs.cs_nbfree);
959 n->cg_cs.cs_nifree = bswap32(o->cg_cs.cs_nifree);
960 n->cg_cs.cs_nffree = bswap32(o->cg_cs.cs_nffree);
961 n->cg_rotor = bswap32(o->cg_rotor);
962 n->cg_frotor = bswap32(o->cg_frotor);
963 n->cg_irotor = bswap32(o->cg_irotor);
964 n->cg_btotoff = bswap32(o->cg_btotoff);
965 n->cg_boff = bswap32(o->cg_boff);
966 n->cg_iusedoff = bswap32(o->cg_iusedoff);
967 n->cg_freeoff = bswap32(o->cg_freeoff);
968 n->cg_nextfreeoff = bswap32(o->cg_nextfreeoff);
969 n->cg_clustersumoff = bswap32(o->cg_clustersumoff);
970 n->cg_clusteroff = bswap32(o->cg_clusteroff);
971 n->cg_nclusterblks = bswap32(o->cg_nclusterblks);
972 for (i=0; i < MAXFRAG; i++)
973 n->cg_frsum[i] = bswap32(o->cg_frsum[i]);
974
975 /* alays new format */
976 if (n->cg_magic == CG_MAGIC) {
977 btotsize = n->cg_boff - n->cg_btotoff;
978 fbsize = n->cg_iusedoff - n->cg_boff;
979 n32 = (u_int32_t*)((u_int8_t*)n + n->cg_btotoff);
980 o32 = (u_int32_t*)((u_int8_t*)o + n->cg_btotoff);
981 n16 = (u_int16_t*)((u_int8_t*)n + n->cg_boff);
982 o16 = (u_int16_t*)((u_int8_t*)o + n->cg_boff);
983 } else {
984 btotsize = bswap32(n->cg_boff) - bswap32(n->cg_btotoff);
985 fbsize = bswap32(n->cg_iusedoff) - bswap32(n->cg_boff);
986 n32 = (u_int32_t*)((u_int8_t*)n + bswap32(n->cg_btotoff));
987 o32 = (u_int32_t*)((u_int8_t*)o + bswap32(n->cg_btotoff));
988 n16 = (u_int16_t*)((u_int8_t*)n + bswap32(n->cg_boff));
989 o16 = (u_int16_t*)((u_int8_t*)o + bswap32(n->cg_boff));
990 }
991 for (i=0; i < btotsize / sizeof(u_int32_t); i++)
992 n32[i] = bswap32(o32[i]);
993
994 for (i=0; i < fbsize/sizeof(u_int16_t); i++)
995 n16[i] = bswap16(o16[i]);
996
997 if (n->cg_magic == CG_MAGIC) {
998 n32 = (u_int32_t*)((u_int8_t*)n + n->cg_clustersumoff);
999 o32 = (u_int32_t*)((u_int8_t*)o + n->cg_clustersumoff);
1000 } else {
1001 n32 = (u_int32_t*)((u_int8_t*)n + bswap32(n->cg_clustersumoff));
1002 o32 = (u_int32_t*)((u_int8_t*)o + bswap32(n->cg_clustersumoff));
1003 }
1004 for (i = 1; i < sblock.fs_contigsumsize + 1; i++)
1005 n32[i] = bswap32(o32[i]);
1006 }
1007
1008 /* Determine how many digits are needed to print a given integer */
1009 static int
1010 count_digits(int num)
1011 {
1012 int ndig;
1013
1014 for(ndig = 1; num > 9; num /=10, ndig++);
1015
1016 return (ndig);
1017 }
1018