Home | History | Annotate | Line # | Download | only in npfctl
npf_bpf_comp.c revision 1.13.2.2
      1       1.1     rmind /*-
      2  1.13.2.1    martin  * Copyright (c) 2010-2019 The NetBSD Foundation, Inc.
      3       1.1     rmind  * All rights reserved.
      4       1.1     rmind  *
      5       1.1     rmind  * This material is based upon work partially supported by The
      6       1.1     rmind  * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
      7       1.1     rmind  *
      8       1.1     rmind  * Redistribution and use in source and binary forms, with or without
      9       1.1     rmind  * modification, are permitted provided that the following conditions
     10       1.1     rmind  * are met:
     11       1.1     rmind  * 1. Redistributions of source code must retain the above copyright
     12       1.1     rmind  *    notice, this list of conditions and the following disclaimer.
     13       1.1     rmind  * 2. Redistributions in binary form must reproduce the above copyright
     14       1.1     rmind  *    notice, this list of conditions and the following disclaimer in the
     15       1.1     rmind  *    documentation and/or other materials provided with the distribution.
     16       1.1     rmind  *
     17       1.1     rmind  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     18       1.1     rmind  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     19       1.1     rmind  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     20       1.1     rmind  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     21       1.1     rmind  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22       1.1     rmind  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23       1.1     rmind  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24       1.1     rmind  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25       1.1     rmind  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26       1.1     rmind  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27       1.1     rmind  * POSSIBILITY OF SUCH DAMAGE.
     28       1.1     rmind  */
     29       1.1     rmind 
     30       1.1     rmind /*
     31       1.1     rmind  * BPF byte-code generation for NPF rules.
     32  1.13.2.1    martin  *
     33  1.13.2.1    martin  * Overview
     34  1.13.2.1    martin  *
     35  1.13.2.2    martin  *	Each NPF rule is compiled into a BPF micro-program.  There is a
     36  1.13.2.1    martin  *	BPF byte-code fragment for each higher-level filtering logic,
     37  1.13.2.1    martin  *	e.g. to match L4 protocol, IP/mask, etc.  The generation process
     38  1.13.2.1    martin  *	combines multiple BPF-byte code fragments into one program.
     39  1.13.2.1    martin  *
     40  1.13.2.1    martin  * Basic case
     41  1.13.2.1    martin  *
     42  1.13.2.2    martin  *	Consider a basic case where all filters should match.  They
     43  1.13.2.1    martin  *	are expressed as logical conjunction, e.g.:
     44  1.13.2.1    martin  *
     45  1.13.2.1    martin  *		A and B and C and D
     46  1.13.2.1    martin  *
     47  1.13.2.1    martin  *	Each test (filter) criterion can be evaluated to true (match) or
     48  1.13.2.1    martin  *	false (no match) and the logic is as follows:
     49  1.13.2.1    martin  *
     50  1.13.2.1    martin  *	- If the value is true, then jump to the "next" test (offset 0).
     51  1.13.2.1    martin  *
     52  1.13.2.1    martin  *	- If the value is false, then jump to the JUMP_MAGIC value (0xff).
     53  1.13.2.1    martin  *	This "magic" value is used to indicate that it will have to be
     54  1.13.2.1    martin  *	patched at a later stage.
     55  1.13.2.1    martin  *
     56  1.13.2.1    martin  *	Once all byte-code fragments are combined into one, then there
     57  1.13.2.1    martin  *	are two additional steps:
     58  1.13.2.1    martin  *
     59  1.13.2.2    martin  *	- Two instructions are appended at the end of the program: "return
     60  1.13.2.2    martin  *	success" followed by "return failure".
     61  1.13.2.1    martin  *
     62  1.13.2.1    martin  *	- All jumps with the JUMP_MAGIC value are patched to point to the
     63  1.13.2.1    martin  *	"return failure" instruction.
     64  1.13.2.1    martin  *
     65  1.13.2.1    martin  *	Therefore, if all filter criteria will match, then the first
     66  1.13.2.1    martin  *	instruction will be reached, indicating a successful match of the
     67  1.13.2.1    martin  *	rule.  Otherwise, if any of the criteria will not match, it will
     68  1.13.2.2    martin  *	take the failure path and the rule will not be matching.
     69  1.13.2.1    martin  *
     70  1.13.2.1    martin  * Grouping
     71  1.13.2.1    martin  *
     72  1.13.2.2    martin  *	Filters can have groups, which have a meaning of logical
     73  1.13.2.1    martin  *	disjunction, e.g.:
     74  1.13.2.1    martin  *
     75  1.13.2.1    martin  *		A and B and (C or D)
     76  1.13.2.1    martin  *
     77  1.13.2.1    martin  *	In such case, the logic inside the group has to be inverted i.e.
     78  1.13.2.1    martin  *	the jump values swapped.  If the test value is true, then jump
     79  1.13.2.1    martin  *	out of the group; if false, then jump "next".  At the end of the
     80  1.13.2.1    martin  *	group, an addition failure path is appended and the JUMP_MAGIC
     81  1.13.2.1    martin  *	uses within the group are patched to jump past the said path.
