mkfs.c revision 1.6 1 /* $NetBSD: mkfs.c,v 1.6 2002/01/08 06:00:14 lukem Exp $ */
2 /* From NetBSD: mkfs.c,v 1.55 2001/09/06 02:16:01 lukem Exp $ */
3
4 /*
5 * Copyright (c) 1980, 1989, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 */
36
37 #include <sys/cdefs.h>
38 #ifndef lint
39 #if 0
40 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95";
41 #else
42 __RCSID("$NetBSD: mkfs.c,v 1.6 2002/01/08 06:00:14 lukem Exp $");
43 #endif
44 #endif /* not lint */
45
46 #include <sys/param.h>
47 #include <sys/time.h>
48 #include <sys/resource.h>
49
50 #include <err.h>
51 #include <stdio.h>
52 #include <stdlib.h>
53 #include <string.h>
54 #include <unistd.h>
55
56 #include "makefs.h"
57
58 #include <ufs/ufs/dinode.h>
59 #include <ufs/ufs/dir.h>
60 #include <ufs/ufs/ufs_bswap.h>
61 #include <ufs/ffs/fs.h>
62
63 #include "ffs/ufs_inode.h"
64 #include "ffs/ffs_extern.h"
65 #include "ffs/newfs_extern.h"
66
67 static void initcg(int, time_t, const fsinfo_t *);
68 static int32_t calcipg(int32_t, int32_t, off_t *);
69 static void swap_cg(struct cg *, struct cg *);
70
71 static int count_digits(int);
72
73 /*
74 * make file system for cylinder-group style file systems
75 */
76
77 /*
78 * We limit the size of the inode map to be no more than a
79 * third of the cylinder group space, since we must leave at
80 * least an equal amount of space for the block map.
81 *
82 * N.B.: MAXIPG must be a multiple of INOPB(fs).
83 */
84 #define MAXIPG(fs) roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs))
85
86 #define UMASK 0755
87 #define POWEROF2(num) (((num) & ((num) - 1)) == 0)
88
89 union {
90 struct fs fs;
91 char pad[SBSIZE];
92 } fsun;
93 #define sblock fsun.fs
94
95 union {
96 struct cg cg;
97 char pad[MAXBSIZE];
98 } cgun;
99 #define acg cgun.cg
100
101 struct dinode zino[MAXBSIZE / DINODE_SIZE];
102
103 char writebuf[MAXBSIZE];
104
105 static int Oflag; /* format as an 4.3BSD file system */
106 static int fssize; /* file system size */
107 static int ntracks; /* # tracks/cylinder */
108 static int nsectors; /* # sectors/track */
109 static int nphyssectors; /* # sectors/track including spares */
110 static int secpercyl; /* sectors per cylinder */
111 static int sectorsize; /* bytes/sector */
112 static int rpm; /* revolutions/minute of drive */
113 static int interleave; /* hardware sector interleave */
114 static int trackskew; /* sector 0 skew, per track */
115 static int fsize; /* fragment size */
116 static int bsize; /* block size */
117 static int cpg; /* cylinders/cylinder group */
118 static int cpgflg; /* cylinders/cylinder group flag was given */
119 static int minfree; /* free space threshold */
120 static int opt; /* optimization preference (space or time) */
121 static int density; /* number of bytes per inode */
122 static int maxcontig; /* max contiguous blocks to allocate */
123 static int rotdelay; /* rotational delay between blocks */
124 static int maxbpg; /* maximum blocks per file in a cyl group */
125 static int nrpos; /* # of distinguished rotational positions */
126 static int bbsize; /* boot block size */
127 static int sbsize; /* superblock size */
128 static int avgfilesize; /* expected average file size */
129 static int avgfpdir; /* expected number of files per directory */
130
131
132 struct fs *
133 ffs_mkfs(const char *fsys, const fsinfo_t *fsopts)
134 {
135 int32_t i, mincpc, mincpg, inospercg;
136 int32_t cylno, rpos, blk, j, warned = 0;
137 int32_t used, mincpgcnt, bpcg;
138 off_t usedb;
139 int32_t mapcramped, inodecramped;
140 int32_t postblsize, rotblsize, totalsbsize;
141 long long sizepb;
142 void *space;
143 int size, blks;
144 int nprintcols, printcolwidth;
145
146 Oflag = 0;
147 fssize = fsopts->size / fsopts->sectorsize;
148 ntracks = fsopts->ntracks;
149 nsectors = fsopts->nsectors;
150 nphyssectors = fsopts->nsectors; /* XXX: no trackspares */
151 secpercyl = nsectors * ntracks;
152 sectorsize = fsopts->sectorsize;
153 rpm = fsopts->rpm;
154 interleave = 1; /* XXX: HCD */
155 trackskew = 0; /* XXX: HCD */
156 fsize = fsopts->fsize;
157 bsize = fsopts->bsize;
158 cpg = fsopts->cpg;
159 cpgflg = 1;
160 minfree = fsopts->minfree;
161 opt = fsopts->optimization;
162 density = fsopts->density;
163 maxcontig = fsopts->maxcontig;
164 rotdelay = fsopts->rotdelay;
165 maxbpg = fsopts->maxbpg;
166 nrpos = fsopts->nrpos;
167 bbsize = BBSIZE;
168 sbsize = SBSIZE;
169 avgfilesize = fsopts->avgfilesize;
170 avgfpdir = fsopts->avgfpdir;
171
172 if (Oflag) {
173 sblock.fs_inodefmt = FS_42INODEFMT;
174 sblock.fs_maxsymlinklen = 0;
175 } else {
176 sblock.fs_inodefmt = FS_44INODEFMT;
177 sblock.fs_maxsymlinklen = MAXSYMLINKLEN;
178 }
179 /*
180 * Validate the given file system size.
