mkfs.c revision 1.9 1 /* $NetBSD: mkfs.c,v 1.9 2002/01/31 22:44:04 tv Exp $ */
2 /* From NetBSD: mkfs.c,v 1.59 2001/12/31 07:07:58 lukem Exp $ */
3
4 /*
5 * Copyright (c) 1980, 1989, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 */
36
37 #include <sys/cdefs.h>
38 #if defined(__RCSID) && !defined(lint)
39 #if 0
40 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95";
41 #else
42 __RCSID("$NetBSD: mkfs.c,v 1.9 2002/01/31 22:44:04 tv Exp $");
43 #endif
44 #endif /* not lint */
45
46 #include <sys/param.h>
47 #include <sys/time.h>
48 #include <sys/resource.h>
49
50 #include <stdio.h>
51 #include <stdlib.h>
52 #include <string.h>
53 #include <unistd.h>
54
55 #include "makefs.h"
56
57 #include <ufs/ufs/dinode.h>
58 #include <ufs/ufs/dir.h>
59 #include <ufs/ufs/ufs_bswap.h>
60 #include <ufs/ffs/fs.h>
61
62 #include "ffs/ufs_inode.h"
63 #include "ffs/ffs_extern.h"
64 #include "ffs/newfs_extern.h"
65
66 static void initcg(int, time_t, const fsinfo_t *);
67 static int32_t calcipg(int32_t, int32_t, off_t *);
68 static void swap_cg(struct cg *, struct cg *);
69
70 static int count_digits(int);
71
72 /*
73 * make file system for cylinder-group style file systems
74 */
75
76 /*
77 * We limit the size of the inode map to be no more than a
78 * third of the cylinder group space, since we must leave at
79 * least an equal amount of space for the block map.
80 *
81 * N.B.: MAXIPG must be a multiple of INOPB(fs).
82 */
83 #define MAXIPG(fs) roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs))
84
85 #define UMASK 0755
86 #define POWEROF2(num) (((num) & ((num) - 1)) == 0)
87
88 union {
89 struct fs fs;
90 char pad[SBSIZE];
91 } fsun;
92 #define sblock fsun.fs
93
94 union {
95 struct cg cg;
96 char pad[MAXBSIZE];
97 } cgun;
98 #define acg cgun.cg
99
100 struct dinode zino[MAXBSIZE / DINODE_SIZE];
101
102 char writebuf[MAXBSIZE];
103
104 static int Oflag; /* format as an 4.3BSD file system */
105 static int fssize; /* file system size */
106 static int ntracks; /* # tracks/cylinder */
107 static int nsectors; /* # sectors/track */
108 static int nphyssectors; /* # sectors/track including spares */
109 static int secpercyl; /* sectors per cylinder */
110 static int sectorsize; /* bytes/sector */
111 static int rpm; /* revolutions/minute of drive */
112 static int interleave; /* hardware sector interleave */
113 static int trackskew; /* sector 0 skew, per track */
114 static int fsize; /* fragment size */
115 static int bsize; /* block size */
116 static int cpg; /* cylinders/cylinder group */
117 static int cpgflg; /* cylinders/cylinder group flag was given */
118 static int minfree; /* free space threshold */
119 static int opt; /* optimization preference (space or time) */
120 static int density; /* number of bytes per inode */
121 static int maxcontig; /* max contiguous blocks to allocate */
122 static int rotdelay; /* rotational delay between blocks */
123 static int maxbpg; /* maximum blocks per file in a cyl group */
124 static int nrpos; /* # of distinguished rotational positions */
125 static int bbsize; /* boot block size */
126 static int sbsize; /* superblock size */
127 static int avgfilesize; /* expected average file size */
128 static int avgfpdir; /* expected number of files per directory */
129
130
131 struct fs *
132 ffs_mkfs(const char *fsys, const fsinfo_t *fsopts)
133 {
134 int32_t i, mincpc, mincpg, inospercg;
135 int32_t cylno, rpos, blk, j, warned = 0;
136 int32_t used, mincpgcnt, bpcg;
137 off_t usedb;
138 int32_t mapcramped, inodecramped;
139 int32_t postblsize, rotblsize, totalsbsize;
140 long long sizepb;
141 void *space;
142 int size, blks;
143 int nprintcols, printcolwidth;
144
145 Oflag = 0;
146 fssize = fsopts->size / fsopts->sectorsize;
147 ntracks = fsopts->ntracks;
148 nsectors = fsopts->nsectors;
149 nphyssectors = fsopts->nsectors; /* XXX: no trackspares */
150 secpercyl = nsectors * ntracks;
151 sectorsize = fsopts->sectorsize;
152 rpm = fsopts->rpm;
153 interleave = 1;
154 trackskew = 0;
155 fsize = fsopts->fsize;
156 bsize = fsopts->bsize;
157 cpg = fsopts->cpg;
158 cpgflg = fsopts->cpgflg;
159 minfree = fsopts->minfree;
160 opt = fsopts->optimization;
161 density = fsopts->density;
162 maxcontig = fsopts->maxcontig;
163 rotdelay = fsopts->rotdelay;
164 maxbpg = fsopts->maxbpg;
165 nrpos = fsopts->nrpos;
166 bbsize = BBSIZE;
167 sbsize = SBSIZE;
168 avgfilesize = fsopts->avgfilesize;
169 avgfpdir = fsopts->avgfpdir;
170
171 if (Oflag) {
172 sblock.fs_inodefmt = FS_42INODEFMT;
173 sblock.fs_maxsymlinklen = 0;
174 } else {
175 sblock.fs_inodefmt = FS_44INODEFMT;
176 sblock.fs_maxsymlinklen = MAXSYMLINKLEN;
177 }
178 /*
179 * Validate the given file system size.
