mkfs.c revision 1.41 1 /* $NetBSD: mkfs.c,v 1.41 2022/11/17 06:40:41 chs Exp $ */
2
3 /*
4 * Copyright (c) 2002 Networks Associates Technology, Inc.
5 * All rights reserved.
6 *
7 * This software was developed for the FreeBSD Project by Marshall
8 * Kirk McKusick and Network Associates Laboratories, the Security
9 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
10 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
11 * research program
12 *
13 * Copyright (c) 1980, 1989, 1993
14 * The Regents of the University of California. All rights reserved.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 */
40
41 #if HAVE_NBTOOL_CONFIG_H
42 #include "nbtool_config.h"
43 #endif
44
45 #include <sys/cdefs.h>
46 #ifndef lint
47 #if 0
48 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95";
49 #else
50 #ifdef __RCSID
51 __RCSID("$NetBSD: mkfs.c,v 1.41 2022/11/17 06:40:41 chs Exp $");
52 #endif
53 #endif
54 #endif /* not lint */
55
56 #include <sys/param.h>
57 #include <sys/time.h>
58 #include <sys/resource.h>
59
60 #include <stdio.h>
61 #include <stdlib.h>
62 #include <string.h>
63 #include <unistd.h>
64 #include <errno.h>
65 #include <util.h>
66
67 #include "makefs.h"
68 #include "ffs.h"
69
70 #include <ufs/ufs/dinode.h>
71 #include <ufs/ufs/ufs_bswap.h>
72 #include <ufs/ffs/fs.h>
73
74 #include "ffs/ufs_inode.h"
75 #include "ffs/ffs_extern.h"
76 #include "ffs/newfs_extern.h"
77
78 static void initcg(int, time_t, const fsinfo_t *);
79 static int ilog2(int);
80
81 static int count_digits(int);
82
83 /*
84 * make file system for cylinder-group style file systems
85 */
86 #define UMASK 0755
87 #define POWEROF2(num) (((num) & ((num) - 1)) == 0)
88
89 union {
90 struct fs fs;
91 char pad[SBLOCKSIZE];
92 } fsun;
93 #define sblock fsun.fs
94 struct csum *fscs;
95
96 union {
97 struct cg cg;
98 char pad[FFS_MAXBSIZE];
99 } cgun;
100 #define acg cgun.cg
101
102 char *iobuf;
103 int iobufsize;
104
105 union {
106 struct fs fs;
107 char pad[FFS_MAXBSIZE];
108 } wb;
109 #define writebuf wb.pad
110
111 static int Oflag; /* format as an 4.3BSD file system */
112 static int extattr; /* use UFS2ea magic */
113 static int64_t fssize; /* file system size */
114 static int sectorsize; /* bytes/sector */
115 static int fsize; /* fragment size */
116 static int bsize; /* block size */
117 static int maxbsize; /* maximum clustering */
118 static int maxblkspercg;
119 static int minfree; /* free space threshold */
120 static int opt; /* optimization preference (space or time) */
121 static int density; /* number of bytes per inode */
122 static int maxcontig; /* max contiguous blocks to allocate */
123 static int maxbpg; /* maximum blocks per file in a cyl group */
124 static int bbsize; /* boot block size */
125 static int sbsize; /* superblock size */
126 static int avgfilesize; /* expected average file size */
127 static int avgfpdir; /* expected number of files per directory */
128
129 static void
130 ffs_sb_copy(struct fs *o, const struct fs *i, size_t l, const fsinfo_t *fsopts)
131 {
132 memcpy(o, i, l);
133 /* Zero out pointers */
134 o->fs_csp = NULL;
135 o->fs_maxcluster = NULL;
136 if (fsopts->needswap)
137 ffs_sb_swap(i, o);
138 }
139
140 struct fs *
141 ffs_mkfs(const char *fsys, const fsinfo_t *fsopts, time_t tstamp)
142 {
143 int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg;
144 int32_t cylno, i, csfrags;
145 long long sizepb;
146 void *space;
147 int size;