181 * Verify that its last block can actually be accessed.
182 */
183 if (fssize <= 0)
184 printf("preposterous size %d\n", fssize), exit(13);
185 ffs_wtfs(fssize - 1, sectorsize, (char *)&sblock, fsopts);
186
187 /*
188 * collect and verify the sector and track info
189 */
190 sblock.fs_nsect = nsectors;
191 sblock.fs_ntrak = ntracks;
192 if (sblock.fs_ntrak <= 0)
193 printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14);
194 if (sblock.fs_nsect <= 0)
195 printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15);
196 /*
197 * collect and verify the filesystem density info
198 */
199 sblock.fs_avgfilesize = avgfilesize;
200 sblock.fs_avgfpdir = avgfpdir;
201 if (sblock.fs_avgfilesize <= 0)
202 printf("illegal expected average file size %d\n",
203 sblock.fs_avgfilesize), exit(14);
204 if (sblock.fs_avgfpdir <= 0)
205 printf("illegal expected number of files per directory %d\n",
206 sblock.fs_avgfpdir), exit(15);
207 /*
208 * collect and verify the block and fragment sizes
209 */
210 sblock.fs_bsize = bsize;
211 sblock.fs_fsize = fsize;
212 if (!POWEROF2(sblock.fs_bsize)) {
213 printf("block size must be a power of 2, not %d\n",
214 sblock.fs_bsize);
215 exit(16);
216 }
217 if (!POWEROF2(sblock.fs_fsize)) {
218 printf("fragment size must be a power of 2, not %d\n",
219 sblock.fs_fsize);
220 exit(17);
221 }
222 if (sblock.fs_fsize < sectorsize) {
223 printf("fragment size %d is too small, minimum is %d\n",
224 sblock.fs_fsize, sectorsize);
225 exit(18);
226 }
227 if (sblock.fs_bsize < MINBSIZE) {
228 printf("block size %d is too small, minimum is %d\n",
229 sblock.fs_bsize, MINBSIZE);
230 exit(19);
231 }
232 if (sblock.fs_bsize < sblock.fs_fsize) {
233 printf("block size (%d) cannot be smaller than fragment size (%d)\n",
234 sblock.fs_bsize, sblock.fs_fsize);
235 exit(20);
236 }
237 sblock.fs_bmask = ~(sblock.fs_bsize - 1);
238 sblock.fs_fmask = ~(sblock.fs_fsize - 1);
239 sblock.fs_qbmask = ~sblock.fs_bmask;
240 sblock.fs_qfmask = ~sblock.fs_fmask;
241 for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
242 sblock.fs_bshift++;
243 for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
244 sblock.fs_fshift++;
245 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
246 for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
247 sblock.fs_fragshift++;
248 if (sblock.fs_frag > MAXFRAG) {
249 printf("fragment size %d is too small, "
250 "minimum with block size %d is %d\n",
251 sblock.fs_fsize, sblock.fs_bsize,
252 sblock.fs_bsize / MAXFRAG);
253 exit(21);
254 }
255 sblock.fs_nrpos = nrpos;
256 sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t);
257 sblock.fs_inopb = sblock.fs_bsize / DINODE_SIZE;
258 sblock.fs_nspf = sblock.fs_fsize / sectorsize;
259 for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1)
260 sblock.fs_fsbtodb++;
261 sblock.fs_sblkno =
262 roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag);
263 sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
264 roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag));
265 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
266 sblock.fs_cgoffset = roundup(
267 howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag);
268 for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1)
269 sblock.fs_cgmask <<= 1;
270 if (!POWEROF2(sblock.fs_ntrak))
271 sblock.fs_cgmask <<= 1;
272 sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
273 for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
274 sizepb *= NINDIR(&sblock);
275 sblock.fs_maxfilesize += sizepb;
276 }
277 /*
278 * Validate specified/determined secpercyl
279 * and calculate minimum cylinders per group.
