Home | History | Annotate | Line # | Download | only in npfctl
npf_bpf_comp.c revision 1.13.2.3
      1       1.1     rmind /*-
      2  1.13.2.3    martin  * Copyright (c) 2010-2020 The NetBSD Foundation, Inc.
      3       1.1     rmind  * All rights reserved.
      4       1.1     rmind  *
      5       1.1     rmind  * This material is based upon work partially supported by The
      6       1.1     rmind  * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
      7       1.1     rmind  *
      8       1.1     rmind  * Redistribution and use in source and binary forms, with or without
      9       1.1     rmind  * modification, are permitted provided that the following conditions
     10       1.1     rmind  * are met:
     11       1.1     rmind  * 1. Redistributions of source code must retain the above copyright
     12       1.1     rmind  *    notice, this list of conditions and the following disclaimer.
     13       1.1     rmind  * 2. Redistributions in binary form must reproduce the above copyright
     14       1.1     rmind  *    notice, this list of conditions and the following disclaimer in the
     15       1.1     rmind  *    documentation and/or other materials provided with the distribution.
     16       1.1     rmind  *
     17       1.1     rmind  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     18       1.1     rmind  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     19       1.1     rmind  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     20       1.1     rmind  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     21       1.1     rmind  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22       1.1     rmind  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23       1.1     rmind  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24       1.1     rmind  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25       1.1     rmind  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26       1.1     rmind  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27       1.1     rmind  * POSSIBILITY OF SUCH DAMAGE.
     28       1.1     rmind  */
     29       1.1     rmind 
     30       1.1     rmind /*
     31       1.1     rmind  * BPF byte-code generation for NPF rules.
     32  1.13.2.1    martin  *
     33  1.13.2.1    martin  * Overview
     34  1.13.2.1    martin  *
     35  1.13.2.2    martin  *	Each NPF rule is compiled into a BPF micro-program.  There is a
     36  1.13.2.1    martin  *	BPF byte-code fragment for each higher-level filtering logic,
     37  1.13.2.1    martin  *	e.g. to match L4 protocol, IP/mask, etc.  The generation process
     38  1.13.2.1    martin  *	combines multiple BPF-byte code fragments into one program.
     39  1.13.2.1    martin  *
     40  1.13.2.1    martin  * Basic case
     41  1.13.2.1    martin  *
     42  1.13.2.2    martin  *	Consider a basic case where all filters should match.  They
     43  1.13.2.1    martin  *	are expressed as logical conjunction, e.g.:
     44  1.13.2.1    martin  *
     45  1.13.2.1    martin  *		A and B and C and D
     46  1.13.2.1    martin  *
     47  1.13.2.1    martin  *	Each test (filter) criterion can be evaluated to true (match) or
     48  1.13.2.1    martin  *	false (no match) and the logic is as follows:
     49  1.13.2.1    martin  *
     50  1.13.2.1    martin  *	- If the value is true, then jump to the "next" test (offset 0).
     51  1.13.2.1    martin  *
     52  1.13.2.1    martin  *	- If the value is false, then jump to the JUMP_MAGIC value (0xff).
     53  1.13.2.1    martin  *	This "magic" value is used to indicate that it will have to be
     54  1.13.2.1    martin  *	patched at a later stage.
     55  1.13.2.1    martin  *
     56  1.13.2.1    martin  *	Once all byte-code fragments are combined into one, then there
     57  1.13.2.1    martin  *	are two additional steps:
     58  1.13.2.1    martin  *
     59  1.13.2.2    martin  *	- Two instructions are appended at the end of the program: "return
     60  1.13.2.2    martin  *	success" followed by "return failure".
     61  1.13.2.1    martin  *
     62  1.13.2.1    martin  *	- All jumps with the JUMP_MAGIC value are patched to point to the
     63  1.13.2.1    martin  *	"return failure" instruction.
     64  1.13.2.1    martin  *
     65  1.13.2.1    martin  *	Therefore, if all filter criteria will match, then the first
     66  1.13.2.1    martin  *	instruction will be reached, indicating a successful match of the
     67  1.13.2.1    martin  *	rule.  Otherwise, if any of the criteria will not match, it will
     68  1.13.2.2    martin  *	take the failure path and the rule will not be matching.
     69  1.13.2.1    martin  *
     70  1.13.2.1    martin  * Grouping
     71  1.13.2.1    martin  *
     72  1.13.2.3    martin  *	Filters can have groups, which have an effect of logical
     73  1.13.2.1    martin  *	disjunction, e.g.:
     74  1.13.2.1    martin  *
     75  1.13.2.1    martin  *		A and B and (C or D)
     76  1.13.2.1    martin  *
     77  1.13.2.1    martin  *	In such case, the logic inside the group has to be inverted i.e.
     78  1.13.2.1    martin  *	the jump values swapped.  If the test value is true, then jump
     79  1.13.2.1    martin  *	out of the group; if false, then jump "next".  At the end of the
     80  1.13.2.1    martin  *	group, an addition failure path is appended and the JUMP_MAGIC
     81  1.13.2.1    martin  *	uses within the group are patched to jump past the said path.
