npf_bpf_comp.c revision 1.14 1 1.1 rmind /*-
2 1.14 rmind * Copyright (c) 2010-2019 The NetBSD Foundation, Inc.
3 1.1 rmind * All rights reserved.
4 1.1 rmind *
5 1.1 rmind * This material is based upon work partially supported by The
6 1.1 rmind * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
7 1.1 rmind *
8 1.1 rmind * Redistribution and use in source and binary forms, with or without
9 1.1 rmind * modification, are permitted provided that the following conditions
10 1.1 rmind * are met:
11 1.1 rmind * 1. Redistributions of source code must retain the above copyright
12 1.1 rmind * notice, this list of conditions and the following disclaimer.
13 1.1 rmind * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 rmind * notice, this list of conditions and the following disclaimer in the
15 1.1 rmind * documentation and/or other materials provided with the distribution.
16 1.1 rmind *
17 1.1 rmind * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
18 1.1 rmind * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
19 1.1 rmind * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 1.1 rmind * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
21 1.1 rmind * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 1.1 rmind * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 1.1 rmind * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 1.1 rmind * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 1.1 rmind * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 1.1 rmind * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 1.1 rmind * POSSIBILITY OF SUCH DAMAGE.
28 1.1 rmind */
29 1.1 rmind
30 1.1 rmind /*
31 1.1 rmind * BPF byte-code generation for NPF rules.
32 1.14 rmind *
33 1.14 rmind * Overview
34 1.14 rmind *
35 1.14 rmind * Each NPF rule is compiled into BPF micro-program. There is a
36 1.14 rmind * BPF byte-code fragment for each higher-level filtering logic,
37 1.14 rmind * e.g. to match L4 protocol, IP/mask, etc. The generation process
38 1.14 rmind * combines multiple BPF-byte code fragments into one program.
39 1.14 rmind *
40 1.14 rmind * Basic case
41 1.14 rmind *
42 1.14 rmind * Consider a basic case, where all filters should match. They
43 1.14 rmind * are expressed as logical conjunction, e.g.:
44 1.14 rmind *
45 1.14 rmind * A and B and C and D
46 1.14 rmind *
47 1.14 rmind * Each test (filter) criterion can be evaluated to true (match) or
48 1.14 rmind * false (no match) and the logic is as follows:
49 1.14 rmind *
50 1.14 rmind * - If the value is true, then jump to the "next" test (offset 0).
51 1.14 rmind *
52 1.14 rmind * - If the value is false, then jump to the JUMP_MAGIC value (0xff).
53 1.14 rmind * This "magic" value is used to indicate that it will have to be
54 1.14 rmind * patched at a later stage.
55 1.14 rmind *
56 1.14 rmind * Once all byte-code fragments are combined into one, then there
57 1.14 rmind * are two additional steps:
58 1.14 rmind *
59 1.14 rmind * - Two instructions are appended at the end of the program: return
60 1.14 rmind * "success" followed by return "failure".
61 1.14 rmind *
62 1.14 rmind * - All jumps with the JUMP_MAGIC value are patched to point to the
63 1.14 rmind * "return failure" instruction.
64 1.14 rmind *
65 1.14 rmind * Therefore, if all filter criteria will match, then the first
66 1.14 rmind * instruction will be reached, indicating a successful match of the
67 1.14 rmind * rule. Otherwise, if any of the criteria will not match, it will
68 1.14 rmind * take the failure path and the rule will not matching.
69 1.14 rmind *
70 1.14 rmind * Grouping
71 1.14 rmind *
72 1.14 rmind * Filters can have groups, which are have a meaning of logical
73 1.14 rmind * disjunction, e.g.:
74 1.14 rmind *
75 1.14 rmind * A and B and (C or D)
76 1.14 rmind *
77 1.14 rmind * In such case, the logic inside the group has to be inverted i.e.
78 1.14 rmind * the jump values swapped. If the test value is true, then jump
79 1.14 rmind * out of the group; if false, then jump "next". At the end of the
80 1.14 rmind * group, an addition failure path is appended and the JUMP_MAGIC
81 1.14 rmind * uses within the group are patched to jump past the said path.