280 */
281 sblock.fs_spc = secpercyl;
282 for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc;
283 sblock.fs_cpc > 1 && (i & 1) == 0;
284 sblock.fs_cpc >>= 1, i >>= 1)
285 /* void */;
286 mincpc = sblock.fs_cpc;
287 bpcg = sblock.fs_spc * sectorsize;
288 inospercg = roundup(bpcg / DINODE_SIZE, INOPB(&sblock));
289 if (inospercg > MAXIPG(&sblock))
290 inospercg = MAXIPG(&sblock);
291 used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock);
292 mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used,
293 sblock.fs_spc);
294 mincpg = roundup(mincpgcnt, mincpc);
295 /*
296 * Ensure that cylinder group with mincpg has enough space
297 * for block maps.
298 */
299 sblock.fs_cpg = mincpg;
300 sblock.fs_ipg = inospercg;
301 if (maxcontig > 1)
302 sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG);
303 mapcramped = 0;
304 while (CGSIZE(&sblock) > sblock.fs_bsize) {
305 mapcramped = 1;
306 if (sblock.fs_bsize < MAXBSIZE) {
307 sblock.fs_bsize <<= 1;
308 if ((i & 1) == 0) {
309 i >>= 1;
310 } else {
311 sblock.fs_cpc <<= 1;
312 mincpc <<= 1;
313 mincpg = roundup(mincpgcnt, mincpc);
314 sblock.fs_cpg = mincpg;
315 }
316 sblock.fs_frag <<= 1;
317 sblock.fs_fragshift += 1;
318 if (sblock.fs_frag <= MAXFRAG)
319 continue;
320 }
321 if (sblock.fs_fsize == sblock.fs_bsize) {
322 printf("There is no block size that");
323 printf(" can support this disk\n");
324 exit(22);
325 }
326 sblock.fs_frag >>= 1;
327 sblock.fs_fragshift -= 1;
328 sblock.fs_fsize <<= 1;
329 sblock.fs_nspf <<= 1;
330 }
331 /*
332 * Ensure that cylinder group with mincpg has enough space for inodes.
333 */
334 inodecramped = 0;
335 inospercg = calcipg(mincpg, bpcg, &usedb);
336 sblock.fs_ipg = inospercg;
337 while (inospercg > MAXIPG(&sblock)) {
338 inodecramped = 1;
339 if (mincpc == 1 || sblock.fs_frag == 1 ||
340 sblock.fs_bsize == MINBSIZE)
341 break;
342 printf("With a block size of %d %s %d\n", sblock.fs_bsize,
343 "minimum bytes per inode is",
344 (int)((mincpg * (off_t)bpcg - usedb)
345 / MAXIPG(&sblock) + 1));
346 sblock.fs_bsize >>= 1;
347 sblock.fs_frag >>= 1;
348 sblock.fs_fragshift -= 1;
349 mincpc >>= 1;
350 sblock.fs_cpg = roundup(mincpgcnt, mincpc);
351 if (CGSIZE(&sblock) > sblock.fs_bsize) {
352 sblock.fs_bsize <<= 1;
353 break;
354 }
355 mincpg = sblock.fs_cpg;
356 inospercg = calcipg(mincpg, bpcg, &usedb);
357 sblock.fs_ipg = inospercg;
358 }
359 if (inodecramped) {
360 if (inospercg > MAXIPG(&sblock)) {
361 printf("Minimum bytes per inode is %d\n",
362 (int)((mincpg * (off_t)bpcg - usedb)
363 / MAXIPG(&sblock) + 1));
364 } else if (!mapcramped) {
365 printf("With %d bytes per inode, ", density);
366 printf("minimum cylinders per group is %d\n", mincpg);
367 }
368 }
369 if (mapcramped) {
370 printf("With %d sectors per cylinder, ", sblock.fs_spc);
371 printf("minimum cylinders per group is %d\n", mincpg);
372 }
373 if (inodecramped || mapcramped) {
374 if (sblock.fs_bsize != bsize)
375 printf("%s to be changed from %d to %d\n",
376 "This requires the block size",
377 bsize, sblock.fs_bsize);
378 if (sblock.fs_fsize != fsize)
379 printf("\t%s to be changed from %d to %d\n",
380 "and the fragment size",
381 fsize, sblock.fs_fsize);
382 exit(23);
383 }
384 /*
385 * Calculate the number of cylinders per group
386 */
387 sblock.fs_cpg = cpg;
388 if (sblock.fs_cpg % mincpc != 0) {
389 printf("%s groups must have a multiple of %d cylinders\n",
390 cpgflg ? "Cylinder" : "Warning: cylinder", mincpc);
391 sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc);
392 if (!cpgflg)
393 cpg = sblock.fs_cpg;
394 }
395 /*
396 * Must ensure there is enough space for inodes.
397 */
398 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
399 while (sblock.fs_ipg > MAXIPG(&sblock)) {
400 inodecramped = 1;
401 sblock.fs_cpg -= mincpc;
402 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
403 }
404 /*
405 * Must ensure there is enough space to hold block map.