180 * Verify that its last block can actually be accessed.
181 */
182 if (fssize <= 0)
183 printf("preposterous size %d\n", fssize), exit(13);
184 ffs_wtfs(fssize - 1, sectorsize, (char *)&sblock, fsopts);
185
186 /*
187 * collect and verify the sector and track info
188 */
189 sblock.fs_nsect = nsectors;
190 sblock.fs_ntrak = ntracks;
191 if (sblock.fs_ntrak <= 0)
192 printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14);
193 if (sblock.fs_nsect <= 0)
194 printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15);
195 /*
196 * collect and verify the filesystem density info
197 */
198 sblock.fs_avgfilesize = avgfilesize;
199 sblock.fs_avgfpdir = avgfpdir;
200 if (sblock.fs_avgfilesize <= 0)
201 printf("illegal expected average file size %d\n",
202 sblock.fs_avgfilesize), exit(14);
203 if (sblock.fs_avgfpdir <= 0)
204 printf("illegal expected number of files per directory %d\n",
205 sblock.fs_avgfpdir), exit(15);
206 /*
207 * collect and verify the block and fragment sizes
208 */
209 sblock.fs_bsize = bsize;
210 sblock.fs_fsize = fsize;
211 if (!POWEROF2(sblock.fs_bsize)) {
212 printf("block size must be a power of 2, not %d\n",
213 sblock.fs_bsize);
214 exit(16);
215 }
216 if (!POWEROF2(sblock.fs_fsize)) {
217 printf("fragment size must be a power of 2, not %d\n",
218 sblock.fs_fsize);
219 exit(17);
220 }
221 if (sblock.fs_fsize < sectorsize) {
222 printf("fragment size %d is too small, minimum is %d\n",
223 sblock.fs_fsize, sectorsize);
224 exit(18);
225 }
226 if (sblock.fs_bsize > MAXBSIZE) {
227 printf("block size %d is too large, maximum is %d\n",
228 sblock.fs_bsize, MAXBSIZE);
229 exit(19);
230 }
231 if (sblock.fs_bsize < MINBSIZE) {
232 printf("block size %d is too small, minimum is %d\n",
233 sblock.fs_bsize, MINBSIZE);
234 exit(19);
235 }
236 if (sblock.fs_bsize < sblock.fs_fsize) {
237 printf("block size (%d) cannot be smaller than fragment size (%d)\n",
238 sblock.fs_bsize, sblock.fs_fsize);
239 exit(20);
240 }
241 sblock.fs_bmask = ~(sblock.fs_bsize - 1);
242 sblock.fs_fmask = ~(sblock.fs_fsize - 1);
243 sblock.fs_qbmask = ~sblock.fs_bmask;
244 sblock.fs_qfmask = ~sblock.fs_fmask;
245 for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
246 sblock.fs_bshift++;
247 for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
248 sblock.fs_fshift++;
249 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
250 for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
251 sblock.fs_fragshift++;
252 if (sblock.fs_frag > MAXFRAG) {
253 printf("fragment size %d is too small, "
254 "minimum with block size %d is %d\n",
255 sblock.fs_fsize, sblock.fs_bsize,
256 sblock.fs_bsize / MAXFRAG);
257 exit(21);
258 }
259 sblock.fs_nrpos = nrpos;
260 sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t);
261 sblock.fs_inopb = sblock.fs_bsize / DINODE_SIZE;
262 sblock.fs_nspf = sblock.fs_fsize / sectorsize;
263 for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1)
264 sblock.fs_fsbtodb++;
265 sblock.fs_sblkno =
266 roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag);
267 sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
268 roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag));
269 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
270 sblock.fs_cgoffset = roundup(
271 howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag);
272 for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1)
273 sblock.fs_cgmask <<= 1;
274 if (!POWEROF2(sblock.fs_ntrak))
275 sblock.fs_cgmask <<= 1;
276 sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
277 for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
278 sizepb *= NINDIR(&sblock);
279 sblock.fs_maxfilesize += sizepb;
280 }
281 /*
282 * Validate specified/determined secpercyl
283 * and calculate minimum cylinders per group.