148 int nprintcols, printcolwidth;
149 ffs_opt_t *ffs_opts = fsopts->fs_specific;
150
151 Oflag = ffs_opts->version;
152 extattr = ffs_opts->extattr;
153 fssize = fsopts->size / fsopts->sectorsize;
154 sectorsize = fsopts->sectorsize;
155 fsize = ffs_opts->fsize;
156 bsize = ffs_opts->bsize;
157 maxbsize = ffs_opts->maxbsize;
158 maxblkspercg = ffs_opts->maxblkspercg;
159 minfree = ffs_opts->minfree;
160 opt = ffs_opts->optimization;
161 density = ffs_opts->density;
162 maxcontig = ffs_opts->maxcontig;
163 maxbpg = ffs_opts->maxbpg;
164 avgfilesize = ffs_opts->avgfilesize;
165 avgfpdir = ffs_opts->avgfpdir;
166 bbsize = BBSIZE;
167 sbsize = SBLOCKSIZE;
168
169 strlcpy((char *)sblock.fs_volname, ffs_opts->label,
170 sizeof(sblock.fs_volname));
171
172 if (Oflag == 0) {
173 sblock.fs_old_inodefmt = FS_42INODEFMT;
174 sblock.fs_maxsymlinklen = 0;
175 sblock.fs_old_flags = 0;
176 } else {
177 sblock.fs_old_inodefmt = FS_44INODEFMT;
178 sblock.fs_maxsymlinklen = (Oflag == 1 ? UFS1_MAXSYMLINKLEN :
179 UFS2_MAXSYMLINKLEN);
180 sblock.fs_old_flags = FS_FLAGS_UPDATED;
181 sblock.fs_flags = 0;
182 }
183 /*
184 * Validate the given file system size.
185 * Verify that its last block can actually be accessed.
186 * Convert to file system fragment sized units.
187 */
188 if (fssize <= 0) {
189 printf("preposterous size %lld\n", (long long)fssize);
190 exit(13);
191 }
192 ffs_wtfs(fssize - 1, sectorsize, (char *)&sblock, fsopts);
193
194 /*
195 * collect and verify the filesystem density info
196 */
197 sblock.fs_avgfilesize = avgfilesize;
198 sblock.fs_avgfpdir = avgfpdir;
199 if (sblock.fs_avgfilesize <= 0)
200 printf("illegal expected average file size %d\n",
201 sblock.fs_avgfilesize), exit(14);
202 if (sblock.fs_avgfpdir <= 0)
203 printf("illegal expected number of files per directory %d\n",
204 sblock.fs_avgfpdir), exit(15);
205 /*
206 * collect and verify the block and fragment sizes
207 */
208 sblock.fs_bsize = bsize;
209 sblock.fs_fsize = fsize;
210 if (!POWEROF2(sblock.fs_bsize)) {
211 printf("block size must be a power of 2, not %d\n",
212 sblock.fs_bsize);
213 exit(16);
214 }
215 if (!POWEROF2(sblock.fs_fsize)) {
216 printf("fragment size must be a power of 2, not %d\n",
217 sblock.fs_fsize);
218 exit(17);
219 }
220 if (sblock.fs_fsize < sectorsize) {
221 printf("fragment size %d is too small, minimum is %d\n",
222 sblock.fs_fsize, sectorsize);
223 exit(18);
224 }
225 if (sblock.fs_bsize < MINBSIZE) {
226 printf("block size %d is too small, minimum is %d\n",
227 sblock.fs_bsize, MINBSIZE);
228 exit(19);
229 }
230 if (sblock.fs_bsize > FFS_MAXBSIZE) {
231 printf("block size %d is too large, maximum is %d\n",
232 sblock.fs_bsize, FFS_MAXBSIZE);
233 exit(19);
234 }
235 if (sblock.fs_bsize < sblock.fs_fsize) {
236 printf("block size (%d) cannot be smaller than fragment size (%d)\n",
237 sblock.fs_bsize, sblock.fs_fsize);
238 exit(20);
239 }
240
241 if (maxbsize < bsize || !POWEROF2(maxbsize)) {
242 sblock.fs_maxbsize = sblock.fs_bsize;
243 printf("Extent size set to %d\n", sblock.fs_maxbsize);
244 } else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) {
245 sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize;
246 printf("Extent size reduced to %d\n", sblock.fs_maxbsize);
247 } else {
248 sblock.fs_maxbsize = maxbsize;
249 }
250 sblock.fs_maxcontig = maxcontig;
251 if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) {
252 sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize;