406 */
407 while (CGSIZE(&sblock) > sblock.fs_bsize) {
408 mapcramped = 1;
409 sblock.fs_cpg -= mincpc;
410 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
411 }
412 sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock);
413 if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) {
414 printf("panic (fs_cpg * fs_spc) %% NSPF != 0");
415 exit(24);
416 }
417 if (sblock.fs_cpg < mincpg) {
418 printf("cylinder groups must have at least %d cylinders\n",
419 mincpg);
420 exit(25);
421 } else if (sblock.fs_cpg != cpg) {
422 if (!cpgflg)
423 printf("Warning: ");
424 else if (!mapcramped && !inodecramped)
425 exit(26);
426 if (mapcramped && inodecramped)
427 printf("Block size and bytes per inode restrict");
428 else if (mapcramped)
429 printf("Block size restricts");
430 else
431 printf("Bytes per inode restrict");
432 printf(" cylinders per group to %d.\n", sblock.fs_cpg);
433 if (cpgflg)
434 exit(27);
435 }
436 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
437 /*
438 * Now have size for file system and nsect and ntrak.
439 * Determine number of cylinders and blocks in the file system.
440 */
441 sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
442 sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc;
443 if (fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
444 sblock.fs_ncyl++;
445 warned = 1;
446 }
447 if (sblock.fs_ncyl < 1) {
448 printf("file systems must have at least one cylinder\n");
449 exit(28);
450 }
451 /*
452 * Determine feasability/values of rotational layout tables.
453 *
454 * The size of the rotational layout tables is limited by the
455 * size of the superblock, SBSIZE. The amount of space available
456 * for tables is calculated as (SBSIZE - sizeof (struct fs)).
457 * The size of these tables is inversely proportional to the block
458 * size of the file system. The size increases if sectors per track
459 * are not powers of two, because more cylinders must be described
460 * by the tables before the rotational pattern repeats (fs_cpc).
461 */
462 sblock.fs_interleave = interleave;
463 sblock.fs_trackskew = trackskew;
464 sblock.fs_npsect = nphyssectors;
465 sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT;
466 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
467 if (sblock.fs_ntrak == 1) {
468 sblock.fs_cpc = 0;
469 goto next;
470 }
471 postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(int16_t);
472 rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock);
473 totalsbsize = sizeof(struct fs) + rotblsize;
474 if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) {
475 /* use old static table space */
476 sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) -
477 (char *)(&sblock.fs_firstfield);
478 sblock.fs_rotbloff = &sblock.fs_space[0] -
479 (u_char *)(&sblock.fs_firstfield);
480 } else {
481 /* use dynamic table space */
482 sblock.fs_postbloff = &sblock.fs_space[0] -
483 (u_char *)(&sblock.fs_firstfield);
484 sblock.fs_rotbloff = sblock.fs_postbloff + postblsize;
485 totalsbsize += postblsize;
486 }
487 if (totalsbsize > SBSIZE ||
488 sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) {
489 printf("%s %s %d %s %d.%s",
490 "Warning: insufficient space in super block for\n",
491 "rotational layout tables with nsect", sblock.fs_nsect,
492 "and ntrak", sblock.fs_ntrak,
493 "\nFile system performance may be impaired.\n");
494 sblock.fs_cpc = 0;
495 goto next;
496 }
497 sblock.fs_sbsize = fragroundup(&sblock, totalsbsize);
498 /*
499 * calculate the available blocks for each rotational position
500 */
501 for (cylno = 0; cylno < sblock.fs_cpc; cylno++)
502 for (rpos = 0; rpos < sblock.fs_nrpos; rpos++)
503 fs_postbl(&sblock, cylno)[rpos] = -1;
504 for (i = (rotblsize - 1) * sblock.fs_frag;
505 i >= 0; i -= sblock.fs_frag) {
506 cylno = cbtocylno(&sblock, i);
507 rpos = cbtorpos(&sblock, i);
508 blk = fragstoblks(&sblock, i);
509 if (fs_postbl(&sblock, cylno)[rpos] == -1)
510 fs_rotbl(&sblock)[blk] = 0;
511 else
512 fs_rotbl(&sblock)[blk] = fs_postbl(&sblock, cylno)[rpos] - blk;
513 fs_postbl(&sblock, cylno)[rpos] = blk;
514 }
515 next:
516 /*
517 * Compute/validate number of cylinder groups.