284 */
285 sblock.fs_spc = secpercyl;
286 for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc;
287 sblock.fs_cpc > 1 && (i & 1) == 0;
288 sblock.fs_cpc >>= 1, i >>= 1)
289 /* void */;
290 mincpc = sblock.fs_cpc;
291 bpcg = sblock.fs_spc * sectorsize;
292 inospercg = roundup(bpcg / DINODE_SIZE, INOPB(&sblock));
293 if (inospercg > MAXIPG(&sblock))
294 inospercg = MAXIPG(&sblock);
295 used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock);
296 mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used,
297 sblock.fs_spc);
298 mincpg = roundup(mincpgcnt, mincpc);
299 /*
300 * Ensure that cylinder group with mincpg has enough space
301 * for block maps.
302 */
303 sblock.fs_cpg = mincpg;
304 sblock.fs_ipg = inospercg;
305 if (maxcontig > 1)
306 sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG);
307 mapcramped = 0;
308 while (CGSIZE(&sblock) > sblock.fs_bsize) {
309 mapcramped = 1;
310 if (sblock.fs_bsize < MAXBSIZE) {
311 sblock.fs_bsize <<= 1;
312 if ((i & 1) == 0) {
313 i >>= 1;
314 } else {
315 sblock.fs_cpc <<= 1;
316 mincpc <<= 1;
317 mincpg = roundup(mincpgcnt, mincpc);
318 sblock.fs_cpg = mincpg;
319 }
320 sblock.fs_frag <<= 1;
321 sblock.fs_fragshift += 1;
322 if (sblock.fs_frag <= MAXFRAG)
323 continue;
324 }
325 if (sblock.fs_fsize == sblock.fs_bsize) {
326 printf("There is no block size that");
327 printf(" can support this disk\n");
328 exit(22);
329 }
330 sblock.fs_frag >>= 1;
331 sblock.fs_fragshift -= 1;
332 sblock.fs_fsize <<= 1;
333 sblock.fs_nspf <<= 1;
334 }
335 /*
336 * Ensure that cylinder group with mincpg has enough space for inodes.
337 */
338 inodecramped = 0;
339 inospercg = calcipg(mincpg, bpcg, &usedb);
340 sblock.fs_ipg = inospercg;
341 while (inospercg > MAXIPG(&sblock)) {
342 inodecramped = 1;
343 if (mincpc == 1 || sblock.fs_frag == 1 ||
344 sblock.fs_bsize == MINBSIZE)
345 break;
346 printf("With a block size of %d %s %d\n", sblock.fs_bsize,
347 "minimum bytes per inode is",
348 (int)((mincpg * (off_t)bpcg - usedb)
349 / MAXIPG(&sblock) + 1));
350 sblock.fs_bsize >>= 1;
351 sblock.fs_frag >>= 1;
352 sblock.fs_fragshift -= 1;
353 mincpc >>= 1;
354 sblock.fs_cpg = roundup(mincpgcnt, mincpc);
355 if (CGSIZE(&sblock) > sblock.fs_bsize) {
356 sblock.fs_bsize <<= 1;
357 break;
358 }
359 mincpg = sblock.fs_cpg;
360 inospercg = calcipg(mincpg, bpcg, &usedb);
361 sblock.fs_ipg = inospercg;
362 }
363 if (inodecramped) {
364 if (inospercg > MAXIPG(&sblock)) {
365 printf("Minimum bytes per inode is %d\n",
366 (int)((mincpg * (off_t)bpcg - usedb)
367 / MAXIPG(&sblock) + 1));
368 } else if (!mapcramped) {
369 printf("With %d bytes per inode, ", density);
370 printf("minimum cylinders per group is %d\n", mincpg);
371 }
372 }
373 if (mapcramped) {
374 printf("With %d sectors per cylinder, ", sblock.fs_spc);
375 printf("minimum cylinders per group is %d\n", mincpg);
376 }
377 if (inodecramped || mapcramped) {
378 if (sblock.fs_bsize != bsize)
379 printf("%s to be changed from %d to %d\n",
380 "This requires the block size",
381 bsize, sblock.fs_bsize);
382 if (sblock.fs_fsize != fsize)
383 printf("\t%s to be changed from %d to %d\n",
384 "and the fragment size",
385 fsize, sblock.fs_fsize);
386 exit(23);
387 }
388 /*
389 * Calculate the number of cylinders per group
390 */
391 sblock.fs_cpg = cpg;
392 if (sblock.fs_cpg % mincpc != 0) {
393 printf("%s groups must have a multiple of %d cylinders\n",
394 cpgflg ? "Cylinder" : "Warning: cylinder", mincpc);
395 sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc);
396 if (!cpgflg)
397 cpg = sblock.fs_cpg;
398 }
399 /*
400 * Must ensure there is enough space for inodes.
401 */
402 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
403 while (sblock.fs_ipg > MAXIPG(&sblock)) {
404 inodecramped = 1;
405 sblock.fs_cpg -= mincpc;
406 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
407 }
408 /*
409 * Must ensure there is enough space to hold block map.