253 printf("Maxcontig raised to %d\n", sblock.fs_maxbsize);
254 }
255
256 if (sblock.fs_maxcontig > 1)
257 sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG);
258
259 sblock.fs_bmask = ~(sblock.fs_bsize - 1);
260 sblock.fs_fmask = ~(sblock.fs_fsize - 1);
261 sblock.fs_qbmask = ~sblock.fs_bmask;
262 sblock.fs_qfmask = ~sblock.fs_fmask;
263 for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
264 sblock.fs_bshift++;
265 for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
266 sblock.fs_fshift++;
267 sblock.fs_frag = ffs_numfrags(&sblock, sblock.fs_bsize);
268 for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
269 sblock.fs_fragshift++;
270 if (sblock.fs_frag > MAXFRAG) {
271 printf("fragment size %d is too small, "
272 "minimum with block size %d is %d\n",
273 sblock.fs_fsize, sblock.fs_bsize,
274 sblock.fs_bsize / MAXFRAG);
275 exit(21);
276 }
277 sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize);
278 sblock.fs_size = fssize = FFS_DBTOFSB(&sblock, fssize);
279
280 if (Oflag <= 1) {
281 sblock.fs_magic = FS_UFS1_MAGIC;
282 sblock.fs_sblockloc = SBLOCK_UFS1;
283 sblock.fs_nindir = sblock.fs_bsize / sizeof(int32_t);
284 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode);
285 sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) *
286 sizeof (int32_t));
287 sblock.fs_old_inodefmt = FS_44INODEFMT;
288 sblock.fs_old_cgoffset = 0;
289 sblock.fs_old_cgmask = 0xffffffff;
290 sblock.fs_old_size = sblock.fs_size;
291 sblock.fs_old_rotdelay = 0;
292 sblock.fs_old_rps = 60;
293 sblock.fs_old_nspf = sblock.fs_fsize / sectorsize;
294 sblock.fs_old_cpg = 1;
295 sblock.fs_old_interleave = 1;
296 sblock.fs_old_trackskew = 0;
297 sblock.fs_old_cpc = 0;
298 sblock.fs_old_postblformat = 1;
299 sblock.fs_old_nrpos = 1;
300 } else {
301 if (extattr)
302 sblock.fs_magic = FS_UFS2EA_MAGIC;
303 else
304 sblock.fs_magic = FS_UFS2_MAGIC;
305 #if 0 /* XXX makefs is used for small filesystems. */
306 sblock.fs_sblockloc = SBLOCK_UFS2;
307 #else
308 sblock.fs_sblockloc = SBLOCK_UFS1;
309 #endif
310 sblock.fs_nindir = sblock.fs_bsize / sizeof(int64_t);
311 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode);
312 sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) *
313 sizeof (int64_t));
314 }
315
316 sblock.fs_sblkno =
317 roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize),
318 sblock.fs_frag);
319 sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
320 roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag));
321 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
322 sblock.fs_maxfilesize = sblock.fs_bsize * UFS_NDADDR - 1;
323 for (sizepb = sblock.fs_bsize, i = 0; i < UFS_NIADDR; i++) {
324 sizepb *= FFS_NINDIR(&sblock);
325 sblock.fs_maxfilesize += sizepb;
326 }
327
328 /*
329 * Calculate the number of blocks to put into each cylinder group.
330 *
331 * This algorithm selects the number of blocks per cylinder
332 * group. The first goal is to have at least enough data blocks
333 * in each cylinder group to meet the density requirement. Once
334 * this goal is achieved we try to expand to have at least
335 * 1 cylinder group. Once this goal is achieved, we pack as
336 * many blocks into each cylinder group map as will fit.
337 *
338 * We start by calculating the smallest number of blocks that we
339 * can put into each cylinder group. If this is too big, we reduce
340 * the density until it fits.