     82       1.1     rmind  */
     83       1.1     rmind 
     84       1.1     rmind #include <sys/cdefs.h>
     85  1.13.2.2    martin __RCSID("$NetBSD: npf_bpf_comp.c,v 1.13.2.2 2019/09/01 13:21:39 martin Exp $");
     86       1.1     rmind 
     87       1.1     rmind #include <stdlib.h>
     88       1.1     rmind #include <stdbool.h>
     89       1.1     rmind #include <stddef.h>
     90       1.1     rmind #include <string.h>
     91       1.1     rmind #include <inttypes.h>
     92       1.1     rmind #include <err.h>
     93       1.1     rmind #include <assert.h>
     94       1.1     rmind 
     95       1.1     rmind #include <netinet/in.h>
     96       1.1     rmind #include <netinet/in_systm.h>
     97       1.9  christos #define	__FAVOR_BSD
     98       1.1     rmind #include <netinet/ip.h>
     99       1.1     rmind #include <netinet/ip6.h>
    100       1.1     rmind #include <netinet/udp.h>
    101       1.1     rmind #include <netinet/tcp.h>
    102       1.1     rmind #include <netinet/ip_icmp.h>
    103       1.1     rmind #include <netinet/icmp6.h>
    104       1.1     rmind 
    105       1.1     rmind #include <net/bpf.h>
    106       1.1     rmind 
    107       1.1     rmind #include "npfctl.h"
    108       1.1     rmind 
    109       1.1     rmind /*
    110       1.1     rmind  * Note: clear X_EQ_L4OFF when register X is invalidated i.e. it stores
    111       1.1     rmind  * something other than L4 header offset.  Generally, when BPF_LDX is used.
    112       1.1     rmind  */
    113       1.1     rmind #define	FETCHED_L3		0x01
    114       1.6     rmind #define	CHECKED_L4		0x02
    115       1.6     rmind #define	X_EQ_L4OFF		0x04
    116       1.1     rmind 
    117       1.1     rmind struct npf_bpf {
    118       1.1     rmind 	/*
    119       1.1     rmind 	 * BPF program code, the allocated length (in bytes), the number
    120       1.1     rmind 	 * of logical blocks and the flags.
    121       1.1     rmind 	 */
    122       1.1     rmind 	struct bpf_program	prog;
    123       1.1     rmind 	size_t			alen;
    124       1.1     rmind 	u_int			nblocks;
    125       1.1     rmind 	sa_family_t		af;
    126       1.1     rmind 	uint32_t		flags;
    127       1.1     rmind 
    128  1.13.2.1    martin 	/*
    129  1.13.2.1    martin 	 * The current group offset (counted in BPF instructions)
    130  1.13.2.1    martin 	 * and block number at the start of the group.
    131  1.13.2.1    martin 	 */
    132       1.1     rmind 	bool			ingroup;
    133       1.1     rmind 	u_int			goff;
    134       1.1     rmind 	u_int			gblock;
    135       1.1     rmind 
    136       1.1     rmind 	/* BPF marks, allocated length and the real length. */
    137       1.1     rmind 	uint32_t *		marks;
    138       1.1     rmind 	size_t			malen;
    139       1.1     rmind 	size_t			mlen;
    140       1.1     rmind };
    141       1.1     rmind 
    142       1.1     rmind /*
    143       1.1     rmind  * NPF success and failure values to be returned from BPF.
    144       1.1     rmind  */
    145       1.1     rmind #define	NPF_BPF_SUCCESS		((u_int)-1)
    146       1.1     rmind #define	NPF_BPF_FAILURE		0
    147       1.1     rmind 
    148       1.1     rmind /*
    149       1.1     rmind  * Magic value to indicate the failure path, which is fixed up on completion.
    150       1.1     rmind  * Note: this is the longest jump offset in BPF, since the offset is one byte.
    151       1.1     rmind  */
    152       1.1     rmind #define	JUMP_MAGIC		0xff
    153       1.1     rmind 
    154       1.1     rmind /* Reduce re-allocations by expanding in 64 byte blocks. */
    155       1.1     rmind #define	ALLOC_MASK		(64 - 1)
    156       1.1     rmind #define	ALLOC_ROUND(x)		(((x) + ALLOC_MASK) & ~ALLOC_MASK)
    157       1.1     rmind 
    158       1.9  christos #ifndef IPV6_VERSION
    159       1.9  christos #define	IPV6_VERSION		0x60
    160       1.9  christos #endif
    161       1.9  christos 
    162       1.1     rmind npf_bpf_t *
    163       1.1     rmind npfctl_bpf_create(void)
    164       1.1     rmind {
    165       1.1     rmind 	return ecalloc(1, sizeof(npf_bpf_t));
    166       1.1     rmind }
    167       1.1     rmind 
    168       1.1     rmind static void
    169       1.1     rmind fixup_jumps(npf_bpf_t *ctx, u_int start, u_int end, bool swap)
    170       1.1     rmind {
    171       1.1     rmind 	struct bpf_program *bp = &ctx->prog;
    172       1.1     rmind 
    173       1.1     rmind 	for (u_int i = start; i < end; i++) {
    174       1.1     rmind 		struct bpf_insn *insn = &bp->bf_insns[i];
    175       1.1     rmind 		const u_int fail_off = end - i;
    176  1.13.2.1    martin 		bool seen_magic = false;
    177       1.1     rmind 
    178       1.1     rmind 		if (fail_off >= JUMP_MAGIC) {
    179       1.1     rmind 			errx(EXIT_FAILURE, "BPF generation error: "
    180       1.1     rmind 			    "the number of instructions is over the limit");
    181       1.1     rmind 		}
    182       1.1     rmind 		if (BPF_CLASS(insn->code) != BPF_JMP) {
    183       1.1     rmind 			continue;
    184       1.1     rmind 		}
    185  1.13.2.1    martin 		if (BPF_OP(insn->code) == BPF_JA) {
    186  1.13.2.1    martin 			/*
    187  1.13.2.1    martin 			 * BPF_JA can be used to jump to the failure path.