518 */
519 sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
520 if (sblock.fs_ncyl % sblock.fs_cpg)
521 sblock.fs_ncg++;
522 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
523 i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1);
524 if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) {
525 printf("inode blocks/cyl group (%d) >= data blocks (%d)\n",
526 cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag,
527 sblock.fs_fpg / sblock.fs_frag);
528 printf("number of cylinders per cylinder group (%d) %s.\n",
529 sblock.fs_cpg, "must be increased");
530 exit(29);
531 }
532 j = sblock.fs_ncg - 1;
533 if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg &&
534 cgdmin(&sblock, j) - cgbase(&sblock, j) > i) {
535 if (j == 0) {
536 printf("File system must have at least %d sectors\n",
537 NSPF(&sblock) *
538 (cgdmin(&sblock, 0) + 3 * sblock.fs_frag));
539 exit(30);
540 }
541 printf("Warning: inode blocks/cyl group (%d) >= "
542 "data blocks (%d) in last\n",
543 (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag,
544 i / sblock.fs_frag);
545 printf(" cylinder group. This implies %d sector(s) "
546 "cannot be allocated.\n",
547 i * NSPF(&sblock));
548 sblock.fs_ncg--;
549 sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
550 sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc /
551 NSPF(&sblock);
552 warned = 0;
553 }
554 if (warned) {
555 printf("Warning: %d sector(s) in last cylinder unallocated\n",
556 sblock.fs_spc -
557 (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1)
558 * sblock.fs_spc));
559 }
560 /*
561 * fill in remaining fields of the super block
562 */
563 sblock.fs_csaddr = cgdmin(&sblock, 0);
564 sblock.fs_cssize =
565 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
566 /*
567 * The superblock fields 'fs_csmask' and 'fs_csshift' are no
568 * longer used. However, we still initialise them so that the
569 * filesystem remains compatible with old kernels.
570 */
571 i = sblock.fs_bsize / sizeof(struct csum);
572 sblock.fs_csmask = ~(i - 1);
573 for (sblock.fs_csshift = 0; i > 1; i >>= 1)
574 sblock.fs_csshift++;
575
576 /*
577 * Setup memory for temporary in-core cylgroup summaries.
578 * Cribbed from ffs_mountfs().
579 */
580 size = sblock.fs_cssize;
581 blks = howmany(size, sblock.fs_fsize);
582 if (sblock.fs_contigsumsize > 0)
583 size += sblock.fs_ncg * sizeof(int32_t);
584 if ((space = (char *)calloc(1, size)) == NULL)
585 err(1, "memory allocation error for cg summaries");
586 sblock.fs_csp = space;
587 space = (char *)space + sblock.fs_cssize;
588 if (sblock.fs_contigsumsize > 0) {
589 int32_t *lp;
590
591 sblock.fs_maxcluster = lp = space;
592 for (i = 0; i < sblock.fs_ncg; i++)
593 *lp++ = sblock.fs_contigsumsize;
594 }
595
596 sblock.fs_magic = FS_MAGIC;
597 sblock.fs_rotdelay = rotdelay;
598 sblock.fs_minfree = minfree;
599 sblock.fs_maxcontig = maxcontig;
600 sblock.fs_maxbpg = maxbpg;
601 sblock.fs_rps = rpm / 60;
602 sblock.fs_optim = opt;
603 sblock.fs_cgrotor = 0;
604 sblock.fs_cstotal.cs_ndir = 0;
605 sblock.fs_cstotal.cs_nbfree = 0;
606 sblock.fs_cstotal.cs_nifree = 0;
607 sblock.fs_cstotal.cs_nffree = 0;
608 sblock.fs_fmod = 0;
609 sblock.fs_clean = FS_ISCLEAN;
610 sblock.fs_ronly = 0;
611
612 /*
613 * Dump out summary information about file system.
614 */
615 printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n",
616 fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
617 "cylinders", sblock.fs_ntrak, sblock.fs_nsect);
618 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
619 printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n",
620 (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
621 sblock.fs_ncg, sblock.fs_cpg,
622 (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
623 sblock.fs_ipg);
624 #undef B2MBFACTOR
625 /*
626 * Now determine how wide each column will be, and calculate how
627 * many columns will fit in a 76 char line. 76 is the width of the
628 * subwindows in sysinst.
629 */
630 printcolwidth = count_digits(
631 fsbtodb(&sblock, cgsblock(&sblock, sblock.fs_ncg -1)));
632 nprintcols = 76 / (printcolwidth + 2);
633 /*
634 * Now build the cylinders group blocks and
635 * then print out indices of cylinder groups.
636 */
637 printf("super-block backups (for fsck -b #) at:");
638 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
639 initcg(cylno, start_time.tv_sec, fsopts);
640 if (cylno % nprintcols == 0)
641 printf("\n");
642 printf(" %*d,", printcolwidth,
643 fsbtodb(&sblock, cgsblock(&sblock, cylno)));
644 fflush(stdout);
645 }
646 printf("\n");
647
648 /*
649 * Now construct the initial file system,
650 * then write out the super-block.