341 */
342 origdensity = density;
343 for (;;) {
344 fragsperinode = MAX(ffs_numfrags(&sblock, density), 1);
345 minfpg = fragsperinode * FFS_INOPB(&sblock);
346 if (minfpg > sblock.fs_size)
347 minfpg = sblock.fs_size;
348 sblock.fs_ipg = FFS_INOPB(&sblock);
349 sblock.fs_fpg = roundup(sblock.fs_iblkno +
350 sblock.fs_ipg / FFS_INOPF(&sblock), sblock.fs_frag);
351 if (sblock.fs_fpg < minfpg)
352 sblock.fs_fpg = minfpg;
353 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
354 FFS_INOPB(&sblock));
355 sblock.fs_fpg = roundup(sblock.fs_iblkno +
356 sblock.fs_ipg / FFS_INOPF(&sblock), sblock.fs_frag);
357 if (sblock.fs_fpg < minfpg)
358 sblock.fs_fpg = minfpg;
359 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
360 FFS_INOPB(&sblock));
361 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
362 break;
363 density -= sblock.fs_fsize;
364 }
365 if (density != origdensity)
366 printf("density reduced from %d to %d\n", origdensity, density);
367
368 if (maxblkspercg <= 0 || maxblkspercg >= fssize)
369 maxblkspercg = fssize - 1;
370 /*
371 * Start packing more blocks into the cylinder group until
372 * it cannot grow any larger, the number of cylinder groups
373 * drops below 1, or we reach the size requested.
374 */
375 for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) {
376 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
377 FFS_INOPB(&sblock));
378 if (sblock.fs_size / sblock.fs_fpg < 1)
379 break;
380 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
381 continue;
382 if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize)
383 break;
384 sblock.fs_fpg -= sblock.fs_frag;
385 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
386 FFS_INOPB(&sblock));
387 break;
388 }
389 /*
390 * Check to be sure that the last cylinder group has enough blocks
391 * to be viable. If it is too small, reduce the number of blocks
392 * per cylinder group which will have the effect of moving more
393 * blocks into the last cylinder group.
394 */
395 optimalfpg = sblock.fs_fpg;
396 for (;;) {
397 sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
398 lastminfpg = roundup(sblock.fs_iblkno +
399 sblock.fs_ipg / FFS_INOPF(&sblock), sblock.fs_frag);
400 if (sblock.fs_size < lastminfpg) {
401 printf("Filesystem size %lld < minimum size of %d\n",
402 (long long)sblock.fs_size, lastminfpg);
403 exit(28);
404 }
405 if (sblock.fs_size % sblock.fs_fpg >= lastminfpg ||
406 sblock.fs_size % sblock.fs_fpg == 0)
407 break;
408 sblock.fs_fpg -= sblock.fs_frag;
409 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
410 FFS_INOPB(&sblock));
411 }
412 if (optimalfpg != sblock.fs_fpg)
413 printf("Reduced frags per cylinder group from %d to %d %s\n",
414 optimalfpg, sblock.fs_fpg, "to enlarge last cyl group");
415 sblock.fs_cgsize = ffs_fragroundup(&sblock, CGSIZE(&sblock));
416 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / FFS_INOPF(&sblock);
417 if (Oflag <= 1) {
418 sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf;
419 sblock.fs_old_nsect = sblock.fs_old_spc;
420 sblock.fs_old_npsect = sblock.fs_old_spc;
421 sblock.fs_old_ncyl = sblock.fs_ncg;
422 }
423
424 /*
425 * fill in remaining fields of the super block
426 */
427 sblock.fs_csaddr = cgdmin(&sblock, 0);
428 sblock.fs_cssize =
429 ffs_fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
430
431 /*
432 * Setup memory for temporary in-core cylgroup summaries.
433 * Cribbed from ffs_mountfs().