    188  1.13.2.1    martin 			 * If we are swapping i.e. inside the group, then
    189  1.13.2.1    martin 			 * jump "next"; groups have a failure path appended
    190  1.13.2.1    martin 			 * at their end.
    191  1.13.2.1    martin 			 */
    192  1.13.2.1    martin 			if (insn->k == JUMP_MAGIC) {
    193  1.13.2.1    martin 				insn->k = swap ? 0 : fail_off;
    194  1.13.2.1    martin 			}
    195  1.13.2.1    martin 			continue;
    196  1.13.2.1    martin 		}
    197  1.13.2.1    martin 
    198  1.13.2.1    martin 		/*
    199  1.13.2.1    martin 		 * Fixup the "magic" value.  Swap only the "magic" jumps.
    200  1.13.2.1    martin 		 */
    201  1.13.2.1    martin 
    202  1.13.2.1    martin 		if (insn->jt == JUMP_MAGIC) {
    203  1.13.2.1    martin 			insn->jt = fail_off;
    204  1.13.2.1    martin 			seen_magic = true;
    205  1.13.2.1    martin 		}
    206  1.13.2.1    martin 		if (insn->jf == JUMP_MAGIC) {
    207  1.13.2.1    martin 			insn->jf = fail_off;
    208  1.13.2.1    martin 			seen_magic = true;
    209  1.13.2.1    martin 		}
    210  1.13.2.1    martin 
    211  1.13.2.1    martin 		if (seen_magic && swap) {
    212       1.1     rmind 			uint8_t jt = insn->jt;
    213       1.1     rmind 			insn->jt = insn->jf;
    214       1.1     rmind 			insn->jf = jt;
    215       1.1     rmind 		}
    216       1.1     rmind 	}
    217       1.1     rmind }
    218       1.1     rmind 
    219       1.1     rmind static void
    220       1.1     rmind add_insns(npf_bpf_t *ctx, struct bpf_insn *insns, size_t count)
    221       1.1     rmind {
    222       1.1     rmind 	struct bpf_program *bp = &ctx->prog;
    223       1.1     rmind 	size_t offset, len, reqlen;
    224       1.1     rmind 
    225       1.1     rmind 	/* Note: bf_len is the count of instructions. */
    226       1.1     rmind 	offset = bp->bf_len * sizeof(struct bpf_insn);
    227       1.1     rmind 	len = count * sizeof(struct bpf_insn);
    228       1.1     rmind 
    229       1.1     rmind 	/* Ensure the memory buffer for the program. */
    230       1.1     rmind 	reqlen = ALLOC_ROUND(offset + len);
    231       1.1     rmind 	if (reqlen > ctx->alen) {
    232       1.1     rmind 		bp->bf_insns = erealloc(bp->bf_insns, reqlen);
    233       1.1     rmind 		ctx->alen = reqlen;
    234       1.1     rmind 	}
    235       1.1     rmind 
    236       1.1     rmind 	/* Add the code block. */
    237       1.1     rmind 	memcpy((uint8_t *)bp->bf_insns + offset, insns, len);
    238       1.1     rmind 	bp->bf_len += count;
    239       1.1     rmind }
    240       1.1     rmind 
    241       1.1     rmind static void
    242       1.1     rmind done_raw_block(npf_bpf_t *ctx, const uint32_t *m, size_t len)
    243       1.1     rmind {
    244       1.1     rmind 	size_t reqlen, nargs = m[1];
    245       1.1     rmind 
    246       1.1     rmind 	if ((len / sizeof(uint32_t) - 2) != nargs) {
    247       1.1     rmind 		errx(EXIT_FAILURE, "invalid BPF block description");
    248       1.1     rmind 	}
    249       1.1     rmind 	reqlen = ALLOC_ROUND(ctx->mlen + len);
    250       1.1     rmind 	if (reqlen > ctx->malen) {
    251       1.1     rmind 		ctx->marks = erealloc(ctx->marks, reqlen);
    252       1.1     rmind 		ctx->malen = reqlen;
    253       1.1     rmind 	}
    254       1.1     rmind 	memcpy((uint8_t *)ctx->marks + ctx->mlen, m, len);
    255       1.1     rmind 	ctx->mlen += len;
    256       1.1     rmind }
    257       1.1     rmind 
    258       1.1     rmind static void
    259       1.1     rmind done_block(npf_bpf_t *ctx, const uint32_t *m, size_t len)
    260       1.1     rmind {
    261       1.1     rmind 	done_raw_block(ctx, m, len);
    262       1.1     rmind 	ctx->nblocks++;
    263       1.1     rmind }
    264       1.1     rmind 
    265       1.1     rmind struct bpf_program *
    266       1.1     rmind npfctl_bpf_complete(npf_bpf_t *ctx)
    267       1.1     rmind {
    268       1.1     rmind 	struct bpf_program *bp = &ctx->prog;
    269       1.1     rmind 	const u_int retoff = bp->bf_len;
    270       1.1     rmind 
    271       1.8     rmind 	/* No instructions (optimised out). */
    272       1.8     rmind 	if (!bp->bf_len)
    273       1.8     rmind 		return NULL;
    274       1.8     rmind 
    275       1.1     rmind 	/* Add the return fragment (success and failure paths). */
    276       1.1     rmind 	struct bpf_insn insns_ret[] = {
    277       1.1     rmind 		BPF_STMT(BPF_RET+BPF_K, NPF_BPF_SUCCESS),
    278       1.1     rmind 		BPF_STMT(BPF_RET+BPF_K, NPF_BPF_FAILURE),
    279       1.1     rmind 	};
    280       1.1     rmind 	add_insns(ctx, insns_ret, __arraycount(insns_ret));
    281       1.1     rmind 
    282       1.1     rmind 	/* Fixup all jumps to the main failure path. */
    283       1.1     rmind 	fixup_jumps(ctx, 0, retoff, false);
    284       1.1     rmind 
    285       1.1     rmind 	return &ctx->prog;
    286       1.1     rmind }
    287       1.1     rmind 
    288       1.1     rmind const void *
    289       1.1     rmind npfctl_bpf_bmarks(npf_bpf_t *ctx, size_t *len)
    290       1.1     rmind {
    291       1.1     rmind 	*len = ctx->mlen;
    292       1.1     rmind 	return ctx->marks;
    293       1.1     rmind }
    294       1.1     rmind 
    295       1.1     rmind void
    296       1.1     rmind npfctl_bpf_destroy(npf_bpf_t *ctx)
    297       1.1     rmind {
    298       1.1     rmind 	free(ctx->prog.bf_insns);
    299       1.1     rmind 	free(ctx->marks);
    300       1.1     rmind 	free(ctx);
    301       1.1     rmind }
    302       1.1     rmind 
    303       1.1     rmind /*
    304  1.13.2.1    martin  * npfctl_bpf_group_enter: begin a logical group.  It merely uses logical
    305       1.1     rmind  * disjunction (OR) for compares within the group.