     82       1.1     rmind  */
     83       1.1     rmind 
     84       1.1     rmind #include <sys/cdefs.h>
     85  1.13.2.3    martin __RCSID("$NetBSD: npf_bpf_comp.c,v 1.13.2.3 2020/06/20 15:46:48 martin Exp $");
     86       1.1     rmind 
     87       1.1     rmind #include <stdlib.h>
     88       1.1     rmind #include <stdbool.h>
     89       1.1     rmind #include <stddef.h>
     90       1.1     rmind #include <string.h>
     91       1.1     rmind #include <inttypes.h>
     92       1.1     rmind #include <err.h>
     93       1.1     rmind #include <assert.h>
     94       1.1     rmind 
     95       1.1     rmind #include <netinet/in.h>
     96       1.1     rmind #include <netinet/in_systm.h>
     97       1.9  christos #define	__FAVOR_BSD
     98       1.1     rmind #include <netinet/ip.h>
     99       1.1     rmind #include <netinet/ip6.h>
    100       1.1     rmind #include <netinet/udp.h>
    101       1.1     rmind #include <netinet/tcp.h>
    102       1.1     rmind #include <netinet/ip_icmp.h>
    103       1.1     rmind #include <netinet/icmp6.h>
    104       1.1     rmind 
    105       1.1     rmind #include <net/bpf.h>
    106       1.1     rmind 
    107       1.1     rmind #include "npfctl.h"
    108       1.1     rmind 
    109       1.1     rmind /*
    110       1.1     rmind  * Note: clear X_EQ_L4OFF when register X is invalidated i.e. it stores
    111       1.1     rmind  * something other than L4 header offset.  Generally, when BPF_LDX is used.
    112       1.1     rmind  */
    113       1.1     rmind #define	FETCHED_L3		0x01
    114  1.13.2.3    martin #define	CHECKED_L4_PROTO	0x02
    115       1.6     rmind #define	X_EQ_L4OFF		0x04
    116       1.1     rmind 
    117       1.1     rmind struct npf_bpf {
    118       1.1     rmind 	/*
    119       1.1     rmind 	 * BPF program code, the allocated length (in bytes), the number
    120       1.1     rmind 	 * of logical blocks and the flags.
    121       1.1     rmind 	 */
    122       1.1     rmind 	struct bpf_program	prog;
    123       1.1     rmind 	size_t			alen;
    124  1.13.2.3    martin 	unsigned		nblocks;
    125       1.1     rmind 	sa_family_t		af;
    126       1.1     rmind 	uint32_t		flags;
    127       1.1     rmind 
    128  1.13.2.1    martin 	/*
    129  1.13.2.3    martin 	 * Indicators whether we are inside the group and whether this
    130  1.13.2.3    martin 	 * group is implementing inverted logic.
    131  1.13.2.3    martin 	 *
    132  1.13.2.1    martin 	 * The current group offset (counted in BPF instructions)
    133  1.13.2.1    martin 	 * and block number at the start of the group.
    134  1.13.2.1    martin 	 */
    135  1.13.2.3    martin 	unsigned		ingroup;
    136  1.13.2.3    martin 	bool			invert;
    137  1.13.2.3    martin 	unsigned		goff;
    138  1.13.2.3    martin 	unsigned		gblock;
    139  1.13.2.3    martin 
    140  1.13.2.3    martin 	/* Track inversion (excl. mark). */
    141  1.13.2.3    martin 	uint32_t		invflags;
    142       1.1     rmind 
    143       1.1     rmind 	/* BPF marks, allocated length and the real length. */
    144       1.1     rmind 	uint32_t *		marks;
    145       1.1     rmind 	size_t			malen;
    146       1.1     rmind 	size_t			mlen;
    147       1.1     rmind };
    148       1.1     rmind 
    149       1.1     rmind /*
    150       1.1     rmind  * NPF success and failure values to be returned from BPF.
    151       1.1     rmind  */
    152       1.1     rmind #define	NPF_BPF_SUCCESS		((u_int)-1)
    153       1.1     rmind #define	NPF_BPF_FAILURE		0
    154       1.1     rmind 
    155       1.1     rmind /*
    156       1.1     rmind  * Magic value to indicate the failure path, which is fixed up on completion.
    157       1.1     rmind  * Note: this is the longest jump offset in BPF, since the offset is one byte.
    158       1.1     rmind  */
    159       1.1     rmind #define	JUMP_MAGIC		0xff
    160       1.1     rmind 
    161       1.1     rmind /* Reduce re-allocations by expanding in 64 byte blocks. */
    162       1.1     rmind #define	ALLOC_MASK		(64 - 1)
    163       1.1     rmind #define	ALLOC_ROUND(x)		(((x) + ALLOC_MASK) & ~ALLOC_MASK)
    164       1.1     rmind 
    165       1.9  christos #ifndef IPV6_VERSION
    166       1.9  christos #define	IPV6_VERSION		0x60
    167       1.9  christos #endif
    168       1.9  christos 
    169       1.1     rmind npf_bpf_t *
    170       1.1     rmind npfctl_bpf_create(void)
    171       1.1     rmind {
    172       1.1     rmind 	return ecalloc(1, sizeof(npf_bpf_t));
    173       1.1     rmind }
    174       1.1     rmind 
    175       1.1     rmind static void
    176       1.1     rmind fixup_jumps(npf_bpf_t *ctx, u_int start, u_int end, bool swap)
    177       1.1     rmind {
    178       1.1     rmind 	struct bpf_program *bp = &ctx->prog;
    179       1.1     rmind 
    180       1.1     rmind 	for (u_int i = start; i < end; i++) {
    181       1.1     rmind 		struct bpf_insn *insn = &bp->bf_insns[i];
    182       1.1     rmind 		const u_int fail_off = end - i;
    183  1.13.2.1    martin 		bool seen_magic = false;
    184       1.1     rmind 
    185       1.1     rmind 		if (fail_off >= JUMP_MAGIC) {
    186       1.1     rmind 			errx(EXIT_FAILURE, "BPF generation error: "
    187       1.1     rmind 			    "the number of instructions is over the limit");
    188       1.1     rmind 		}
    189       1.1     rmind 		if (BPF_CLASS(insn->code) != BPF_JMP) {
    190       1.1     rmind 			continue;
    191       1.1     rmind 		}
    192  1.13.2.1    martin 		if (BPF_OP(insn->code) == BPF_JA) {
    193  1.13.2.1    martin 			/*
    194  1.13.2.1    martin 			 * BPF_JA can be used to jump to the failure path.
    195  1.13.2.1    martin 			 * If we are swapping i.e. inside the group, then
    196  1.13.2.1    martin 			 * jump "next"; groups have a failure path appended
    197  1.13.2.1    martin 			 * at their end.