651 */
652 sblock.fs_time = start_time.tv_sec;
653 if (fsopts->needswap)
654 sblock.fs_flags |= FS_SWAPPED;
655 ffs_write_superblock(&sblock, fsopts);
656 return (&sblock);
657 }
658
659 /*
660 * Write out the superblock and its duplicates,
661 * and the cylinder group summaries
662 */
663 void
664 ffs_write_superblock(struct fs *fs, const fsinfo_t *fsopts)
665 {
666 int cylno, size, blks, i, saveflag;
667 void *space;
668 char *wrbuf;
669
670 saveflag = fs->fs_flags & FS_INTERNAL;
671 fs->fs_flags &= ~FS_INTERNAL;
672
673 /* Write out the master super block */
674 memcpy(writebuf, fs, sbsize);
675 if (fsopts->needswap)
676 ffs_sb_swap(fs, (struct fs*)writebuf);
677 ffs_wtfs((int)SBOFF / sectorsize, sbsize, writebuf, fsopts);
678
679 /* Write out the duplicate super blocks */
680 for (cylno = 0; cylno < sblock.fs_ncg; cylno++)
681 ffs_wtfs(fsbtodb(fs, cgsblock(fs, cylno)),
682 sbsize, writebuf, fsopts);
683
684 /* Write out the cylinder group summaries */
685 size = fs->fs_cssize;
686 blks = howmany(size, fs->fs_fsize);
687 space = (void *)fs->fs_csp;
688 if ((wrbuf = malloc(size)) == NULL)
689 err(1, "ffs_write_superblock: malloc %d", size);
690 for (i = 0; i < blks; i+= fs->fs_frag) {
691 size = fs->fs_bsize;
692 if (i + fs->fs_frag > blks)
693 size = (blks - i) * fs->fs_fsize;
694 if (fsopts->needswap)
695 ffs_csum_swap((struct csum *)space,
696 (struct csum *)wrbuf, size);
697 else
698 memcpy(wrbuf, space, (u_int)size);
699 ffs_wtfs(fsbtodb(fs, fs->fs_csaddr + i), size, wrbuf, fsopts);
700 space = (char *)space + size;
701 }
702 free(wrbuf);
703 fs->fs_flags |= saveflag;
704 }
705
706
707 /*
708 * Initialize a cylinder group.
709 */
710 static void
711 initcg(int cylno, time_t utime, const fsinfo_t *fsopts)
712 {
713 daddr_t cbase, d, dlower, dupper, dmax, blkno;
714 int32_t i;
715
716 /*
717 * Determine block bounds for cylinder group.
718 * Allow space for super block summary information in first
719 * cylinder group.
720 */
721 cbase = cgbase(&sblock, cylno);
722 dmax = cbase + sblock.fs_fpg;
723 if (dmax > sblock.fs_size)
724 dmax = sblock.fs_size;
725 dlower = cgsblock(&sblock, cylno) - cbase;
726 dupper = cgdmin(&sblock, cylno) - cbase;
727 if (cylno == 0)
728 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
729 memset(&acg, 0, sblock.fs_cgsize);
730 acg.cg_time = utime;
731 acg.cg_magic = CG_MAGIC;
732 acg.cg_cgx = cylno;
733 if (cylno == sblock.fs_ncg - 1)
734 acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
735 else
736 acg.cg_ncyl = sblock.fs_cpg;
737 acg.cg_niblk = sblock.fs_ipg;
738 acg.cg_ndblk = dmax - cbase;
739 if (sblock.fs_contigsumsize > 0)
740 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
741 acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
742 acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t);
743 acg.cg_iusedoff = acg.cg_boff +
744 sblock.fs_cpg * sblock.fs_nrpos * sizeof(int16_t);
745 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
746 if (sblock.fs_contigsumsize <= 0) {
747 acg.cg_nextfreeoff = acg.cg_freeoff +
748 howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY);
749 } else {
750 acg.cg_clustersumoff = acg.cg_freeoff + howmany
751 (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) -
752 sizeof(int32_t);
753 acg.cg_clustersumoff =
754 roundup(acg.cg_clustersumoff, sizeof(int32_t));
755 acg.cg_clusteroff = acg.cg_clustersumoff +
756 (sblock.fs_contigsumsize + 1) * sizeof(int32_t);
757 acg.cg_nextfreeoff = acg.cg_clusteroff + howmany
758 (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY);
759 }
760 if (acg.cg_nextfreeoff > sblock.fs_cgsize) {
761 printf("Panic: cylinder group too big\n");
762 exit(37);
763 }
764 acg.cg_cs.cs_nifree += sblock.fs_ipg;
765 if (cylno == 0)
766 for (i = 0; i < ROOTINO; i++) {
767 setbit(cg_inosused(&acg, 0), i);
768 acg.cg_cs.cs_nifree--;
769 }
770 for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag)
771 ffs_wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
772 sblock.fs_bsize, (char *)zino, fsopts);
773 if (cylno > 0) {
774 /*
775 * In cylno 0, beginning space is reserved
776 * for boot and super blocks.