    306       1.1     rmind  */
    307       1.1     rmind void
    308  1.13.2.1    martin npfctl_bpf_group_enter(npf_bpf_t *ctx)
    309       1.1     rmind {
    310       1.1     rmind 	struct bpf_program *bp = &ctx->prog;
    311       1.1     rmind 
    312       1.1     rmind 	assert(ctx->goff == 0);
    313       1.1     rmind 	assert(ctx->gblock == 0);
    314       1.1     rmind 
    315       1.1     rmind 	ctx->goff = bp->bf_len;
    316       1.1     rmind 	ctx->gblock = ctx->nblocks;
    317       1.1     rmind 	ctx->ingroup = true;
    318       1.1     rmind }
    319       1.1     rmind 
    320       1.1     rmind void
    321  1.13.2.1    martin npfctl_bpf_group_exit(npf_bpf_t *ctx, bool invert)
    322       1.1     rmind {
    323       1.1     rmind 	struct bpf_program *bp = &ctx->prog;
    324       1.1     rmind 	const size_t curoff = bp->bf_len;
    325       1.1     rmind 
    326       1.1     rmind 	/* If there are no blocks or only one - nothing to do. */
    327      1.10     rmind 	if (!invert && (ctx->nblocks - ctx->gblock) <= 1) {
    328       1.1     rmind 		ctx->goff = ctx->gblock = 0;
    329       1.1     rmind 		return;
    330       1.1     rmind 	}
    331       1.1     rmind 
    332       1.1     rmind 	/*
    333      1.10     rmind 	 * If inverting, then prepend a jump over the statement below.
    334  1.13.2.1    martin 	 * On match, it will skip-through and the fail path will be taken.
    335      1.10     rmind 	 */
    336      1.10     rmind 	if (invert) {
    337      1.10     rmind 		struct bpf_insn insns_ret[] = {
    338      1.10     rmind 			BPF_STMT(BPF_JMP+BPF_JA, 1),
    339      1.10     rmind 		};
    340      1.10     rmind 		add_insns(ctx, insns_ret, __arraycount(insns_ret));
    341      1.10     rmind 	}
    342      1.10     rmind 
    343      1.10     rmind 	/*
    344       1.1     rmind 	 * Append a failure return as a fall-through i.e. if there is
    345       1.1     rmind 	 * no match within the group.
    346       1.1     rmind 	 */
    347       1.1     rmind 	struct bpf_insn insns_ret[] = {
    348       1.1     rmind 		BPF_STMT(BPF_RET+BPF_K, NPF_BPF_FAILURE),
    349       1.1     rmind 	};
    350       1.1     rmind 	add_insns(ctx, insns_ret, __arraycount(insns_ret));
    351       1.1     rmind 
    352       1.1     rmind 	/*
    353       1.1     rmind 	 * Adjust jump offsets: on match - jump outside the group i.e.
    354       1.1     rmind 	 * to the current offset.  Otherwise, jump to the next instruction
    355       1.1     rmind 	 * which would lead to the fall-through code above if none matches.
    356       1.1     rmind 	 */
    357       1.1     rmind 	fixup_jumps(ctx, ctx->goff, curoff, true);
    358       1.1     rmind 	ctx->goff = ctx->gblock = 0;
    359       1.1     rmind }
    360       1.1     rmind 
    361       1.1     rmind static void
    362       1.1     rmind fetch_l3(npf_bpf_t *ctx, sa_family_t af, u_int flags)
    363       1.1     rmind {
    364       1.1     rmind 	u_int ver;
    365       1.1     rmind 
    366       1.1     rmind 	switch (af) {
    367       1.1     rmind 	case AF_INET:
    368       1.1     rmind 		ver = IPVERSION;
    369       1.1     rmind 		break;
    370       1.1     rmind 	case AF_INET6:
    371       1.1     rmind 		ver = IPV6_VERSION >> 4;
    372       1.1     rmind 		break;
    373       1.1     rmind 	case AF_UNSPEC:
    374       1.1     rmind 		ver = 0;
    375       1.1     rmind 		break;
    376       1.1     rmind 	default:
    377       1.1     rmind 		abort();
    378       1.1     rmind 	}
    379       1.1     rmind 
    380       1.1     rmind 	/*
    381       1.7     rmind 	 * The memory store is populated with:
    382       1.1     rmind 	 * - BPF_MW_IPVER: IP version (4 or 6).