    198  1.13.2.1    martin 			 */
    199  1.13.2.1    martin 			if (insn->k == JUMP_MAGIC) {
    200  1.13.2.1    martin 				insn->k = swap ? 0 : fail_off;
    201  1.13.2.1    martin 			}
    202  1.13.2.1    martin 			continue;
    203  1.13.2.1    martin 		}
    204  1.13.2.1    martin 
    205  1.13.2.1    martin 		/*
    206  1.13.2.1    martin 		 * Fixup the "magic" value.  Swap only the "magic" jumps.
    207  1.13.2.1    martin 		 */
    208  1.13.2.1    martin 
    209  1.13.2.1    martin 		if (insn->jt == JUMP_MAGIC) {
    210  1.13.2.1    martin 			insn->jt = fail_off;
    211  1.13.2.1    martin 			seen_magic = true;
    212  1.13.2.1    martin 		}
    213  1.13.2.1    martin 		if (insn->jf == JUMP_MAGIC) {
    214  1.13.2.1    martin 			insn->jf = fail_off;
    215  1.13.2.1    martin 			seen_magic = true;
    216  1.13.2.1    martin 		}
    217  1.13.2.1    martin 
    218  1.13.2.1    martin 		if (seen_magic && swap) {
    219       1.1     rmind 			uint8_t jt = insn->jt;
    220       1.1     rmind 			insn->jt = insn->jf;
    221       1.1     rmind 			insn->jf = jt;
    222       1.1     rmind 		}
    223       1.1     rmind 	}
    224       1.1     rmind }
    225       1.1     rmind 
    226       1.1     rmind static void
    227       1.1     rmind add_insns(npf_bpf_t *ctx, struct bpf_insn *insns, size_t count)
    228       1.1     rmind {
    229       1.1     rmind 	struct bpf_program *bp = &ctx->prog;
    230       1.1     rmind 	size_t offset, len, reqlen;
    231       1.1     rmind 
    232       1.1     rmind 	/* Note: bf_len is the count of instructions. */
    233       1.1     rmind 	offset = bp->bf_len * sizeof(struct bpf_insn);
    234       1.1     rmind 	len = count * sizeof(struct bpf_insn);
    235       1.1     rmind 
    236       1.1     rmind 	/* Ensure the memory buffer for the program. */
    237       1.1     rmind 	reqlen = ALLOC_ROUND(offset + len);
    238       1.1     rmind 	if (reqlen > ctx->alen) {
    239       1.1     rmind 		bp->bf_insns = erealloc(bp->bf_insns, reqlen);
    240       1.1     rmind 		ctx->alen = reqlen;
    241       1.1     rmind 	}
    242       1.1     rmind 
    243       1.1     rmind 	/* Add the code block. */
    244       1.1     rmind 	memcpy((uint8_t *)bp->bf_insns + offset, insns, len);
    245       1.1     rmind 	bp->bf_len += count;
    246       1.1     rmind }
    247       1.1     rmind 
    248       1.1     rmind static void
    249  1.13.2.3    martin add_bmarks(npf_bpf_t *ctx, const uint32_t *m, size_t len)
    250       1.1     rmind {
    251       1.1     rmind 	size_t reqlen, nargs = m[1];
    252       1.1     rmind 
    253       1.1     rmind 	if ((len / sizeof(uint32_t) - 2) != nargs) {
    254       1.1     rmind 		errx(EXIT_FAILURE, "invalid BPF block description");
    255       1.1     rmind 	}
    256       1.1     rmind 	reqlen = ALLOC_ROUND(ctx->mlen + len);
    257       1.1     rmind 	if (reqlen > ctx->malen) {
    258       1.1     rmind 		ctx->marks = erealloc(ctx->marks, reqlen);
    259       1.1     rmind 		ctx->malen = reqlen;
    260       1.1     rmind 	}
    261       1.1     rmind 	memcpy((uint8_t *)ctx->marks + ctx->mlen, m, len);
    262       1.1     rmind 	ctx->mlen += len;
    263       1.1     rmind }
    264       1.1     rmind 
    265       1.1     rmind static void
    266       1.1     rmind done_block(npf_bpf_t *ctx, const uint32_t *m, size_t len)
    267       1.1     rmind {
    268  1.13.2.3    martin 	add_bmarks(ctx, m, len);
    269       1.1     rmind 	ctx->nblocks++;
    270       1.1     rmind }
    271       1.1     rmind 
    272       1.1     rmind struct bpf_program *
    273       1.1     rmind npfctl_bpf_complete(npf_bpf_t *ctx)
    274       1.1     rmind {
    275       1.1     rmind 	struct bpf_program *bp = &ctx->prog;
    276       1.1     rmind 	const u_int retoff = bp->bf_len;
    277       1.1     rmind 
    278       1.8     rmind 	/* No instructions (optimised out). */
    279       1.8     rmind 	if (!bp->bf_len)
    280       1.8     rmind 		return NULL;
    281       1.8     rmind 
    282       1.1     rmind 	/* Add the return fragment (success and failure paths). */
    283       1.1     rmind 	struct bpf_insn insns_ret[] = {
    284       1.1     rmind 		BPF_STMT(BPF_RET+BPF_K, NPF_BPF_SUCCESS),
    285       1.1     rmind 		BPF_STMT(BPF_RET+BPF_K, NPF_BPF_FAILURE),
    286       1.1     rmind 	};
    287       1.1     rmind 	add_insns(ctx, insns_ret, __arraycount(insns_ret));
    288       1.1     rmind 
    289       1.1     rmind 	/* Fixup all jumps to the main failure path. */
    290       1.1     rmind 	fixup_jumps(ctx, 0, retoff, false);
    291       1.1     rmind 
    292       1.1     rmind 	return &ctx->prog;
    293       1.1     rmind }
    294       1.1     rmind 
    295       1.1     rmind const void *
    296       1.1     rmind npfctl_bpf_bmarks(npf_bpf_t *ctx, size_t *len)
    297       1.1     rmind {
    298       1.1     rmind 	*len = ctx->mlen;
    299       1.1     rmind 	return ctx->marks;
    300       1.1     rmind }
    301       1.1     rmind 
    302       1.1     rmind void
    303       1.1     rmind npfctl_bpf_destroy(npf_bpf_t *ctx)
    304       1.1     rmind {
    305       1.1     rmind 	free(ctx->prog.bf_insns);
    306       1.1     rmind 	free(ctx->marks);
    307       1.1     rmind 	free(ctx);
    308       1.1     rmind }
    309       1.1     rmind 
    310       1.1     rmind /*
    311  1.13.2.1    martin  * npfctl_bpf_group_enter: begin a logical group.  It merely uses logical
    312  1.13.2.3    martin  * disjunction (OR) for comparisons within the group.