777 */
778 for (d = 0; d < dlower; d += sblock.fs_frag) {
779 blkno = d / sblock.fs_frag;
780 ffs_setblock(&sblock, cg_blksfree(&acg, 0), blkno);
781 if (sblock.fs_contigsumsize > 0)
782 setbit(cg_clustersfree(&acg, 0), blkno);
783 acg.cg_cs.cs_nbfree++;
784 cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]++;
785 cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0)
786 [cbtorpos(&sblock, d)]++;
787 }
788 sblock.fs_dsize += dlower;
789 }
790 sblock.fs_dsize += acg.cg_ndblk - dupper;
791 if ((i = (dupper % sblock.fs_frag)) != 0) {
792 acg.cg_frsum[sblock.fs_frag - i]++;
793 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
794 setbit(cg_blksfree(&acg, 0), dupper);
795 acg.cg_cs.cs_nffree++;
796 }
797 }
798 for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
799 blkno = d / sblock.fs_frag;
800 ffs_setblock(&sblock, cg_blksfree(&acg, 0), blkno);
801 if (sblock.fs_contigsumsize > 0)
802 setbit(cg_clustersfree(&acg, 0), blkno);
803 acg.cg_cs.cs_nbfree++;
804 cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]++;
805 cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0)
806 [cbtorpos(&sblock, d)]++;
807 d += sblock.fs_frag;
808 }
809 if (d < dmax - cbase) {
810 acg.cg_frsum[dmax - cbase - d]++;
811 for (; d < dmax - cbase; d++) {
812 setbit(cg_blksfree(&acg, 0), d);
813 acg.cg_cs.cs_nffree++;
814 }
815 }
816 if (sblock.fs_contigsumsize > 0) {
817 int32_t *sump = cg_clustersum(&acg, 0);
818 u_char *mapp = cg_clustersfree(&acg, 0);
819 int map = *mapp++;
820 int bit = 1;
821 int run = 0;
822
823 for (i = 0; i < acg.cg_nclusterblks; i++) {
824 if ((map & bit) != 0) {
825 run++;
826 } else if (run != 0) {
827 if (run > sblock.fs_contigsumsize)
828 run = sblock.fs_contigsumsize;
829 sump[run]++;
830 run = 0;
831 }
832 if ((i & (NBBY - 1)) != (NBBY - 1)) {
833 bit <<= 1;
834 } else {
835 map = *mapp++;
836 bit = 1;
837 }
838 }
839 if (run != 0) {
840 if (run > sblock.fs_contigsumsize)
841 run = sblock.fs_contigsumsize;
842 sump[run]++;
843 }
844 }
845 sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
846 sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
847 sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
848 sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
849 sblock.fs_cs(&sblock, cylno) = acg.cg_cs;
850 memcpy(writebuf, &acg, sblock.fs_bsize);
851 if (fsopts->needswap)
852 swap_cg(&acg, (struct cg*)writebuf);
853 ffs_wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
854 sblock.fs_bsize,
855 writebuf, fsopts);
856 }
857
858 /*
859 * Calculate number of inodes per group.
860 */
861 static int32_t
862 calcipg(int32_t cylpg, int32_t bpcg, off_t *usedbp)
863 {
864 int i;
865 int32_t ipg, new_ipg, ncg, ncyl;
866 off_t usedb;
867
868 /*
869 * Prepare to scale by fssize / (number of sectors in cylinder groups).
870 * Note that fssize is still in sectors, not file system blocks.
871 */
872 ncyl = howmany(fssize, secpercyl);
873 ncg = howmany(ncyl, cylpg);
874 /*
875 * Iterate a few times to allow for ipg depending on itself.
876 */
877 ipg = 0;
878 for (i = 0; i < 10; i++) {
879 usedb = (sblock.fs_iblkno + ipg / INOPF(&sblock))
880 * NSPF(&sblock) * (off_t)sectorsize;
881 if (cylpg * (long long)bpcg < usedb) {
882 warnx("Too many inodes per cyl group!");
883 return (MAXIPG(&sblock)+1);
884 }
885 new_ipg = (cylpg * (long long)bpcg - usedb) /
886 ((long long)density * fssize / (ncg * secpercyl * cylpg));
887 if (new_ipg <= 0)
888 new_ipg = 1; /* ensure ipg > 0 */
889 new_ipg = roundup(new_ipg, INOPB(&sblock));
890 if (new_ipg == ipg)
891 break;
892 ipg = new_ipg;
893 }
894 *usedbp = usedb;
895 return (ipg);
896 }
897
898
899 /*
900 * read a block from the file system
901 */
902 void
903 ffs_rdfs(daddr_t bno, int size, void *bf, const fsinfo_t *fsopts)
904 {
905 int n;
906 off_t offset;
907