434 */
435 size = sblock.fs_cssize;
436 if (sblock.fs_contigsumsize > 0)
437 size += sblock.fs_ncg * sizeof(int32_t);
438 space = ecalloc(1, size);
439 sblock.fs_csp = space;
440 space = (char *)space + sblock.fs_cssize;
441 if (sblock.fs_contigsumsize > 0) {
442 int32_t *lp;
443
444 sblock.fs_maxcluster = lp = space;
445 for (i = 0; i < sblock.fs_ncg; i++)
446 *lp++ = sblock.fs_contigsumsize;
447 }
448
449 sblock.fs_sbsize = ffs_fragroundup(&sblock, sizeof(struct fs));
450 if (sblock.fs_sbsize > SBLOCKSIZE)
451 sblock.fs_sbsize = SBLOCKSIZE;
452 sblock.fs_minfree = minfree;
453 sblock.fs_maxcontig = maxcontig;
454 sblock.fs_maxbpg = maxbpg;
455 sblock.fs_optim = opt;
456 sblock.fs_cgrotor = 0;
457 sblock.fs_pendingblocks = 0;
458 sblock.fs_pendinginodes = 0;
459 sblock.fs_cstotal.cs_ndir = 0;
460 sblock.fs_cstotal.cs_nbfree = 0;
461 sblock.fs_cstotal.cs_nifree = 0;
462 sblock.fs_cstotal.cs_nffree = 0;
463 sblock.fs_fmod = 0;
464 sblock.fs_ronly = 0;
465 sblock.fs_state = 0;
466 sblock.fs_clean = FS_ISCLEAN;
467 sblock.fs_ronly = 0;
468 sblock.fs_id[0] = tstamp;
469 sblock.fs_id[1] = random();
470 sblock.fs_fsmnt[0] = '\0';
471 csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize);
472 sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno -
473 sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno);
474 sblock.fs_cstotal.cs_nbfree =
475 ffs_fragstoblks(&sblock, sblock.fs_dsize) -
476 howmany(csfrags, sblock.fs_frag);
477 sblock.fs_cstotal.cs_nffree =
478 ffs_fragnum(&sblock, sblock.fs_size) +
479 (ffs_fragnum(&sblock, csfrags) > 0 ?
480 sblock.fs_frag - ffs_fragnum(&sblock, csfrags) : 0);
481 sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - UFS_ROOTINO;
482 sblock.fs_cstotal.cs_ndir = 0;
483 sblock.fs_dsize -= csfrags;
484 sblock.fs_time = tstamp;
485 if (Oflag <= 1) {
486 sblock.fs_old_time = tstamp;
487 sblock.fs_old_dsize = sblock.fs_dsize;
488 sblock.fs_old_csaddr = sblock.fs_csaddr;
489 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
490 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
491 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
492 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
493 }
494 /*
495 * Dump out summary information about file system.
496 */
497 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
498 printf("%s: %.1fMB (%lld sectors) block size %d, "
499 "fragment size %d\n",
500 fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
501 (long long)FFS_FSBTODB(&sblock, sblock.fs_size),
502 sblock.fs_bsize, sblock.fs_fsize);
503 printf("\tusing %d cylinder groups of %.2fMB, %d blks, "
504 "%d inodes.\n",
505 sblock.fs_ncg,
506 (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
507 sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
508 #undef B2MBFACTOR
509 /*
510 * Now determine how wide each column will be, and calculate how
511 * many columns will fit in a 76 char line. 76 is the width of the
512 * subwindows in sysinst.
513 */
514 printcolwidth = count_digits(
515 FFS_FSBTODB(&sblock, cgsblock(&sblock, sblock.fs_ncg -1)));
516 nprintcols = 76 / (printcolwidth + 2);
517
518 /*
519 * allocate space for superblock, cylinder group map, and
520 * two sets of inode blocks.
521 */
522 if (sblock.fs_bsize < SBLOCKSIZE)
523 iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize;
524 else
525 iobufsize = 4 * sblock.fs_bsize;
526 iobuf = ecalloc(1, iobufsize);
527 /*
528 * Make a copy of the superblock into the buffer that we will be
529 * writing out in each cylinder group.
530 */
531 ffs_sb_copy(&wb.fs, &sblock, sbsize, fsopts);
532 memcpy(iobuf, writebuf, SBLOCKSIZE);
533
534 printf("super-block backups (for fsck -b #) at:");
535 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
536 initcg(cylno, tstamp, fsopts);
537 if (cylno % nprintcols == 0)
538 printf("\n");
539 printf(" %*lld,", printcolwidth,
540 (long long)FFS_FSBTODB(&sblock, cgsblock(&sblock, cylno)));
541 fflush(stdout);
542 }
543 printf("\n");
544
545 /*
546 * Now construct the initial file system,
547 * then write out the super-block.