    383       1.1     rmind 	 * - BPF_MW_L4OFF: L4 header offset.
    384       1.1     rmind 	 * - BPF_MW_L4PROTO: L4 protocol.
    385       1.1     rmind 	 */
    386       1.1     rmind 	if ((ctx->flags & FETCHED_L3) == 0 || (af && ctx->af == 0)) {
    387       1.1     rmind 		const uint8_t jt = ver ? 0 : JUMP_MAGIC;
    388       1.1     rmind 		const uint8_t jf = ver ? JUMP_MAGIC : 0;
    389       1.1     rmind 		bool ingroup = ctx->ingroup;
    390       1.1     rmind 
    391       1.1     rmind 		/*
    392       1.1     rmind 		 * L3 block cannot be inserted in the middle of a group.
    393       1.1     rmind 		 * In fact, it never is.  Check and start the group after.
    394       1.1     rmind 		 */
    395       1.1     rmind 		if (ingroup) {
    396       1.1     rmind 			assert(ctx->nblocks == ctx->gblock);
    397  1.13.2.1    martin 			npfctl_bpf_group_exit(ctx, false);
    398       1.1     rmind 		}
    399       1.1     rmind 
    400       1.1     rmind 		/*
    401       1.1     rmind 		 * A <- IP version; A == expected-version?
    402       1.1     rmind 		 * If no particular version specified, check for non-zero.
    403       1.1     rmind 		 */
    404       1.7     rmind 		struct bpf_insn insns_af[] = {
    405       1.7     rmind 			BPF_STMT(BPF_LD+BPF_W+BPF_MEM, BPF_MW_IPVER),
    406       1.7     rmind 			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, ver, jt, jf),
    407       1.7     rmind 		};
    408       1.7     rmind 		add_insns(ctx, insns_af, __arraycount(insns_af));
    409       1.7     rmind 		ctx->flags |= FETCHED_L3;
    410       1.1     rmind 		ctx->af = af;
    411       1.1     rmind 
    412       1.1     rmind 		if (af) {
    413       1.1     rmind 			uint32_t mwords[] = { BM_IPVER, 1, af };
    414       1.1     rmind 			done_raw_block(ctx, mwords, sizeof(mwords));
    415       1.1     rmind 		}
    416       1.1     rmind 		if (ingroup) {
    417  1.13.2.1    martin 			npfctl_bpf_group_enter(ctx);
    418       1.1     rmind 		}
    419       1.1     rmind 
    420       1.1     rmind 	} else if (af && af != ctx->af) {
    421       1.1     rmind 		errx(EXIT_FAILURE, "address family mismatch");
    422       1.1     rmind 	}
    423       1.1     rmind 
    424       1.1     rmind 	if ((flags & X_EQ_L4OFF) != 0 && (ctx->flags & X_EQ_L4OFF) == 0) {
    425       1.1     rmind 		/* X <- IP header length */
    426       1.1     rmind 		struct bpf_insn insns_hlen[] = {
    427       1.1     rmind 			BPF_STMT(BPF_LDX+BPF_MEM, BPF_MW_L4OFF),
    428       1.1     rmind 		};
    429       1.1     rmind 		add_insns(ctx, insns_hlen, __arraycount(insns_hlen));
    430       1.1     rmind 		ctx->flags |= X_EQ_L4OFF;
    431       1.1     rmind 	}
    432       1.1     rmind }
    433       1.1     rmind 
    434       1.1     rmind /*
    435       1.1     rmind  * npfctl_bpf_proto: code block to match IP version and L4 protocol.
    436       1.1     rmind  */
    437       1.1     rmind void
    438       1.1     rmind npfctl_bpf_proto(npf_bpf_t *ctx, sa_family_t af, int proto)
    439       1.1     rmind {
    440       1.1     rmind 	assert(af != AF_UNSPEC || proto != -1);
    441       1.1     rmind 
    442       1.1     rmind 	/* Note: fails if IP version does not match. */
    443       1.1     rmind 	fetch_l3(ctx, af, 0);
    444       1.1     rmind 	if (proto == -1) {
    445       1.1     rmind 		return;
    446       1.1     rmind 	}
    447       1.1     rmind 
    448       1.1     rmind 	struct bpf_insn insns_proto[] = {
    449       1.1     rmind 		/* A <- L4 protocol; A == expected-protocol? */
    450       1.1     rmind 		BPF_STMT(BPF_LD+BPF_W+BPF_MEM, BPF_MW_L4PROTO),
    451       1.1     rmind 		BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, proto, 0, JUMP_MAGIC),
    452       1.1     rmind 	};
    453       1.1     rmind 	add_insns(ctx, insns_proto, __arraycount(insns_proto));
    454       1.1     rmind 
    455       1.1     rmind 	uint32_t mwords[] = { BM_PROTO, 1, proto };
    456       1.1     rmind 	done_block(ctx, mwords, sizeof(mwords));
    457       1.6     rmind 	ctx->flags |= CHECKED_L4;
    458       1.1     rmind }
    459       1.1     rmind 
    460       1.1     rmind /*
    461       1.1     rmind  * npfctl_bpf_cidr: code block to match IPv4 or IPv6 CIDR.