82 1.1 rmind */
83 1.1 rmind
84 1.1 rmind #include <sys/cdefs.h>
85 1.14 rmind __RCSID("$NetBSD: npf_bpf_comp.c,v 1.14 2019/08/08 21:29:15 rmind Exp $");
86 1.1 rmind
87 1.1 rmind #include <stdlib.h>
88 1.1 rmind #include <stdbool.h>
89 1.1 rmind #include <stddef.h>
90 1.1 rmind #include <string.h>
91 1.1 rmind #include <inttypes.h>
92 1.1 rmind #include <err.h>
93 1.1 rmind #include <assert.h>
94 1.1 rmind
95 1.1 rmind #include <netinet/in.h>
96 1.1 rmind #include <netinet/in_systm.h>
97 1.9 christos #define __FAVOR_BSD
98 1.1 rmind #include <netinet/ip.h>
99 1.1 rmind #include <netinet/ip6.h>
100 1.1 rmind #include <netinet/udp.h>
101 1.1 rmind #include <netinet/tcp.h>
102 1.1 rmind #include <netinet/ip_icmp.h>
103 1.1 rmind #include <netinet/icmp6.h>
104 1.1 rmind
105 1.1 rmind #include <net/bpf.h>
106 1.1 rmind
107 1.1 rmind #include "npfctl.h"
108 1.1 rmind
109 1.1 rmind /*
110 1.1 rmind * Note: clear X_EQ_L4OFF when register X is invalidated i.e. it stores
111 1.1 rmind * something other than L4 header offset. Generally, when BPF_LDX is used.
112 1.1 rmind */
113 1.1 rmind #define FETCHED_L3 0x01
114 1.6 rmind #define CHECKED_L4 0x02
115 1.6 rmind #define X_EQ_L4OFF 0x04
116 1.1 rmind
117 1.1 rmind struct npf_bpf {
118 1.1 rmind /*
119 1.1 rmind * BPF program code, the allocated length (in bytes), the number
120 1.1 rmind * of logical blocks and the flags.
121 1.1 rmind */
122 1.1 rmind struct bpf_program prog;
123 1.1 rmind size_t alen;
124 1.1 rmind u_int nblocks;
125 1.1 rmind sa_family_t af;
126 1.1 rmind uint32_t flags;
127 1.1 rmind
128 1.14 rmind /*
129 1.14 rmind * The current group offset (counted in BPF instructions)
130 1.14 rmind * and block number at the start of the group.
131 1.14 rmind */
132 1.1 rmind bool ingroup;
133 1.1 rmind u_int goff;
134 1.1 rmind u_int gblock;
135 1.1 rmind
136 1.1 rmind /* BPF marks, allocated length and the real length. */
137 1.1 rmind uint32_t * marks;
138 1.1 rmind size_t malen;
139 1.1 rmind size_t mlen;
140 1.1 rmind };
141 1.1 rmind
142 1.1 rmind /*
143 1.1 rmind * NPF success and failure values to be returned from BPF.
144 1.1 rmind */
145 1.1 rmind #define NPF_BPF_SUCCESS ((u_int)-1)
146 1.1 rmind #define NPF_BPF_FAILURE 0
147 1.1 rmind
148 1.1 rmind /*
149 1.1 rmind * Magic value to indicate the failure path, which is fixed up on completion.
150 1.1 rmind * Note: this is the longest jump offset in BPF, since the offset is one byte.
151 1.1 rmind */
152 1.1 rmind #define JUMP_MAGIC 0xff
153 1.1 rmind
154 1.1 rmind /* Reduce re-allocations by expanding in 64 byte blocks. */
155 1.1 rmind #define ALLOC_MASK (64 - 1)
156 1.1 rmind #define ALLOC_ROUND(x) (((x) + ALLOC_MASK) & ~ALLOC_MASK)
157 1.1 rmind
158 1.9 christos #ifndef IPV6_VERSION
159 1.9 christos #define IPV6_VERSION 0x60
160 1.9 christos #endif
161 1.9 christos
162 1.1 rmind npf_bpf_t *
163 1.1 rmind npfctl_bpf_create(void)
164 1.1 rmind {
165 1.1 rmind return ecalloc(1, sizeof(npf_bpf_t));
166 1.1 rmind }
167 1.1 rmind
168 1.1 rmind static void
169 1.1 rmind fixup_jumps(npf_bpf_t *ctx, u_int start, u_int end, bool swap)
170 1.1 rmind {
171 1.1 rmind struct bpf_program *bp = &ctx->prog;
172 1.1 rmind
173 1.1 rmind for (u_int i = start; i < end; i++) {
174 1.1 rmind struct bpf_insn *insn = &bp->bf_insns[i];
175 1.1 rmind const u_int fail_off = end - i;
176 1.14 rmind bool seen_magic = false;
177 1.1 rmind
178 1.1 rmind if (fail_off >= JUMP_MAGIC) {
179 1.1 rmind errx(EXIT_FAILURE, "BPF generation error: "
180 1.1 rmind "the number of instructions is over the limit");
181 1.1 rmind }
182 1.1 rmind if (BPF_CLASS(insn->code) != BPF_JMP) {
183 1.1 rmind continue;
184 1.1 rmind }
185 1.14 rmind if (BPF_OP(insn->code) == BPF_JA) {
186 1.14 rmind /*
187 1.14 rmind * BPF_JA can be used to jump to the failure path.