548 */
549 sblock.fs_time = tstamp;
550 if (Oflag <= 1) {
551 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
552 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
553 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
554 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
555 }
556 if (fsopts->needswap)
557 sblock.fs_flags |= FS_SWAPPED;
558 ffs_write_superblock(&sblock, fsopts);
559 return (&sblock);
560 }
561
562 /*
563 * Write out the superblock and its duplicates,
564 * and the cylinder group summaries
565 */
566 void
567 ffs_write_superblock(struct fs *fs, const fsinfo_t *fsopts)
568 {
569 int cylno, size, blks, i, saveflag;
570 void *space;
571 char *wrbuf;
572
573 saveflag = fs->fs_flags & FS_INTERNAL;
574 fs->fs_flags &= ~FS_INTERNAL;
575
576 ffs_sb_copy(&wb.fs, &sblock, sbsize, fsopts);
577 ffs_wtfs(fs->fs_sblockloc / sectorsize, sbsize, writebuf, fsopts);
578
579 /* Write out the duplicate super blocks */
580 for (cylno = 0; cylno < fs->fs_ncg; cylno++)
581 ffs_wtfs(FFS_FSBTODB(fs, cgsblock(fs, cylno)),
582 sbsize, writebuf, fsopts);
583
584 /* Write out the cylinder group summaries */
585 size = fs->fs_cssize;
586 blks = howmany(size, fs->fs_fsize);
587 space = (void *)fs->fs_csp;
588 wrbuf = emalloc(size);
589 for (i = 0; i < blks; i+= fs->fs_frag) {
590 size = fs->fs_bsize;
591 if (i + fs->fs_frag > blks)
592 size = (blks - i) * fs->fs_fsize;
593 if (fsopts->needswap)
594 ffs_csum_swap((struct csum *)space,
595 (struct csum *)wrbuf, size);
596 else
597 memcpy(wrbuf, space, (u_int)size);
598 ffs_wtfs(FFS_FSBTODB(fs, fs->fs_csaddr + i), size, wrbuf, fsopts);
599 space = (char *)space + size;
600 }
601 free(wrbuf);
602 fs->fs_flags |= saveflag;
603 }
604
605 /*
606 * Initialize a cylinder group.
607 */
608 static void
609 initcg(int cylno, time_t utime, const fsinfo_t *fsopts)
610 {
611 daddr_t cbase, dmax;
612 int i, j, d, dlower, dupper, blkno;
613 struct ufs1_dinode *dp1;
614 struct ufs2_dinode *dp2;
615 int start;
616
617 /*
618 * Determine block bounds for cylinder group.
619 * Allow space for super block summary information in first
620 * cylinder group.
621 */
622 cbase = cgbase(&sblock, cylno);
623 dmax = cbase + sblock.fs_fpg;
624 if (dmax > sblock.fs_size)
625 dmax = sblock.fs_size;
626 dlower = cgsblock(&sblock, cylno) - cbase;
627 dupper = cgdmin(&sblock, cylno) - cbase;
628 if (cylno == 0)
629 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
630 memset(&acg, 0, sblock.fs_cgsize);
631 acg.cg_time = utime;
632 acg.cg_magic = CG_MAGIC;
633 acg.cg_cgx = cylno;
634 acg.cg_niblk = sblock.fs_ipg;
635 acg.cg_initediblk = sblock.fs_ipg < 2 * FFS_INOPB(&sblock) ?