    462       1.1     rmind  *
    463       1.1     rmind  * => IP address shall be in the network byte order.
    464       1.1     rmind  */
    465       1.1     rmind void
    466       1.1     rmind npfctl_bpf_cidr(npf_bpf_t *ctx, u_int opts, sa_family_t af,
    467       1.1     rmind     const npf_addr_t *addr, const npf_netmask_t mask)
    468       1.1     rmind {
    469       1.1     rmind 	const uint32_t *awords = (const uint32_t *)addr;
    470       1.1     rmind 	u_int nwords, length, maxmask, off;
    471       1.1     rmind 
    472       1.1     rmind 	assert(((opts & MATCH_SRC) != 0) ^ ((opts & MATCH_DST) != 0));
    473       1.1     rmind 	assert((mask && mask <= NPF_MAX_NETMASK) || mask == NPF_NO_NETMASK);
    474       1.1     rmind 
    475       1.1     rmind 	switch (af) {
    476       1.1     rmind 	case AF_INET:
    477       1.1     rmind 		maxmask = 32;
    478       1.1     rmind 		off = (opts & MATCH_SRC) ?
    479       1.1     rmind 		    offsetof(struct ip, ip_src) :
    480       1.1     rmind 		    offsetof(struct ip, ip_dst);
    481       1.1     rmind 		nwords = sizeof(struct in_addr) / sizeof(uint32_t);
    482       1.1     rmind 		break;
    483       1.1     rmind 	case AF_INET6:
    484       1.1     rmind 		maxmask = 128;
    485       1.1     rmind 		off = (opts & MATCH_SRC) ?
    486       1.1     rmind 		    offsetof(struct ip6_hdr, ip6_src) :
    487       1.1     rmind 		    offsetof(struct ip6_hdr, ip6_dst);
    488       1.1     rmind 		nwords = sizeof(struct in6_addr) / sizeof(uint32_t);
    489       1.1     rmind 		break;
    490       1.1     rmind 	default:
    491       1.1     rmind 		abort();
    492       1.1     rmind 	}
    493       1.1     rmind 
    494       1.1     rmind 	/* Ensure address family. */
    495       1.1     rmind 	fetch_l3(ctx, af, 0);
    496       1.1     rmind 
    497       1.1     rmind 	length = (mask == NPF_NO_NETMASK) ? maxmask : mask;
    498       1.1     rmind 
    499       1.1     rmind 	/* CAUTION: BPF operates in host byte-order. */
    500       1.1     rmind 	for (u_int i = 0; i < nwords; i++) {
    501       1.1     rmind 		const u_int woff = i * sizeof(uint32_t);
    502       1.1     rmind 		uint32_t word = ntohl(awords[i]);
    503       1.1     rmind 		uint32_t wordmask;
    504       1.1     rmind 
    505       1.1     rmind 		if (length >= 32) {
    506       1.1     rmind 			/* The mask is a full word - do not apply it. */
    507       1.1     rmind 			wordmask = 0;
    508       1.1     rmind 			length -= 32;
    509       1.1     rmind 		} else if (length) {
    510       1.4     rmind 			wordmask = 0xffffffff << (32 - length);
    511       1.1     rmind 			length = 0;
    512       1.1     rmind 		} else {
    513       1.3     rmind 			/* The mask became zero - skip the rest. */
    514       1.3     rmind 			break;
    515       1.1     rmind 		}
    516       1.1     rmind 
    517       1.1     rmind 		/* A <- IP address (or one word of it) */
    518       1.1     rmind 		struct bpf_insn insns_ip[] = {
    519       1.1     rmind 			BPF_STMT(BPF_LD+BPF_W+BPF_ABS, off + woff),
    520       1.1     rmind 		};
    521       1.1     rmind 		add_insns(ctx, insns_ip, __arraycount(insns_ip));
    522       1.1     rmind 
    523       1.1     rmind 		/* A <- (A & MASK) */
    524       1.1     rmind 		if (wordmask) {
    525       1.1     rmind 			struct bpf_insn insns_mask[] = {
    526       1.1     rmind 				BPF_STMT(BPF_ALU+BPF_AND+BPF_K, wordmask),
    527       1.1     rmind 			};
    528       1.1     rmind 			add_insns(ctx, insns_mask, __arraycount(insns_mask));
    529       1.1     rmind 		}
    530       1.1     rmind 
    531       1.1     rmind 		/* A == expected-IP-word ? */
    532       1.1     rmind 		struct bpf_insn insns_cmp[] = {
    533       1.1     rmind 			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, word, 0, JUMP_MAGIC),
    534       1.1     rmind 		};
    535       1.1     rmind 		add_insns(ctx, insns_cmp, __arraycount(insns_cmp));
    536       1.1     rmind 	}
    537       1.1     rmind 
    538       1.1     rmind 	uint32_t mwords[] = {
    539       1.1     rmind 		(opts & MATCH_SRC) ? BM_SRC_CIDR: BM_DST_CIDR, 6,
    540       1.1     rmind 		af, mask, awords[0], awords[1], awords[2], awords[3],
    541       1.1     rmind 	};
    542       1.1     rmind 	done_block(ctx, mwords, sizeof(mwords));
    543       1.1     rmind }
    544       1.1     rmind 
    545       1.1     rmind /*
    546       1.1     rmind  * npfctl_bpf_ports: code block to match TCP/UDP port range.
    547       1.1     rmind  *
    548       1.1     rmind  * => Port numbers shall be in the network byte order.