188 1.14 rmind * If we are swapping i.e. inside the group, then
189 1.14 rmind * jump "next"; groups have a failure path appended
190 1.14 rmind * at their end.
191 1.14 rmind */
192 1.14 rmind if (insn->k == JUMP_MAGIC) {
193 1.14 rmind insn->k = swap ? 0 : fail_off;
194 1.14 rmind }
195 1.14 rmind continue;
196 1.14 rmind }
197 1.14 rmind
198 1.14 rmind /*
199 1.14 rmind * Fixup the "magic" value. Swap only the "magic" jumps.
200 1.14 rmind */
201 1.14 rmind
202 1.14 rmind if (insn->jt == JUMP_MAGIC) {
203 1.14 rmind insn->jt = fail_off;
204 1.14 rmind seen_magic = true;
205 1.14 rmind }
206 1.14 rmind if (insn->jf == JUMP_MAGIC) {
207 1.14 rmind insn->jf = fail_off;
208 1.14 rmind seen_magic = true;
209 1.14 rmind }
210 1.14 rmind
211 1.14 rmind if (seen_magic && swap) {
212 1.1 rmind uint8_t jt = insn->jt;
213 1.1 rmind insn->jt = insn->jf;
214 1.1 rmind insn->jf = jt;
215 1.1 rmind }
216 1.1 rmind }
217 1.1 rmind }
218 1.1 rmind
219 1.1 rmind static void
220 1.1 rmind add_insns(npf_bpf_t *ctx, struct bpf_insn *insns, size_t count)
221 1.1 rmind {
222 1.1 rmind struct bpf_program *bp = &ctx->prog;
223 1.1 rmind size_t offset, len, reqlen;
224 1.1 rmind
225 1.1 rmind /* Note: bf_len is the count of instructions. */
226 1.1 rmind offset = bp->bf_len * sizeof(struct bpf_insn);
227 1.1 rmind len = count * sizeof(struct bpf_insn);
228 1.1 rmind
229 1.1 rmind /* Ensure the memory buffer for the program. */
230 1.1 rmind reqlen = ALLOC_ROUND(offset + len);
231 1.1 rmind if (reqlen > ctx->alen) {
232 1.1 rmind bp->bf_insns = erealloc(bp->bf_insns, reqlen);
233 1.1 rmind ctx->alen = reqlen;
234 1.1 rmind }
235 1.1 rmind
236 1.1 rmind /* Add the code block. */
237 1.1 rmind memcpy((uint8_t *)bp->bf_insns + offset, insns, len);
238 1.1 rmind bp->bf_len += count;
239 1.1 rmind }
240 1.1 rmind
241 1.1 rmind static void
242 1.1 rmind done_raw_block(npf_bpf_t *ctx, const uint32_t *m, size_t len)
243 1.1 rmind {
244 1.1 rmind size_t reqlen, nargs = m[1];
245 1.1 rmind
246 1.1 rmind if ((len / sizeof(uint32_t) - 2) != nargs) {
247 1.1 rmind errx(EXIT_FAILURE, "invalid BPF block description");
248 1.1 rmind }
249 1.1 rmind reqlen = ALLOC_ROUND(ctx->mlen + len);
250 1.1 rmind if (reqlen > ctx->malen) {
251 1.1 rmind ctx->marks = erealloc(ctx->marks, reqlen);
252 1.1 rmind ctx->malen = reqlen;
253 1.1 rmind }
254 1.1 rmind memcpy((uint8_t *)ctx->marks + ctx->mlen, m, len);
255 1.1 rmind ctx->mlen += len;
256 1.1 rmind }
257 1.1 rmind
258 1.1 rmind static void
259 1.1 rmind done_block(npf_bpf_t *ctx, const uint32_t *m, size_t len)
260 1.1 rmind {
261 1.1 rmind done_raw_block(ctx, m, len);
262 1.1 rmind ctx->nblocks++;
263 1.1 rmind }
264 1.1 rmind