410 */
411 while (CGSIZE(&sblock) > sblock.fs_bsize) {
412 mapcramped = 1;
413 sblock.fs_cpg -= mincpc;
414 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
415 }
416 sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock);
417 if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) {
418 printf("panic (fs_cpg * fs_spc) %% NSPF != 0");
419 exit(24);
420 }
421 if (sblock.fs_cpg < mincpg) {
422 printf("cylinder groups must have at least %d cylinders\n",
423 mincpg);
424 exit(25);
425 } else if (sblock.fs_cpg != cpg && cpgflg) {
426 if (!mapcramped && !inodecramped)
427 exit(26);
428 if (mapcramped && inodecramped)
429 printf("Block size and bytes per inode restrict");
430 else if (mapcramped)
431 printf("Block size restricts");
432 else
433 printf("Bytes per inode restrict");
434 printf(" cylinders per group to %d.\n", sblock.fs_cpg);
435 exit(27);
436 }
437 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
438 /*
439 * Now have size for file system and nsect and ntrak.
440 * Determine number of cylinders and blocks in the file system.
441 */
442 sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
443 sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc;
444 if (fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
445 sblock.fs_ncyl++;
446 warned = 1;
447 }
448 if (sblock.fs_ncyl < 1) {
449 printf("file systems must have at least one cylinder\n");
450 exit(28);
451 }
452 /*
453 * Determine feasability/values of rotational layout tables.
454 *
455 * The size of the rotational layout tables is limited by the
456 * size of the superblock, SBSIZE. The amount of space available
457 * for tables is calculated as (SBSIZE - sizeof (struct fs)).
458 * The size of these tables is inversely proportional to the block
459 * size of the file system. The size increases if sectors per track
460 * are not powers of two, because more cylinders must be described
461 * by the tables before the rotational pattern repeats (fs_cpc).
462 */
463 sblock.fs_interleave = interleave;
464 sblock.fs_trackskew = trackskew;
465 sblock.fs_npsect = nphyssectors;
466 sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT;
467 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
468 if (sblock.fs_ntrak == 1) {
469 sblock.fs_cpc = 0;
470 goto next;
471 }
472 postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(int16_t);
473 rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock);
474 totalsbsize = sizeof(struct fs) + rotblsize;
475 if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) {
476 /* use old static table space */
477 sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) -
478 (char *)(&sblock.fs_firstfield);
479 sblock.fs_rotbloff = &sblock.fs_space[0] -
480 (u_char *)(&sblock.fs_firstfield);
481 } else {
482 /* use dynamic table space */
483 sblock.fs_postbloff = &sblock.fs_space[0] -
484 (u_char *)(&sblock.fs_firstfield);
485 sblock.fs_rotbloff = sblock.fs_postbloff + postblsize;
486 totalsbsize += postblsize;
487 }
488 if (totalsbsize > SBSIZE ||
489 sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) {
490 printf("%s %s %d %s %d.%s",
491 "Warning: insufficient space in super block for\n",
492 "rotational layout tables with nsect", sblock.fs_nsect,
493 "and ntrak", sblock.fs_ntrak,
494 "\nFile system performance may be impaired.\n");
495 sblock.fs_cpc = 0;
496 goto next;
497 }
498 sblock.fs_sbsize = fragroundup(&sblock, totalsbsize);
499 /*
500 * calculate the available blocks for each rotational position
501 */
502 for (cylno = 0; cylno < sblock.fs_cpc; cylno++)
503 for (rpos = 0; rpos < sblock.fs_nrpos; rpos++)
504 fs_postbl(&sblock, cylno)[rpos] = -1;
505 for (i = (rotblsize - 1) * sblock.fs_frag;
506 i >= 0; i -= sblock.fs_frag) {
507 cylno = cbtocylno(&sblock, i);
508 rpos = cbtorpos(&sblock, i);
509 blk = fragstoblks(&sblock, i);
510 if (fs_postbl(&sblock, cylno)[rpos] == -1)
511 fs_rotbl(&sblock)[blk] = 0;
512 else
513 fs_rotbl(&sblock)[blk] = fs_postbl(&sblock, cylno)[rpos] - blk;
514 fs_postbl(&sblock, cylno)[rpos] = blk;
515 }
516 next:
517 /*
518 * Compute/validate number of cylinder groups.