    549       1.1     rmind  */
    550       1.1     rmind void
    551       1.1     rmind npfctl_bpf_ports(npf_bpf_t *ctx, u_int opts, in_port_t from, in_port_t to)
    552       1.1     rmind {
    553       1.1     rmind 	const u_int sport_off = offsetof(struct udphdr, uh_sport);
    554       1.1     rmind 	const u_int dport_off = offsetof(struct udphdr, uh_dport);
    555       1.1     rmind 	u_int off;
    556       1.1     rmind 
    557       1.1     rmind 	/* TCP and UDP port offsets are the same. */
    558       1.1     rmind 	assert(sport_off == offsetof(struct tcphdr, th_sport));
    559       1.1     rmind 	assert(dport_off == offsetof(struct tcphdr, th_dport));
    560       1.6     rmind 	assert(ctx->flags & CHECKED_L4);
    561       1.1     rmind 
    562       1.1     rmind 	assert(((opts & MATCH_SRC) != 0) ^ ((opts & MATCH_DST) != 0));
    563       1.1     rmind 	off = (opts & MATCH_SRC) ? sport_off : dport_off;
    564       1.1     rmind 
    565       1.1     rmind 	/* X <- IP header length */
    566       1.2     rmind 	fetch_l3(ctx, AF_UNSPEC, X_EQ_L4OFF);
    567       1.1     rmind 
    568       1.1     rmind 	struct bpf_insn insns_fetch[] = {
    569       1.1     rmind 		/* A <- port */
    570       1.1     rmind 		BPF_STMT(BPF_LD+BPF_H+BPF_IND, off),
    571       1.1     rmind 	};
    572       1.1     rmind 	add_insns(ctx, insns_fetch, __arraycount(insns_fetch));
    573       1.1     rmind 
    574       1.1     rmind 	/* CAUTION: BPF operates in host byte-order. */
    575       1.1     rmind 	from = ntohs(from);
    576       1.1     rmind 	to = ntohs(to);
    577       1.1     rmind 
    578       1.1     rmind 	if (from == to) {
    579       1.1     rmind 		/* Single port case. */
    580       1.1     rmind 		struct bpf_insn insns_port[] = {
    581       1.1     rmind 			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, from, 0, JUMP_MAGIC),
    582       1.1     rmind 		};
    583       1.1     rmind 		add_insns(ctx, insns_port, __arraycount(insns_port));
    584       1.1     rmind 	} else {
    585       1.1     rmind 		/* Port range case. */
    586       1.1     rmind 		struct bpf_insn insns_range[] = {
    587  1.13.2.1    martin 			BPF_JUMP(BPF_JMP+BPF_JGE+BPF_K, from, 0, 1),
    588  1.13.2.1    martin 			BPF_JUMP(BPF_JMP+BPF_JGT+BPF_K, to, 0, 1),
    589  1.13.2.1    martin 			BPF_STMT(BPF_JMP+BPF_JA, JUMP_MAGIC),
    590       1.1     rmind 		};
    591       1.1     rmind 		add_insns(ctx, insns_range, __arraycount(insns_range));
    592       1.1     rmind 	}
    593       1.1     rmind 
    594       1.1     rmind 	uint32_t mwords[] = {
    595       1.1     rmind 		opts & MATCH_SRC ? BM_SRC_PORTS : BM_DST_PORTS, 2, from, to
    596       1.1     rmind 	};
    597       1.1     rmind 	done_block(ctx, mwords, sizeof(mwords));
    598       1.1     rmind }
    599       1.1     rmind 
    600       1.1     rmind /*
    601       1.1     rmind  * npfctl_bpf_tcpfl: code block to match TCP flags.
    602       1.1     rmind  */
    603       1.1     rmind void
    604       1.5     rmind npfctl_bpf_tcpfl(npf_bpf_t *ctx, uint8_t tf, uint8_t tf_mask, bool checktcp)
    605       1.1     rmind {
    606       1.1     rmind 	const u_int tcpfl_off = offsetof(struct tcphdr, th_flags);
    607       1.6     rmind 	const bool usingmask = tf_mask != tf;
    608       1.1     rmind 
    609       1.1     rmind 	/* X <- IP header length */
    610       1.2     rmind 	fetch_l3(ctx, AF_UNSPEC, X_EQ_L4OFF);
    611       1.5     rmind 	if (checktcp) {
    612       1.6     rmind 		const u_int jf = usingmask ? 3 : 2;
    613       1.5     rmind 		assert(ctx->ingroup == false);
    614       1.5     rmind 
    615       1.5     rmind 		/* A <- L4 protocol; A == TCP?  If not, jump out. */
    616       1.5     rmind 		struct bpf_insn insns_tcp[] = {
    617       1.5     rmind 			BPF_STMT(BPF_LD+BPF_W+BPF_MEM, BPF_MW_L4PROTO),
    618       1.5     rmind 			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, IPPROTO_TCP, 0, jf),
    619       1.5     rmind 		};
    620       1.5     rmind 		add_insns(ctx, insns_tcp, __arraycount(insns_tcp));
    621       1.6     rmind 	} else {
    622       1.6     rmind 		assert(ctx->flags & CHECKED_L4);
    623       1.5     rmind 	}
    624       1.1     rmind 
    625       1.1     rmind 	struct bpf_insn insns_tf[] = {
    626       1.1     rmind 		/* A <- TCP flags */
    627       1.1     rmind 		BPF_STMT(BPF_LD+BPF_B+BPF_IND, tcpfl_off),
    628       1.1     rmind 	};
    629       1.1     rmind 	add_insns(ctx, insns_tf, __arraycount(insns_tf));
    630       1.1     rmind 
    631       1.6     rmind 	if (usingmask) {
    632       1.1     rmind 		/* A <- (A & mask) */
    633       1.1     rmind 		struct bpf_insn insns_mask[] = {
    634       1.1     rmind 			BPF_STMT(BPF_ALU+BPF_AND+BPF_K, tf_mask),
    635       1.1     rmind 		};
    636       1.1     rmind 		add_insns(ctx, insns_mask, __arraycount(insns_mask));
    637       1.1     rmind 	}
    638       1.1     rmind 
    639       1.1     rmind 	struct bpf_insn insns_cmp[] = {
    640       1.1     rmind 		/* A == expected-TCP-flags? */
    641       1.1     rmind 		BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, tf, 0, JUMP_MAGIC),
    642       1.1     rmind 	};
    643       1.1     rmind 	add_insns(ctx, insns_cmp, __arraycount(insns_cmp));
    644       1.1     rmind 
    645      1.12       tih 	uint32_t mwords[] = { BM_TCPFL, 2, tf, tf_mask};
    646      1.12       tih 	done_block(ctx, mwords, sizeof(mwords));
    647       1.1     rmind }
    648       1.1     rmind 
    649       1.1     rmind /*
    650       1.1     rmind  * npfctl_bpf_icmp: code block to match ICMP type and/or code.