636 sblock.fs_ipg : 2 * FFS_INOPB(&sblock);
637 acg.cg_ndblk = dmax - cbase;
638 if (sblock.fs_contigsumsize > 0)
639 acg.cg_nclusterblks = acg.cg_ndblk >> sblock.fs_fragshift;
640 start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
641 if (Oflag == 2) {
642 acg.cg_iusedoff = start;
643 } else {
644 if (cylno == sblock.fs_ncg - 1)
645 acg.cg_old_ncyl = howmany(acg.cg_ndblk,
646 sblock.fs_fpg / sblock.fs_old_cpg);
647 else
648 acg.cg_old_ncyl = sblock.fs_old_cpg;
649 acg.cg_old_time = acg.cg_time;
650 acg.cg_time = 0;
651 acg.cg_old_niblk = acg.cg_niblk;
652 acg.cg_niblk = 0;
653 acg.cg_initediblk = 0;
654 acg.cg_old_btotoff = start;
655 acg.cg_old_boff = acg.cg_old_btotoff +
656 sblock.fs_old_cpg * sizeof(int32_t);
657 acg.cg_iusedoff = acg.cg_old_boff +
658 sblock.fs_old_cpg * sizeof(u_int16_t);
659 }
660 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
661 if (sblock.fs_contigsumsize <= 0) {
662 acg.cg_nextfreeoff = acg.cg_freeoff +
663 howmany(sblock.fs_fpg, CHAR_BIT);
664 } else {
665 acg.cg_clustersumoff = acg.cg_freeoff +
666 howmany(sblock.fs_fpg, CHAR_BIT) - sizeof(int32_t);
667 acg.cg_clustersumoff =
668 roundup(acg.cg_clustersumoff, sizeof(int32_t));
669 acg.cg_clusteroff = acg.cg_clustersumoff +
670 (sblock.fs_contigsumsize + 1) * sizeof(int32_t);
671 acg.cg_nextfreeoff = acg.cg_clusteroff +
672 howmany(ffs_fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
673 }
674 if (acg.cg_nextfreeoff > sblock.fs_cgsize) {
675 printf("Panic: cylinder group too big\n");
676 exit(37);
677 }
678 acg.cg_cs.cs_nifree += sblock.fs_ipg;
679 if (cylno == 0) {
680 size_t r;
681
682 for (r = 0; r < UFS_ROOTINO; r++) {
683 setbit(cg_inosused(&acg, 0), r);
684 acg.cg_cs.cs_nifree--;
685 }
686 }
687 if (cylno > 0) {
688 /*
689 * In cylno 0, beginning space is reserved
690 * for boot and super blocks.
691 */
692 for (d = 0, blkno = 0; d < dlower;) {
693 ffs_setblock(&sblock, cg_blksfree(&acg, 0), blkno);
694 if (sblock.fs_contigsumsize > 0)
695 setbit(cg_clustersfree(&acg, 0), blkno);
696 acg.cg_cs.cs_nbfree++;
697 d += sblock.fs_frag;
698 blkno++;
699 }
700 }
701 if ((i = (dupper & (sblock.fs_frag - 1))) != 0) {
702 acg.cg_frsum[sblock.fs_frag - i]++;
703 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
704 setbit(cg_blksfree(&acg, 0), dupper);
705 acg.cg_cs.cs_nffree++;
706 }
707 }
708 for (d = dupper, blkno = dupper >> sblock.fs_fragshift;
709 d + sblock.fs_frag <= acg.cg_ndblk; ) {
710 ffs_setblock(&sblock, cg_blksfree(&acg, 0), blkno);
711 if (sblock.fs_contigsumsize > 0)
712 setbit(cg_clustersfree(&acg, 0), blkno);
713 acg.cg_cs.cs_nbfree++;
714 d += sblock.fs_frag;
715 blkno++;
716 }
717 if (d < acg.cg_ndblk) {
718 acg.cg_frsum[acg.cg_ndblk - d]++;
719 for (; d < acg.cg_ndblk; d++) {
720 setbit(cg_blksfree(&acg, 0), d);
721 acg.cg_cs.cs_nffree++;
722 }
723 }
724 if (sblock.fs_contigsumsize > 0) {
725 int32_t *sump = cg_clustersum(&acg, 0);
726 u_char *mapp = cg_clustersfree(&acg, 0);
727 int map = *mapp++;
728 int bit = 1;
729 int run = 0;
730
731 for (i = 0; i < acg.cg_nclusterblks; i++) {
732 if ((map & bit) != 0) {
733 run++;
734 } else if (run != 0) {
735 if (run > sblock.fs_contigsumsize)
736 run = sblock.fs_contigsumsize;
737 sump[run]++;
738 run = 0;
739 }
740 if ((i & (CHAR_BIT - 1)) != (CHAR_BIT - 1)) {
741 bit <<= 1;
742 } else {
743 map = *mapp++;
744 bit = 1;
745 }
746 }
747 if (run != 0) {
748 if (run > sblock.fs_contigsumsize)
749 run = sblock.fs_contigsumsize;
750 sump[run]++;
751 }
752 }
753 sblock.fs_cs(&sblock, cylno) = acg.cg_cs;
754 /*
755 * Write out the duplicate super block, the cylinder group map
756 * and two blocks worth of inodes in a single write.