519 */
520 sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
521 if (sblock.fs_ncyl % sblock.fs_cpg)
522 sblock.fs_ncg++;
523 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
524 i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1);
525 if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) {
526 printf("inode blocks/cyl group (%d) >= data blocks (%d)\n",
527 cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag,
528 sblock.fs_fpg / sblock.fs_frag);
529 printf("number of cylinders per cylinder group (%d) %s.\n",
530 sblock.fs_cpg, "must be increased");
531 exit(29);
532 }
533 j = sblock.fs_ncg - 1;
534 if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg &&
535 cgdmin(&sblock, j) - cgbase(&sblock, j) > i) {
536 if (j == 0) {
537 printf("File system must have at least %d sectors\n",
538 NSPF(&sblock) *
539 (cgdmin(&sblock, 0) + 3 * sblock.fs_frag));
540 exit(30);
541 }
542 printf("Warning: inode blocks/cyl group (%d) >= "
543 "data blocks (%d) in last\n",
544 (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag,
545 i / sblock.fs_frag);
546 printf(" cylinder group. This implies %d sector(s) "
547 "cannot be allocated.\n",
548 i * NSPF(&sblock));
549 sblock.fs_ncg--;
550 sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
551 sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc /
552 NSPF(&sblock);
553 warned = 0;
554 }
555 if (warned) {
556 printf("Warning: %d sector(s) in last cylinder unallocated\n",
557 sblock.fs_spc -
558 (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1)
559 * sblock.fs_spc));
560 }
561 /*
562 * fill in remaining fields of the super block
563 */
564 sblock.fs_csaddr = cgdmin(&sblock, 0);
565 sblock.fs_cssize =
566 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
567 /*
568 * The superblock fields 'fs_csmask' and 'fs_csshift' are no
569 * longer used. However, we still initialise them so that the
570 * filesystem remains compatible with old kernels.
571 */
572 i = sblock.fs_bsize / sizeof(struct csum);
573 sblock.fs_csmask = ~(i - 1);
574 for (sblock.fs_csshift = 0; i > 1; i >>= 1)
575 sblock.fs_csshift++;
576
577 /*
578 * Setup memory for temporary in-core cylgroup summaries.
579 * Cribbed from ffs_mountfs().
580 */
581 size = sblock.fs_cssize;
582 blks = howmany(size, sblock.fs_fsize);
583 if (sblock.fs_contigsumsize > 0)
584 size += sblock.fs_ncg * sizeof(int32_t);
585 if ((space = (char *)calloc(1, size)) == NULL)
586 err(1, "memory allocation error for cg summaries");
587 sblock.fs_csp = space;
588 space = (char *)space + sblock.fs_cssize;
589 if (sblock.fs_contigsumsize > 0) {
590 int32_t *lp;
591
592 sblock.fs_maxcluster = lp = space;
593 for (i = 0; i < sblock.fs_ncg; i++)
594 *lp++ = sblock.fs_contigsumsize;
595 }
596
597 sblock.fs_magic = FS_MAGIC;
598 sblock.fs_rotdelay = rotdelay;
599 sblock.fs_minfree = minfree;
600 sblock.fs_maxcontig = maxcontig;
601 sblock.fs_maxbpg = maxbpg;
602 sblock.fs_rps = rpm / 60;
603 sblock.fs_optim = opt;
604 sblock.fs_cgrotor = 0;
605 sblock.fs_cstotal.cs_ndir = 0;
606 sblock.fs_cstotal.cs_nbfree = 0;
607 sblock.fs_cstotal.cs_nifree = 0;
608 sblock.fs_cstotal.cs_nffree = 0;
609 sblock.fs_fmod = 0;
610 sblock.fs_clean = FS_ISCLEAN;
611 sblock.fs_ronly = 0;
612
613 /*
614 * Dump out summary information about file system.
615 */
616 printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n",
617 fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
618 "cylinders", sblock.fs_ntrak, sblock.fs_nsect);
619 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
620 printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n",
621 (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
622 sblock.fs_ncg, sblock.fs_cpg,
623 (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
624 sblock.fs_ipg);
625 #undef B2MBFACTOR
626 /*
627 * Now determine how wide each column will be, and calculate how
628 * many columns will fit in a 76 char line. 76 is the width of the
629 * subwindows in sysinst.
630 */
631 printcolwidth = count_digits(
632 fsbtodb(&sblock, cgsblock(&sblock, sblock.fs_ncg -1)));
633 nprintcols = 76 / (printcolwidth + 2);
634 /*
635 * Now build the cylinders group blocks and
636 * then print out indices of cylinder groups.
637 */
638 printf("super-block backups (for fsck -b #) at:");
639 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
640 initcg(cylno, start_time.tv_sec, fsopts);
641 if (cylno % nprintcols == 0)
642 printf("\n");
643 printf(" %*d,", printcolwidth,
644 fsbtodb(&sblock, cgsblock(&sblock, cylno)));
645 fflush(stdout);
646 }
647 printf("\n");
648
649 /*
650 * Now construct the initial file system,
651 * then write out the super-block.