    313       1.1     rmind  */
    314       1.1     rmind void
    315  1.13.2.3    martin npfctl_bpf_group_enter(npf_bpf_t *ctx, bool invert)
    316       1.1     rmind {
    317       1.1     rmind 	struct bpf_program *bp = &ctx->prog;
    318       1.1     rmind 
    319       1.1     rmind 	assert(ctx->goff == 0);
    320       1.1     rmind 	assert(ctx->gblock == 0);
    321       1.1     rmind 
    322       1.1     rmind 	ctx->goff = bp->bf_len;
    323       1.1     rmind 	ctx->gblock = ctx->nblocks;
    324  1.13.2.3    martin 	ctx->invert = invert;
    325  1.13.2.3    martin 	ctx->ingroup++;
    326       1.1     rmind }
    327       1.1     rmind 
    328       1.1     rmind void
    329  1.13.2.3    martin npfctl_bpf_group_exit(npf_bpf_t *ctx)
    330       1.1     rmind {
    331       1.1     rmind 	struct bpf_program *bp = &ctx->prog;
    332       1.1     rmind 	const size_t curoff = bp->bf_len;
    333       1.1     rmind 
    334  1.13.2.3    martin 	assert(ctx->ingroup);
    335  1.13.2.3    martin 	ctx->ingroup--;
    336  1.13.2.3    martin 
    337       1.1     rmind 	/* If there are no blocks or only one - nothing to do. */
    338  1.13.2.3    martin 	if (!ctx->invert && (ctx->nblocks - ctx->gblock) <= 1) {
    339       1.1     rmind 		ctx->goff = ctx->gblock = 0;
    340       1.1     rmind 		return;
    341       1.1     rmind 	}
    342       1.1     rmind 
    343       1.1     rmind 	/*
    344      1.10     rmind 	 * If inverting, then prepend a jump over the statement below.
    345  1.13.2.1    martin 	 * On match, it will skip-through and the fail path will be taken.
    346      1.10     rmind 	 */
    347  1.13.2.3    martin 	if (ctx->invert) {
    348      1.10     rmind 		struct bpf_insn insns_ret[] = {
    349      1.10     rmind 			BPF_STMT(BPF_JMP+BPF_JA, 1),
    350      1.10     rmind 		};
    351      1.10     rmind 		add_insns(ctx, insns_ret, __arraycount(insns_ret));
    352      1.10     rmind 	}
    353      1.10     rmind 
    354      1.10     rmind 	/*
    355       1.1     rmind 	 * Append a failure return as a fall-through i.e. if there is
    356       1.1     rmind 	 * no match within the group.
    357       1.1     rmind 	 */
    358       1.1     rmind 	struct bpf_insn insns_ret[] = {
    359       1.1     rmind 		BPF_STMT(BPF_RET+BPF_K, NPF_BPF_FAILURE),
    360       1.1     rmind 	};
    361       1.1     rmind 	add_insns(ctx, insns_ret, __arraycount(insns_ret));
    362       1.1     rmind 
    363       1.1     rmind 	/*
    364       1.1     rmind 	 * Adjust jump offsets: on match - jump outside the group i.e.
    365       1.1     rmind 	 * to the current offset.  Otherwise, jump to the next instruction
    366       1.1     rmind 	 * which would lead to the fall-through code above if none matches.
    367       1.1     rmind 	 */
    368       1.1     rmind 	fixup_jumps(ctx, ctx->goff, curoff, true);
    369       1.1     rmind 	ctx->goff = ctx->gblock = 0;
    370       1.1     rmind }
    371       1.1     rmind 
    372       1.1     rmind static void
    373  1.13.2.3    martin fetch_l3(npf_bpf_t *ctx, sa_family_t af, unsigned flags)
    374       1.1     rmind {
    375  1.13.2.3    martin 	unsigned ver;
    376       1.1     rmind 
    377       1.1     rmind 	switch (af) {
    378       1.1     rmind 	case AF_INET:
    379       1.1     rmind 		ver = IPVERSION;
    380       1.1     rmind 		break;
    381       1.1     rmind 	case AF_INET6:
    382       1.1     rmind 		ver = IPV6_VERSION >> 4;
    383       1.1     rmind 		break;
    384       1.1     rmind 	case AF_UNSPEC:
    385       1.1     rmind 		ver = 0;
    386       1.1     rmind 		break;
    387       1.1     rmind 	default:
    388       1.1     rmind 		abort();
    389       1.1     rmind 	}
    390       1.1     rmind 
    391       1.1     rmind 	/*
    392       1.7     rmind 	 * The memory store is populated with:
    393       1.1     rmind 	 * - BPF_MW_IPVER: IP version (4 or 6).
    394       1.1     rmind 	 * - BPF_MW_L4OFF: L4 header offset.
    395       1.1     rmind 	 * - BPF_MW_L4PROTO: L4 protocol.