908 offset = bno;
909 offset *= fsopts->sectorsize;
910 if (lseek(fsopts->fd, offset, SEEK_SET) < 0)
911 err(1, "ffs_rdfs: seek error: %d\n", bno);
912 n = read(fsopts->fd, bf, size);
913 if (n == -1)
914 err(1, "ffs_rdfs: read error bno %d size %d\n", bno, size);
915 else if (n != size)
916 errx(1,
917 "ffs_rdfs: read error bno %d size %d: short read of %d\n",
918 bno, size, n);
919 }
920
921 /*
922 * write a block to the file system
923 */
924 void
925 ffs_wtfs(daddr_t bno, int size, void *bf, const fsinfo_t *fsopts)
926 {
927 int n;
928 off_t offset;
929
930 offset = bno;
931 offset *= fsopts->sectorsize;
932 if (lseek(fsopts->fd, offset, SEEK_SET) < 0)
933 err(1, "ffs_wtfs: seek error: %d\n", bno);
934 n = write(fsopts->fd, bf, size);
935 if (n == -1)
936 err(1, "ffs_wtfs: write error bno %d size %d\n", bno, size);
937 else if (n != size)
938 errx(1,
939 "ffs_wtfs: write error bno %d size %d: short write of %d\n",
940 bno, size, n);
941 }
942
943 /* swap byte order of cylinder group */
944 static void
945 swap_cg(struct cg *o, struct cg *n)
946 {
947 int i, btotsize, fbsize;
948 u_int32_t *n32, *o32;
949 u_int16_t *n16, *o16;
950
951 n->cg_firstfield = bswap32(o->cg_firstfield);
952 n->cg_magic = bswap32(o->cg_magic);
953 n->cg_time = bswap32(o->cg_time);
954 n->cg_cgx = bswap32(o->cg_cgx);
955 n->cg_ncyl = bswap16(o->cg_ncyl);
956 n->cg_niblk = bswap16(o->cg_niblk);
957 n->cg_ndblk = bswap32(o->cg_ndblk);
958 n->cg_cs.cs_ndir = bswap32(o->cg_cs.cs_ndir);
959 n->cg_cs.cs_nbfree = bswap32(o->cg_cs.cs_nbfree);
960 n->cg_cs.cs_nifree = bswap32(o->cg_cs.cs_nifree);
961 n->cg_cs.cs_nffree = bswap32(o->cg_cs.cs_nffree);
962 n->cg_rotor = bswap32(o->cg_rotor);
963 n->cg_frotor = bswap32(o->cg_frotor);
964 n->cg_irotor = bswap32(o->cg_irotor);
965 n->cg_btotoff = bswap32(o->cg_btotoff);
966 n->cg_boff = bswap32(o->cg_boff);
967 n->cg_iusedoff = bswap32(o->cg_iusedoff);
968 n->cg_freeoff = bswap32(o->cg_freeoff);
969 n->cg_nextfreeoff = bswap32(o->cg_nextfreeoff);
970 n->cg_clustersumoff = bswap32(o->cg_clustersumoff);
971 n->cg_clusteroff = bswap32(o->cg_clusteroff);
972 n->cg_nclusterblks = bswap32(o->cg_nclusterblks);
973 for (i=0; i < MAXFRAG; i++)
974 n->cg_frsum[i] = bswap32(o->cg_frsum[i]);
975
976 /* alays new format */
977 if (n->cg_magic == CG_MAGIC) {
978 btotsize = n->cg_boff - n->cg_btotoff;
979 fbsize = n->cg_iusedoff - n->cg_boff;
980 n32 = (u_int32_t*)((u_int8_t*)n + n->cg_btotoff);
981 o32 = (u_int32_t*)((u_int8_t*)o + n->cg_btotoff);
982 n16 = (u_int16_t*)((u_int8_t*)n + n->cg_boff);
983 o16 = (u_int16_t*)((u_int8_t*)o + n->cg_boff);
984 } else {
985 btotsize = bswap32(n->cg_boff) - bswap32(n->cg_btotoff);
986 fbsize = bswap32(n->cg_iusedoff) - bswap32(n->cg_boff);
987 n32 = (u_int32_t*)((u_int8_t*)n + bswap32(n->cg_btotoff));
988 o32 = (u_int32_t*)((u_int8_t*)o + bswap32(n->cg_btotoff));
989 n16 = (u_int16_t*)((u_int8_t*)n + bswap32(n->cg_boff));
990 o16 = (u_int16_t*)((u_int8_t*)o + bswap32(n->cg_boff));
991 }
992 for (i=0; i < btotsize / sizeof(u_int32_t); i++)
993 n32[i] = bswap32(o32[i]);
994
995 for (i=0; i < fbsize/sizeof(u_int16_t); i++)
996 n16[i] = bswap16(o16[i]);
997
998 if (n->cg_magic == CG_MAGIC) {
999 n32 = (u_int32_t*)((u_int8_t*)n + n->cg_clustersumoff);
1000 o32 = (u_int32_t*)((u_int8_t*)o + n->cg_clustersumoff);
1001 } else {
1002 n32 = (u_int32_t*)((u_int8_t*)n + bswap32(n->cg_clustersumoff));
1003 o32 = (u_int32_t*)((u_int8_t*)o + bswap32(n->cg_clustersumoff));
1004 }
1005 for (i = 1; i < sblock.fs_contigsumsize + 1; i++)
1006 n32[i] = bswap32(o32[i]);
1007 }
1008
1009 /* Determine how many digits are needed to print a given integer */
1010 static int
1011 count_digits(int num)
1012 {
1013 int ndig;
1014
1015 for(ndig = 1; num > 9; num /=10, ndig++);
1016
1017 return (ndig);
1018 }
1019