652 */
653 sblock.fs_time = start_time.tv_sec;
654 if (fsopts->needswap)
655 sblock.fs_flags |= FS_SWAPPED;
656 ffs_write_superblock(&sblock, fsopts);
657 return (&sblock);
658 }
659
660 /*
661 * Write out the superblock and its duplicates,
662 * and the cylinder group summaries
663 */
664 void
665 ffs_write_superblock(struct fs *fs, const fsinfo_t *fsopts)
666 {
667 int cylno, size, blks, i, saveflag;
668 void *space;
669 char *wrbuf;
670
671 saveflag = fs->fs_flags & FS_INTERNAL;
672 fs->fs_flags &= ~FS_INTERNAL;
673
674 /* Write out the master super block */
675 memcpy(writebuf, fs, sbsize);
676 if (fsopts->needswap)
677 ffs_sb_swap(fs, (struct fs*)writebuf);
678 ffs_wtfs((int)SBOFF / sectorsize, sbsize, writebuf, fsopts);
679
680 /* Write out the duplicate super blocks */
681 for (cylno = 0; cylno < sblock.fs_ncg; cylno++)
682 ffs_wtfs(fsbtodb(fs, cgsblock(fs, cylno)),
683 sbsize, writebuf, fsopts);
684
685 /* Write out the cylinder group summaries */
686 size = fs->fs_cssize;
687 blks = howmany(size, fs->fs_fsize);
688 space = (void *)fs->fs_csp;
689 if ((wrbuf = malloc(size)) == NULL)
690 err(1, "ffs_write_superblock: malloc %d", size);
691 for (i = 0; i < blks; i+= fs->fs_frag) {
692 size = fs->fs_bsize;
693 if (i + fs->fs_frag > blks)
694 size = (blks - i) * fs->fs_fsize;
695 if (fsopts->needswap)
696 ffs_csum_swap((struct csum *)space,
697 (struct csum *)wrbuf, size);
698 else
699 memcpy(wrbuf, space, (u_int)size);
700 ffs_wtfs(fsbtodb(fs, fs->fs_csaddr + i), size, wrbuf, fsopts);
701 space = (char *)space + size;
702 }
703 free(wrbuf);
704 fs->fs_flags |= saveflag;
705 }
706
707
708 /*
709 * Initialize a cylinder group.
710 */
711 static void
712 initcg(int cylno, time_t utime, const fsinfo_t *fsopts)
713 {
714 daddr_t cbase, d, dlower, dupper, dmax, blkno;
715 int32_t i;
716
717 /*
718 * Determine block bounds for cylinder group.
719 * Allow space for super block summary information in first
720 * cylinder group.
721 */
722 cbase = cgbase(&sblock, cylno);
723 dmax = cbase + sblock.fs_fpg;
724 if (dmax > sblock.fs_size)
725 dmax = sblock.fs_size;
726 dlower = cgsblock(&sblock, cylno) - cbase;
727 dupper = cgdmin(&sblock, cylno) - cbase;
728 if (cylno == 0)
729 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
730 memset(&acg, 0, sblock.fs_cgsize);
731 acg.cg_time = utime;
732 acg.cg_magic = CG_MAGIC;
733 acg.cg_cgx = cylno;
734 if (cylno == sblock.fs_ncg - 1)
735 acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
736 else
737 acg.cg_ncyl = sblock.fs_cpg;
738 acg.cg_niblk = sblock.fs_ipg;
739 acg.cg_ndblk = dmax - cbase;
740 if (sblock.fs_contigsumsize > 0)
741 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
742 acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
743 acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t);
744 acg.cg_iusedoff = acg.cg_boff +
745 sblock.fs_cpg * sblock.fs_nrpos * sizeof(int16_t);
746 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
747 if (sblock.fs_contigsumsize <= 0) {
748 acg.cg_nextfreeoff = acg.cg_freeoff +
749 howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY);
750 } else {
751 acg.cg_clustersumoff = acg.cg_freeoff + howmany
752 (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) -
753 sizeof(int32_t);
754 acg.cg_clustersumoff =
755 roundup(acg.cg_clustersumoff, sizeof(int32_t));
756 acg.cg_clusteroff = acg.cg_clustersumoff +
757 (sblock.fs_contigsumsize + 1) * sizeof(int32_t);
758 acg.cg_nextfreeoff = acg.cg_clusteroff + howmany
759 (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY);
760 }
761 if (acg.cg_nextfreeoff > sblock.fs_cgsize) {
762 printf("Panic: cylinder group too big\n");
763 exit(37);
764 }
765 acg.cg_cs.cs_nifree += sblock.fs_ipg;
766 if (cylno == 0)
767 for (i = 0; i < ROOTINO; i++) {
768 setbit(cg_inosused(&acg, 0), i);
769 acg.cg_cs.cs_nifree--;
770 }
771 for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag)
772 ffs_wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
773 sblock.fs_bsize, (char *)zino, fsopts);
774 if (cylno > 0) {
775 /*
776 * In cylno 0, beginning space is reserved
777 * for boot and super blocks.