    396       1.1     rmind 	 */
    397       1.1     rmind 	if ((ctx->flags & FETCHED_L3) == 0 || (af && ctx->af == 0)) {
    398       1.1     rmind 		const uint8_t jt = ver ? 0 : JUMP_MAGIC;
    399       1.1     rmind 		const uint8_t jf = ver ? JUMP_MAGIC : 0;
    400  1.13.2.3    martin 		const bool ingroup = ctx->ingroup != 0;
    401  1.13.2.3    martin 		const bool invert = ctx->invert;
    402       1.1     rmind 
    403       1.1     rmind 		/*
    404       1.1     rmind 		 * L3 block cannot be inserted in the middle of a group.
    405       1.1     rmind 		 * In fact, it never is.  Check and start the group after.
    406       1.1     rmind 		 */
    407       1.1     rmind 		if (ingroup) {
    408       1.1     rmind 			assert(ctx->nblocks == ctx->gblock);
    409  1.13.2.3    martin 			npfctl_bpf_group_exit(ctx);
    410       1.1     rmind 		}
    411       1.1     rmind 
    412       1.1     rmind 		/*
    413       1.1     rmind 		 * A <- IP version; A == expected-version?
    414       1.1     rmind 		 * If no particular version specified, check for non-zero.
    415       1.1     rmind 		 */
    416       1.7     rmind 		struct bpf_insn insns_af[] = {
    417       1.7     rmind 			BPF_STMT(BPF_LD+BPF_W+BPF_MEM, BPF_MW_IPVER),
    418       1.7     rmind 			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, ver, jt, jf),
    419       1.7     rmind 		};
    420       1.7     rmind 		add_insns(ctx, insns_af, __arraycount(insns_af));
    421       1.7     rmind 		ctx->flags |= FETCHED_L3;
    422       1.1     rmind 		ctx->af = af;
    423       1.1     rmind 
    424       1.1     rmind 		if (af) {
    425       1.1     rmind 			uint32_t mwords[] = { BM_IPVER, 1, af };
    426  1.13.2.3    martin 			add_bmarks(ctx, mwords, sizeof(mwords));
    427       1.1     rmind 		}
    428       1.1     rmind 		if (ingroup) {
    429  1.13.2.3    martin 			npfctl_bpf_group_enter(ctx, invert);
    430       1.1     rmind 		}
    431       1.1     rmind 
    432       1.1     rmind 	} else if (af && af != ctx->af) {
    433       1.1     rmind 		errx(EXIT_FAILURE, "address family mismatch");
    434       1.1     rmind 	}
    435       1.1     rmind 
    436       1.1     rmind 	if ((flags & X_EQ_L4OFF) != 0 && (ctx->flags & X_EQ_L4OFF) == 0) {
    437       1.1     rmind 		/* X <- IP header length */
    438       1.1     rmind 		struct bpf_insn insns_hlen[] = {
    439       1.1     rmind 			BPF_STMT(BPF_LDX+BPF_MEM, BPF_MW_L4OFF),
    440       1.1     rmind 		};
    441       1.1     rmind 		add_insns(ctx, insns_hlen, __arraycount(insns_hlen));
    442       1.1     rmind 		ctx->flags |= X_EQ_L4OFF;
    443       1.1     rmind 	}
    444       1.1     rmind }
    445       1.1     rmind 
    446  1.13.2.3    martin static void
    447  1.13.2.3    martin bm_invert_checkpoint(npf_bpf_t *ctx, const unsigned opts)
    448  1.13.2.3    martin {
    449  1.13.2.3    martin 	uint32_t bm = 0;
    450  1.13.2.3    martin 
    451  1.13.2.3    martin 	if (ctx->ingroup && ctx->invert) {
    452  1.13.2.3    martin 		const unsigned seen = ctx->invflags;
    453  1.13.2.3    martin 
    454  1.13.2.3    martin 		if ((opts & MATCH_SRC) != 0 && (seen & MATCH_SRC) == 0) {
    455  1.13.2.3    martin 			bm = BM_SRC_NEG;
    456  1.13.2.3    martin 		}
    457  1.13.2.3    martin 		if ((opts & MATCH_DST) != 0 && (seen & MATCH_DST) == 0) {
    458  1.13.2.3    martin 			bm = BM_DST_NEG;
    459  1.13.2.3    martin 		}
    460  1.13.2.3    martin 		ctx->invflags |= opts & (MATCH_SRC | MATCH_DST);
    461  1.13.2.3    martin 	}
    462  1.13.2.3    martin 	if (bm) {
    463  1.13.2.3    martin 		uint32_t mwords[] = { bm, 0 };
    464  1.13.2.3    martin 		add_bmarks(ctx, mwords, sizeof(mwords));
    465  1.13.2.3    martin 	}
    466  1.13.2.3    martin }
    467  1.13.2.3    martin 
    468       1.1     rmind /*
    469  1.13.2.3    martin  * npfctl_bpf_ipver: match the IP version.
    470       1.1     rmind  */
    471       1.1     rmind void
    472  1.13.2.3    martin npfctl_bpf_ipver(npf_bpf_t *ctx, sa_family_t af)
    473       1.1     rmind {
    474       1.1     rmind 	fetch_l3(ctx, af, 0);
    475  1.13.2.3    martin }
    476       1.1     rmind 
    477  1.13.2.3    martin /*
    478  1.13.2.3    martin  * npfctl_bpf_proto: code block to match IP version and L4 protocol.
    479  1.13.2.3    martin  */
    480  1.13.2.3    martin void
    481  1.13.2.3    martin npfctl_bpf_proto(npf_bpf_t *ctx, unsigned proto)
    482  1.13.2.3    martin {
    483       1.1     rmind 	struct bpf_insn insns_proto[] = {
    484       1.1     rmind 		/* A <- L4 protocol; A == expected-protocol? */
    485       1.1     rmind 		BPF_STMT(BPF_LD+BPF_W+BPF_MEM, BPF_MW_L4PROTO),
    486       1.1     rmind 		BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, proto, 0, JUMP_MAGIC),
    487       1.1     rmind 	};
    488       1.1     rmind 	add_insns(ctx, insns_proto, __arraycount(insns_proto));
    489       1.1     rmind 
    490       1.1     rmind 	uint32_t mwords[] = { BM_PROTO, 1, proto };
    491       1.1     rmind 	done_block(ctx, mwords, sizeof(mwords));
    492  1.13.2.3    martin 	ctx->flags |= CHECKED_L4_PROTO;
    493       1.1     rmind }
    494       1.1     rmind 
    495       1.1     rmind /*
    496       1.1     rmind  * npfctl_bpf_cidr: code block to match IPv4 or IPv6 CIDR.