757 */
758 start = sblock.fs_bsize > SBLOCKSIZE ? sblock.fs_bsize : SBLOCKSIZE;
759 memcpy(&iobuf[start], &acg, sblock.fs_cgsize);
760 if (fsopts->needswap)
761 ffs_cg_swap(&acg, (struct cg*)&iobuf[start], &sblock);
762 start += sblock.fs_bsize;
763 dp1 = (struct ufs1_dinode *)(&iobuf[start]);
764 dp2 = (struct ufs2_dinode *)(&iobuf[start]);
765 for (i = 0; i < acg.cg_initediblk; i++) {
766 if (sblock.fs_magic == FS_UFS1_MAGIC) {
767 /* No need to swap, it'll stay random */
768 dp1->di_gen = random();
769 dp1++;
770 } else {
771 dp2->di_gen = random();
772 dp2++;
773 }
774 }
775 ffs_wtfs(FFS_FSBTODB(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf,
776 fsopts);
777 /*
778 * For the old file system, we have to initialize all the inodes.
779 */
780 if (Oflag <= 1) {
781 for (i = 2 * sblock.fs_frag;
782 i < sblock.fs_ipg / FFS_INOPF(&sblock);
783 i += sblock.fs_frag) {
784 dp1 = (struct ufs1_dinode *)(&iobuf[start]);
785 for (j = 0; j < FFS_INOPB(&sblock); j++) {
786 dp1->di_gen = random();
787 dp1++;
788 }
789 ffs_wtfs(FFS_FSBTODB(&sblock, cgimin(&sblock, cylno) + i),
790 sblock.fs_bsize, &iobuf[start], fsopts);
791 }
792 }
793 }
794
795 /*
796 * read a block from the file system
797 */
798 void
799 ffs_rdfs(daddr_t bno, int size, void *bf, const fsinfo_t *fsopts)
800 {
801 int n;
802 off_t offset;
803
804 offset = bno * (off_t)fsopts->sectorsize + fsopts->offset;
805 if (lseek(fsopts->fd, offset, SEEK_SET) < 0)
806 err(EXIT_FAILURE, "%s: seek error for sector %lld", __func__,
807 (long long)bno);
808 n = read(fsopts->fd, bf, size);
809 if (n == -1) {
810 err(EXIT_FAILURE, "%s: read error bno %lld size %d", __func__,
811 (long long)bno, size);
812 }
813 else if (n != size)
814 errx(EXIT_FAILURE, "%s: short read error for sector %lld", __func__,
815 (long long)bno);
816 }
817
818 /*
819 * write a block to the file system
820 */
821 void
822 ffs_wtfs(daddr_t bno, int size, void *bf, const fsinfo_t *fsopts)
823 {
824 int n;
825 off_t offset;
826
827 offset = bno * (off_t)fsopts->sectorsize + fsopts->offset;
828 if (lseek(fsopts->fd, offset, SEEK_SET) == -1)
829 err(EXIT_FAILURE, "%s: seek error @%jd for sector %jd",
830 __func__, (intmax_t)offset, (intmax_t)bno);
831 n = write(fsopts->fd, bf, size);
832 if (n == -1)
833 err(EXIT_FAILURE, "%s: write error for sector %jd", __func__,
834 (intmax_t)bno);
835 else if (n != size)
836 errx(EXIT_FAILURE, "%s: short write error for sector %jd",
837 __func__, (intmax_t)bno);
838 }
839
840
841 /* Determine how many digits are needed to print a given integer */
842 static int
843 count_digits(int num)
844 {
845 int ndig;
846
847 for(ndig = 1; num > 9; num /=10, ndig++);
848
849 return (ndig);
850 }
851
852 static int
853 ilog2(int val)
854 {
855 u_int n;
856
857 for (n = 0; n < sizeof(n) * CHAR_BIT; n++)
858 if (1 << n == val)
859 return (n);
860 errx(EXIT_FAILURE, "%s: %d is not a power of 2", __func__, val);
861 }
862