778 */
779 for (d = 0; d < dlower; d += sblock.fs_frag) {
780 blkno = d / sblock.fs_frag;
781 ffs_setblock(&sblock, cg_blksfree(&acg, 0), blkno);
782 if (sblock.fs_contigsumsize > 0)
783 setbit(cg_clustersfree(&acg, 0), blkno);
784 acg.cg_cs.cs_nbfree++;
785 cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]++;
786 cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0)
787 [cbtorpos(&sblock, d)]++;
788 }
789 sblock.fs_dsize += dlower;
790 }
791 sblock.fs_dsize += acg.cg_ndblk - dupper;
792 if ((i = (dupper % sblock.fs_frag)) != 0) {
793 acg.cg_frsum[sblock.fs_frag - i]++;
794 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
795 setbit(cg_blksfree(&acg, 0), dupper);
796 acg.cg_cs.cs_nffree++;
797 }
798 }
799 for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
800 blkno = d / sblock.fs_frag;
801 ffs_setblock(&sblock, cg_blksfree(&acg, 0), blkno);
802 if (sblock.fs_contigsumsize > 0)
803 setbit(cg_clustersfree(&acg, 0), blkno);
804 acg.cg_cs.cs_nbfree++;
805 cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]++;
806 cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0)
807 [cbtorpos(&sblock, d)]++;
808 d += sblock.fs_frag;
809 }
810 if (d < dmax - cbase) {
811 acg.cg_frsum[dmax - cbase - d]++;
812 for (; d < dmax - cbase; d++) {
813 setbit(cg_blksfree(&acg, 0), d);
814 acg.cg_cs.cs_nffree++;
815 }
816 }
817 if (sblock.fs_contigsumsize > 0) {
818 int32_t *sump = cg_clustersum(&acg, 0);
819 u_char *mapp = cg_clustersfree(&acg, 0);
820 int map = *mapp++;
821 int bit = 1;
822 int run = 0;
823
824 for (i = 0; i < acg.cg_nclusterblks; i++) {
825 if ((map & bit) != 0) {
826 run++;
827 } else if (run != 0) {
828 if (run > sblock.fs_contigsumsize)
829 run = sblock.fs_contigsumsize;
830 sump[run]++;
831 run = 0;
832 }
833 if ((i & (NBBY - 1)) != (NBBY - 1)) {
834 bit <<= 1;
835 } else {
836 map = *mapp++;
837 bit = 1;
838 }
839 }
840 if (run != 0) {
841 if (run > sblock.fs_contigsumsize)
842 run = sblock.fs_contigsumsize;
843 sump[run]++;
844 }
845 }
846 sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
847 sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
848 sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
849 sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
850 sblock.fs_cs(&sblock, cylno) = acg.cg_cs;
851 memcpy(writebuf, &acg, sblock.fs_bsize);
852 if (fsopts->needswap)
853 swap_cg(&acg, (struct cg*)writebuf);
854 ffs_wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
855 sblock.fs_bsize,
856 writebuf, fsopts);
857 }
858
859 /*
860 * Calculate number of inodes per group.
861 */
862 static int32_t
863 calcipg(int32_t cylpg, int32_t bpcg, off_t *usedbp)
864 {
865 int i;
866 int32_t ipg, new_ipg, ncg, ncyl;
867 off_t usedb;
868
869 /*
870 * Prepare to scale by fssize / (number of sectors in cylinder groups).
871 * Note that fssize is still in sectors, not file system blocks.
872 */
873 ncyl = howmany(fssize, secpercyl);
874 ncg = howmany(ncyl, cylpg);
875 /*
876 * Iterate a few times to allow for ipg depending on itself.
877 */
878 ipg = 0;
879 for (i = 0; i < 10; i++) {
880 usedb = (sblock.fs_iblkno + ipg / INOPF(&sblock))
881 * NSPF(&sblock) * (off_t)sectorsize;
882 if (cylpg * (long long)bpcg < usedb) {
883 warnx("Too many inodes per cyl group!");
884 return (MAXIPG(&sblock)+1);
885 }
886 new_ipg = (cylpg * (long long)bpcg - usedb) /
887 (long long)density * fssize / (ncg * secpercyl * cylpg);
888 if (new_ipg <= 0)
889 new_ipg = 1; /* ensure ipg > 0 */
890 new_ipg = roundup(new_ipg, INOPB(&sblock));
891 if (new_ipg == ipg)
892 break;
893 ipg = new_ipg;
894 }
895 *usedbp = usedb;
896 return (ipg);
897 }
898
899
900 /*
901 * read a block from the file system
902 */
903 void
904 ffs_rdfs(daddr_t bno, int size, void *bf, const fsinfo_t *fsopts)
905 {
906 int n;
907 off_t offset;
908