    497       1.1     rmind  *
    498       1.1     rmind  * => IP address shall be in the network byte order.
    499       1.1     rmind  */
    500       1.1     rmind void
    501  1.13.2.3    martin npfctl_bpf_cidr(npf_bpf_t *ctx, unsigned opts, sa_family_t af,
    502       1.1     rmind     const npf_addr_t *addr, const npf_netmask_t mask)
    503       1.1     rmind {
    504       1.1     rmind 	const uint32_t *awords = (const uint32_t *)addr;
    505  1.13.2.3    martin 	unsigned nwords, length, maxmask, off;
    506       1.1     rmind 
    507       1.1     rmind 	assert(((opts & MATCH_SRC) != 0) ^ ((opts & MATCH_DST) != 0));
    508       1.1     rmind 	assert((mask && mask <= NPF_MAX_NETMASK) || mask == NPF_NO_NETMASK);
    509       1.1     rmind 
    510       1.1     rmind 	switch (af) {
    511       1.1     rmind 	case AF_INET:
    512       1.1     rmind 		maxmask = 32;
    513       1.1     rmind 		off = (opts & MATCH_SRC) ?
    514       1.1     rmind 		    offsetof(struct ip, ip_src) :
    515       1.1     rmind 		    offsetof(struct ip, ip_dst);
    516       1.1     rmind 		nwords = sizeof(struct in_addr) / sizeof(uint32_t);
    517       1.1     rmind 		break;
    518       1.1     rmind 	case AF_INET6:
    519       1.1     rmind 		maxmask = 128;
    520       1.1     rmind 		off = (opts & MATCH_SRC) ?
    521       1.1     rmind 		    offsetof(struct ip6_hdr, ip6_src) :
    522       1.1     rmind 		    offsetof(struct ip6_hdr, ip6_dst);
    523       1.1     rmind 		nwords = sizeof(struct in6_addr) / sizeof(uint32_t);
    524       1.1     rmind 		break;
    525       1.1     rmind 	default:
    526       1.1     rmind 		abort();
    527       1.1     rmind 	}
    528       1.1     rmind 
    529       1.1     rmind 	/* Ensure address family. */
    530       1.1     rmind 	fetch_l3(ctx, af, 0);
    531       1.1     rmind 
    532       1.1     rmind 	length = (mask == NPF_NO_NETMASK) ? maxmask : mask;
    533       1.1     rmind 
    534       1.1     rmind 	/* CAUTION: BPF operates in host byte-order. */
    535  1.13.2.3    martin 	for (unsigned i = 0; i < nwords; i++) {
    536  1.13.2.3    martin 		const unsigned woff = i * sizeof(uint32_t);
    537       1.1     rmind 		uint32_t word = ntohl(awords[i]);
    538       1.1     rmind 		uint32_t wordmask;
    539       1.1     rmind 
    540       1.1     rmind 		if (length >= 32) {
    541       1.1     rmind 			/* The mask is a full word - do not apply it. */
    542       1.1     rmind 			wordmask = 0;
    543       1.1     rmind 			length -= 32;
    544       1.1     rmind 		} else if (length) {
    545       1.4     rmind 			wordmask = 0xffffffff << (32 - length);
    546       1.1     rmind 			length = 0;
    547       1.1     rmind 		} else {
    548       1.3     rmind 			/* The mask became zero - skip the rest. */
    549       1.3     rmind 			break;
    550       1.1     rmind 		}
    551       1.1     rmind 
    552       1.1     rmind 		/* A <- IP address (or one word of it) */
    553       1.1     rmind 		struct bpf_insn insns_ip[] = {
    554       1.1     rmind 			BPF_STMT(BPF_LD+BPF_W+BPF_ABS, off + woff),
    555       1.1     rmind 		};
    556       1.1     rmind 		add_insns(ctx, insns_ip, __arraycount(insns_ip));
    557       1.1     rmind 
    558       1.1     rmind 		/* A <- (A & MASK) */
    559       1.1     rmind 		if (wordmask) {
    560       1.1     rmind 			struct bpf_insn insns_mask[] = {
    561       1.1     rmind 				BPF_STMT(BPF_ALU+BPF_AND+BPF_K, wordmask),
    562       1.1     rmind 			};
    563       1.1     rmind 			add_insns(ctx, insns_mask, __arraycount(insns_mask));
    564       1.1     rmind 		}
    565       1.1     rmind 
    566       1.1     rmind 		/* A == expected-IP-word ? */
    567       1.1     rmind 		struct bpf_insn insns_cmp[] = {
    568       1.1     rmind 			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, word, 0, JUMP_MAGIC),
    569       1.1     rmind 		};
    570       1.1     rmind 		add_insns(ctx, insns_cmp, __arraycount(insns_cmp));
    571       1.1     rmind 	}
    572       1.1     rmind 
    573       1.1     rmind 	uint32_t mwords[] = {
    574       1.1     rmind 		(opts & MATCH_SRC) ? BM_SRC_CIDR: BM_DST_CIDR, 6,
    575       1.1     rmind 		af, mask, awords[0], awords[1], awords[2], awords[3],
    576       1.1     rmind 	};
    577  1.13.2.3    martin 	bm_invert_checkpoint(ctx, opts);
    578       1.1     rmind 	done_block(ctx, mwords, sizeof(mwords));
    579       1.1     rmind }
    580       1.1     rmind 
    581       1.1     rmind /*
    582       1.1     rmind  * npfctl_bpf_ports: code block to match TCP/UDP port range.