    651       1.1     rmind  * Note: suitable both for the ICMPv4 and ICMPv6.
    652       1.1     rmind  */
    653       1.1     rmind void
    654       1.1     rmind npfctl_bpf_icmp(npf_bpf_t *ctx, int type, int code)
    655       1.1     rmind {
    656       1.1     rmind 	const u_int type_off = offsetof(struct icmp, icmp_type);
    657       1.1     rmind 	const u_int code_off = offsetof(struct icmp, icmp_code);
    658       1.1     rmind 
    659       1.6     rmind 	assert(ctx->flags & CHECKED_L4);
    660       1.1     rmind 	assert(offsetof(struct icmp6_hdr, icmp6_type) == type_off);
    661       1.1     rmind 	assert(offsetof(struct icmp6_hdr, icmp6_code) == code_off);
    662       1.1     rmind 	assert(type != -1 || code != -1);
    663       1.1     rmind 
    664       1.1     rmind 	/* X <- IP header length */
    665       1.2     rmind 	fetch_l3(ctx, AF_UNSPEC, X_EQ_L4OFF);
    666       1.1     rmind 
    667       1.1     rmind 	if (type != -1) {
    668       1.1     rmind 		struct bpf_insn insns_type[] = {
    669       1.1     rmind 			BPF_STMT(BPF_LD+BPF_B+BPF_IND, type_off),
    670       1.1     rmind 			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, type, 0, JUMP_MAGIC),
    671       1.1     rmind 		};
    672       1.1     rmind 		add_insns(ctx, insns_type, __arraycount(insns_type));
    673       1.1     rmind 
    674       1.1     rmind 		uint32_t mwords[] = { BM_ICMP_TYPE, 1, type };
    675       1.1     rmind 		done_block(ctx, mwords, sizeof(mwords));
    676       1.1     rmind 	}
    677       1.1     rmind 
    678       1.1     rmind 	if (code != -1) {
    679       1.1     rmind 		struct bpf_insn insns_code[] = {
    680       1.1     rmind 			BPF_STMT(BPF_LD+BPF_B+BPF_IND, code_off),
    681       1.1     rmind 			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, code, 0, JUMP_MAGIC),
    682       1.1     rmind 		};
    683       1.1     rmind 		add_insns(ctx, insns_code, __arraycount(insns_code));
    684       1.1     rmind 
    685       1.1     rmind 		uint32_t mwords[] = { BM_ICMP_CODE, 1, code };
    686       1.1     rmind 		done_block(ctx, mwords, sizeof(mwords));
    687       1.1     rmind 	}
    688       1.1     rmind }
    689       1.1     rmind 
    690       1.1     rmind #define	SRC_FLAG_BIT	(1U << 31)
    691       1.1     rmind 
    692       1.1     rmind /*
    693       1.1     rmind  * npfctl_bpf_table: code block to match source/destination IP address
    694       1.1     rmind  * against NPF table specified by ID.
    695       1.1     rmind  */
    696       1.1     rmind void
    697       1.1     rmind npfctl_bpf_table(npf_bpf_t *ctx, u_int opts, u_int tid)
    698       1.1     rmind {
    699       1.1     rmind 	const bool src = (opts & MATCH_SRC) != 0;
    700       1.1     rmind 
    701       1.1     rmind 	struct bpf_insn insns_table[] = {
    702       1.1     rmind 		BPF_STMT(BPF_LD+BPF_IMM, (src ? SRC_FLAG_BIT : 0) | tid),
    703       1.1     rmind 		BPF_STMT(BPF_MISC+BPF_COP, NPF_COP_TABLE),
    704       1.1     rmind 		BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0, JUMP_MAGIC, 0),
    705       1.1     rmind 	};
    706       1.1     rmind 	add_insns(ctx, insns_table, __arraycount(insns_table));
    707       1.1     rmind 
    708       1.1     rmind 	uint32_t mwords[] = { src ? BM_SRC_TABLE: BM_DST_TABLE, 1, tid };
    709       1.1     rmind 	done_block(ctx, mwords, sizeof(mwords));
    710       1.1     rmind }
    711