909 offset = bno;
910 offset *= fsopts->sectorsize;
911 if (lseek(fsopts->fd, offset, SEEK_SET) < 0)
912 err(1, "ffs_rdfs: seek error: %d\n", bno);
913 n = read(fsopts->fd, bf, size);
914 if (n == -1)
915 err(1, "ffs_rdfs: read error bno %d size %d\n", bno, size);
916 else if (n != size)
917 errx(1,
918 "ffs_rdfs: read error bno %d size %d: short read of %d\n",
919 bno, size, n);
920 }
921
922 /*
923 * write a block to the file system
924 */
925 void
926 ffs_wtfs(daddr_t bno, int size, void *bf, const fsinfo_t *fsopts)
927 {
928 int n;
929 off_t offset;
930
931 offset = bno;
932 offset *= fsopts->sectorsize;
933 if (lseek(fsopts->fd, offset, SEEK_SET) < 0)
934 err(1, "ffs_wtfs: seek error: %d\n", bno);
935 n = write(fsopts->fd, bf, size);
936 if (n == -1)
937 err(1, "ffs_wtfs: write error bno %d size %d\n", bno, size);
938 else if (n != size)
939 errx(1,
940 "ffs_wtfs: write error bno %d size %d: short write of %d\n",
941 bno, size, n);
942 }
943
944 /* swap byte order of cylinder group */
945 static void
946 swap_cg(struct cg *o, struct cg *n)
947 {
948 int i, btotsize, fbsize;
949 u_int32_t *n32, *o32;
950 u_int16_t *n16, *o16;
951
952 n->cg_firstfield = bswap32(o->cg_firstfield);
953 n->cg_magic = bswap32(o->cg_magic);
954 n->cg_time = bswap32(o->cg_time);
955 n->cg_cgx = bswap32(o->cg_cgx);
956 n->cg_ncyl = bswap16(o->cg_ncyl);
957 n->cg_niblk = bswap16(o->cg_niblk);
958 n->cg_ndblk = bswap32(o->cg_ndblk);
959 n->cg_cs.cs_ndir = bswap32(o->cg_cs.cs_ndir);
960 n->cg_cs.cs_nbfree = bswap32(o->cg_cs.cs_nbfree);
961 n->cg_cs.cs_nifree = bswap32(o->cg_cs.cs_nifree);
962 n->cg_cs.cs_nffree = bswap32(o->cg_cs.cs_nffree);
963 n->cg_rotor = bswap32(o->cg_rotor);
964 n->cg_frotor = bswap32(o->cg_frotor);
965 n->cg_irotor = bswap32(o->cg_irotor);
966 n->cg_btotoff = bswap32(o->cg_btotoff);
967 n->cg_boff = bswap32(o->cg_boff);
968 n->cg_iusedoff = bswap32(o->cg_iusedoff);
969 n->cg_freeoff = bswap32(o->cg_freeoff);
970 n->cg_nextfreeoff = bswap32(o->cg_nextfreeoff);
971 n->cg_clustersumoff = bswap32(o->cg_clustersumoff);
972 n->cg_clusteroff = bswap32(o->cg_clusteroff);
973 n->cg_nclusterblks = bswap32(o->cg_nclusterblks);
974 for (i=0; i < MAXFRAG; i++)
975 n->cg_frsum[i] = bswap32(o->cg_frsum[i]);
976
977 /* alays new format */
978 if (n->cg_magic == CG_MAGIC) {
979 btotsize = n->cg_boff - n->cg_btotoff;
980 fbsize = n->cg_iusedoff - n->cg_boff;
981 n32 = (u_int32_t*)((u_int8_t*)n + n->cg_btotoff);
982 o32 = (u_int32_t*)((u_int8_t*)o + n->cg_btotoff);
983 n16 = (u_int16_t*)((u_int8_t*)n + n->cg_boff);
984 o16 = (u_int16_t*)((u_int8_t*)o + n->cg_boff);
985 } else {
986 btotsize = bswap32(n->cg_boff) - bswap32(n->cg_btotoff);
987 fbsize = bswap32(n->cg_iusedoff) - bswap32(n->cg_boff);
988 n32 = (u_int32_t*)((u_int8_t*)n + bswap32(n->cg_btotoff));
989 o32 = (u_int32_t*)((u_int8_t*)o + bswap32(n->cg_btotoff));
990 n16 = (u_int16_t*)((u_int8_t*)n + bswap32(n->cg_boff));
991 o16 = (u_int16_t*)((u_int8_t*)o + bswap32(n->cg_boff));
992 }
993 for (i=0; i < btotsize / sizeof(u_int32_t); i++)
994 n32[i] = bswap32(o32[i]);
995
996 for (i=0; i < fbsize/sizeof(u_int16_t); i++)
997 n16[i] = bswap16(o16[i]);
998
999 if (n->cg_magic == CG_MAGIC) {
1000 n32 = (u_int32_t*)((u_int8_t*)n + n->cg_clustersumoff);
1001 o32 = (u_int32_t*)((u_int8_t*)o + n->cg_clustersumoff);
1002 } else {
1003 n32 = (u_int32_t*)((u_int8_t*)n + bswap32(n->cg_clustersumoff));
1004 o32 = (u_int32_t*)((u_int8_t*)o + bswap32(n->cg_clustersumoff));
1005 }
1006 for (i = 1; i < sblock.fs_contigsumsize + 1; i++)
1007 n32[i] = bswap32(o32[i]);
1008 }
1009
1010 /* Determine how many digits are needed to print a given integer */
1011 static int
1012 count_digits(int num)
1013 {
1014 int ndig;
1015
1016 for(ndig = 1; num > 9; num /=10, ndig++);
1017
1018 return (ndig);
1019 }
1020