    583       1.1     rmind  *
    584       1.1     rmind  * => Port numbers shall be in the network byte order.
    585       1.1     rmind  */
    586       1.1     rmind void
    587  1.13.2.3    martin npfctl_bpf_ports(npf_bpf_t *ctx, unsigned opts, in_port_t from, in_port_t to)
    588       1.1     rmind {
    589  1.13.2.3    martin 	const unsigned sport_off = offsetof(struct udphdr, uh_sport);
    590  1.13.2.3    martin 	const unsigned dport_off = offsetof(struct udphdr, uh_dport);
    591  1.13.2.3    martin 	unsigned off;
    592       1.1     rmind 
    593       1.1     rmind 	/* TCP and UDP port offsets are the same. */
    594       1.1     rmind 	assert(sport_off == offsetof(struct tcphdr, th_sport));
    595       1.1     rmind 	assert(dport_off == offsetof(struct tcphdr, th_dport));
    596  1.13.2.3    martin 	assert(ctx->flags & CHECKED_L4_PROTO);
    597       1.1     rmind 
    598       1.1     rmind 	assert(((opts & MATCH_SRC) != 0) ^ ((opts & MATCH_DST) != 0));
    599       1.1     rmind 	off = (opts & MATCH_SRC) ? sport_off : dport_off;
    600       1.1     rmind 
    601       1.1     rmind 	/* X <- IP header length */
    602       1.2     rmind 	fetch_l3(ctx, AF_UNSPEC, X_EQ_L4OFF);
    603       1.1     rmind 
    604       1.1     rmind 	struct bpf_insn insns_fetch[] = {
    605       1.1     rmind 		/* A <- port */
    606       1.1     rmind 		BPF_STMT(BPF_LD+BPF_H+BPF_IND, off),
    607       1.1     rmind 	};
    608       1.1     rmind 	add_insns(ctx, insns_fetch, __arraycount(insns_fetch));
    609       1.1     rmind 
    610       1.1     rmind 	/* CAUTION: BPF operates in host byte-order. */
    611       1.1     rmind 	from = ntohs(from);
    612       1.1     rmind 	to = ntohs(to);
    613       1.1     rmind 
    614       1.1     rmind 	if (from == to) {
    615       1.1     rmind 		/* Single port case. */
    616       1.1     rmind 		struct bpf_insn insns_port[] = {
    617       1.1     rmind 			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, from, 0, JUMP_MAGIC),
    618       1.1     rmind 		};
    619       1.1     rmind 		add_insns(ctx, insns_port, __arraycount(insns_port));
    620       1.1     rmind 	} else {
    621       1.1     rmind 		/* Port range case. */
    622       1.1     rmind 		struct bpf_insn insns_range[] = {
    623  1.13.2.1    martin 			BPF_JUMP(BPF_JMP+BPF_JGE+BPF_K, from, 0, 1),
    624  1.13.2.1    martin 			BPF_JUMP(BPF_JMP+BPF_JGT+BPF_K, to, 0, 1),
    625  1.13.2.1    martin 			BPF_STMT(BPF_JMP+BPF_JA, JUMP_MAGIC),
    626       1.1     rmind 		};
    627       1.1     rmind 		add_insns(ctx, insns_range, __arraycount(insns_range));
    628       1.1     rmind 	}
    629       1.1     rmind 
    630       1.1     rmind 	uint32_t mwords[] = {
    631  1.13.2.3    martin 		(opts & MATCH_SRC) ? BM_SRC_PORTS : BM_DST_PORTS, 2, from, to
    632       1.1     rmind 	};
    633       1.1     rmind 	done_block(ctx, mwords, sizeof(mwords));
    634       1.1     rmind }
    635       1.1     rmind 
    636       1.1     rmind /*
    637       1.1     rmind  * npfctl_bpf_tcpfl: code block to match TCP flags.
    638       1.1     rmind  */
    639       1.1     rmind void
    640  1.13.2.3    martin npfctl_bpf_tcpfl(npf_bpf_t *ctx, uint8_t tf, uint8_t tf_mask)
    641       1.1     rmind {
    642  1.13.2.3    martin 	const unsigned tcpfl_off = offsetof(struct tcphdr, th_flags);
    643       1.6     rmind 	const bool usingmask = tf_mask != tf;
    644       1.1     rmind 
    645       1.1     rmind 	/* X <- IP header length */
    646       1.2     rmind 	fetch_l3(ctx, AF_UNSPEC, X_EQ_L4OFF);
    647       1.5     rmind 
    648  1.13.2.3    martin 	if ((ctx->flags & CHECKED_L4_PROTO) == 0) {
    649  1.13.2.3    martin 		const unsigned jf = usingmask ? 3 : 2;
    650  1.13.2.3    martin 		assert(ctx->ingroup == 0);
    651  1.13.2.3    martin 
    652  1.13.2.3    martin 		/*
    653  1.13.2.3    martin 		 * A <- L4 protocol; A == TCP?  If not, jump out.
    654  1.13.2.3    martin 		 *
    655  1.13.2.3    martin 		 * Note: the TCP flag matching might be without 'proto tcp'
    656  1.13.2.3    martin 		 * when using a plain 'stateful' rule.  In such case it also
    657  1.13.2.3    martin 		 * handles other protocols, thus no strict TCP check.
    658  1.13.2.3    martin 		 */
    659       1.5     rmind 		struct bpf_insn insns_tcp[] = {
    660       1.5     rmind 			BPF_STMT(BPF_LD+BPF_W+BPF_MEM, BPF_MW_L4PROTO),
    661       1.5     rmind 			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, IPPROTO_TCP, 0, jf),
    662       1.5     rmind 		};
    663       1.5     rmind 		add_insns(ctx, insns_tcp, __arraycount(insns_tcp));
    664       1.5     rmind 	}
    665       1.1     rmind 
    666       1.1     rmind 	struct bpf_insn insns_tf[] = {
    667       1.1     rmind 		/* A <- TCP flags */
    668       1.1     rmind 		BPF_STMT(BPF_LD+BPF_B+BPF_IND, tcpfl_off),
    669       1.1     rmind 	};
    670       1.1     rmind 	add_insns(ctx, insns_tf, __arraycount(insns_tf));
    671       1.1     rmind 
    672       1.6     rmind 	if (usingmask) {
    673       1.1     rmind 		/* A <- (A & mask) */
    674       1.1     rmind 		struct bpf_insn insns_mask[] = {
    675       1.1     rmind 			BPF_STMT(BPF_ALU+BPF_AND+BPF_K, tf_mask),
    676       1.1     rmind 		};
    677       1.1     rmind 		add_insns(ctx, insns_mask, __arraycount(insns_mask));
    678       1.1     rmind 	}
    679       1.1     rmind 
    680       1.1     rmind 	struct bpf_insn insns_cmp[] = {
    681       1.1     rmind 		/* A == expected-TCP-flags? */
    682       1.1     rmind 		BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, tf, 0, JUMP_MAGIC),
    683       1.1     rmind 	};
    684       1.1     rmind 	add_insns(ctx, insns_cmp, __arraycount(insns_cmp));
    685       1.1     rmind 
    686  1.13.2.3    martin 	uint32_t mwords[] = { BM_TCPFL, 2, tf, tf_mask };
    687      1.12       tih 	done_block(ctx, mwords, sizeof(mwords));
    688       1.1     rmind }
    689       1.1     rmind 
    690       1.1     rmind /*
    691       1.1     rmind  * npfctl_bpf_icmp: code block to match ICMP type and/or code.
    692  1.13.2.3    martin  * Note: suitable for both the ICMPv4 and ICMPv6.
    693       1.1     rmind  */
    694       1.1     rmind void
    695       1.1     rmind npfctl_bpf_icmp(npf_bpf_t *ctx, int type, int code)
    696       1.1     rmind {
    697       1.1     rmind 	const u_int type_off = offsetof(struct icmp, icmp_type);
    698       1.1     rmind 	const u_int code_off = offsetof(struct icmp, icmp_code);
    699       1.1     rmind 
    700  1.13.2.3    martin 	assert(ctx->flags & CHECKED_L4_PROTO);
    701       1.1     rmind 	assert(offsetof(struct icmp6_hdr, icmp6_type) == type_off);
    702       1.1     rmind 	assert(offsetof(struct icmp6_hdr, icmp6_code) == code_off);
    703       1.1     rmind 	assert(type != -1 || code != -1);
    704       1.1     rmind 
    705       1.1     rmind 	/* X <- IP header length */
    706       1.2     rmind 	fetch_l3(ctx, AF_UNSPEC, X_EQ_L4OFF);
    707       1.1     rmind 
    708       1.1     rmind 	if (type != -1) {
    709       1.1     rmind 		struct bpf_insn insns_type[] = {
    710       1.1     rmind 			BPF_STMT(BPF_LD+BPF_B+BPF_IND, type_off),
    711       1.1     rmind 			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, type, 0, JUMP_MAGIC),
    712       1.1     rmind 		};
    713       1.1     rmind 		add_insns(ctx, insns_type, __arraycount(insns_type));
    714       1.1     rmind 
    715       1.1     rmind 		uint32_t mwords[] = { BM_ICMP_TYPE, 1, type };
    716       1.1     rmind 		done_block(ctx, mwords, sizeof(mwords));
    717       1.1     rmind 	}
    718       1.1     rmind 
    719       1.1     rmind 	if (code != -1) {
    720       1.1     rmind 		struct bpf_insn insns_code[] = {
    721       1.1     rmind 			BPF_STMT(BPF_LD+BPF_B+BPF_IND, code_off),
    722       1.1     rmind 			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, code, 0, JUMP_MAGIC),
    723       1.1     rmind 		};
    724       1.1     rmind 		add_insns(ctx, insns_code, __arraycount(insns_code));
    725       1.1     rmind 
    726       1.1     rmind 		uint32_t mwords[] = { BM_ICMP_CODE, 1, code };
    727       1.1     rmind 		done_block(ctx, mwords, sizeof(mwords));
    728       1.1     rmind 	}
    729       1.1     rmind }
    730       1.1     rmind 
    731       1.1     rmind #define	SRC_FLAG_BIT	(1U << 31)
    732       1.1     rmind 
    733       1.1     rmind /*
    734       1.1     rmind  * npfctl_bpf_table: code block to match source/destination IP address
    735       1.1     rmind  * against NPF table specified by ID.
    736       1.1     rmind  */
    737       1.1     rmind void
    738  1.13.2.3    martin npfctl_bpf_table(npf_bpf_t *ctx, unsigned opts, unsigned tid)
    739       1.1     rmind {
    740       1.1     rmind 	const bool src = (opts & MATCH_SRC) != 0;
    741       1.1     rmind 
    742       1.1     rmind 	struct bpf_insn insns_table[] = {
    743       1.1     rmind 		BPF_STMT(BPF_LD+BPF_IMM, (src ? SRC_FLAG_BIT : 0) | tid),
    744       1.1     rmind 		BPF_STMT(BPF_MISC+BPF_COP, NPF_COP_TABLE),
    745       1.1     rmind 		BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0, JUMP_MAGIC, 0),
    746       1.1     rmind 	};
    747       1.1     rmind 	add_insns(ctx, insns_table, __arraycount(insns_table));
    748       1.1     rmind 
    749       1.1     rmind 	uint32_t mwords[] = { src ? BM_SRC_TABLE: BM_DST_TABLE, 1, tid };
    750  1.13.2.3    martin 	bm_invert_checkpoint(ctx, opts);
    751       1.1     rmind 	done_block(ctx, mwords, sizeof(mwords));
    752       1.1     rmind }
    753