265 1.1 rmind struct bpf_program *
266 1.1 rmind npfctl_bpf_complete(npf_bpf_t *ctx)
267 1.1 rmind {
268 1.1 rmind struct bpf_program *bp = &ctx->prog;
269 1.1 rmind const u_int retoff = bp->bf_len;
270 1.1 rmind
271 1.8 rmind /* No instructions (optimised out). */
272 1.8 rmind if (!bp->bf_len)
273 1.8 rmind return NULL;
274 1.8 rmind
275 1.1 rmind /* Add the return fragment (success and failure paths). */
276 1.1 rmind struct bpf_insn insns_ret[] = {
277 1.1 rmind BPF_STMT(BPF_RET+BPF_K, NPF_BPF_SUCCESS),
278 1.1 rmind BPF_STMT(BPF_RET+BPF_K, NPF_BPF_FAILURE),
279 1.1 rmind };
280 1.1 rmind add_insns(ctx, insns_ret, __arraycount(insns_ret));
281 1.1 rmind
282 1.1 rmind /* Fixup all jumps to the main failure path. */
283 1.1 rmind fixup_jumps(ctx, 0, retoff, false);
284 1.1 rmind
285 1.1 rmind return &ctx->prog;
286 1.1 rmind }
287 1.1 rmind
288 1.1 rmind const void *
289 1.1 rmind npfctl_bpf_bmarks(npf_bpf_t *ctx, size_t *len)
290 1.1 rmind {
291 1.1 rmind *len = ctx->mlen;
292 1.1 rmind return ctx->marks;
293 1.1 rmind }
294 1.1 rmind
295 1.1 rmind void
296 1.1 rmind npfctl_bpf_destroy(npf_bpf_t *ctx)
297 1.1 rmind {
298 1.1 rmind free(ctx->prog.bf_insns);
299 1.1 rmind free(ctx->marks);
300 1.1 rmind free(ctx);
301 1.1 rmind }
302 1.1 rmind
303 1.1 rmind /*
304 1.14 rmind * npfctl_bpf_group_enter: begin a logical group. It merely uses logical
305 1.1 rmind * disjunction (OR) for compares within the group.
306 1.1 rmind */
307 1.1 rmind void
308 1.14 rmind npfctl_bpf_group_enter(npf_bpf_t *ctx)
309 1.1 rmind {
310 1.1 rmind struct bpf_program *bp = &ctx->prog;
311 1.1 rmind
312 1.1 rmind assert(ctx->goff == 0);
313 1.1 rmind assert(ctx->gblock == 0);
314 1.1 rmind
315 1.1 rmind ctx->goff = bp->bf_len;
316 1.1 rmind ctx->gblock = ctx->nblocks;
317 1.1 rmind ctx->ingroup = true;
318 1.1 rmind }
319 1.1 rmind
320 1.1 rmind void
321 1.14 rmind npfctl_bpf_group_exit(npf_bpf_t *ctx, bool invert)
322 1.1 rmind {
323 1.1 rmind struct bpf_program *bp = &ctx->prog;
324 1.1 rmind const size_t curoff = bp->bf_len;
325 1.1 rmind
326 1.1 rmind /* If there are no blocks or only one - nothing to do. */
327 1.10 rmind if (!invert && (ctx->nblocks - ctx->gblock) <= 1) {
328 1.1 rmind ctx->goff = ctx->gblock = 0;
329 1.1 rmind return;
330 1.1 rmind }
331 1.1 rmind
332 1.1 rmind /*
333 1.10 rmind * If inverting, then prepend a jump over the statement below.
334 1.14 rmind * On match, it will skip-through and the fail path will be taken.
335 1.10 rmind */
336 1.10 rmind if (invert) {
337 1.10 rmind struct bpf_insn insns_ret[] = {
338 1.10 rmind BPF_STMT(BPF_JMP+BPF_JA, 1),
339 1.10 rmind };
340 1.10 rmind add_insns(ctx, insns_ret, __arraycount(insns_ret));
341 1.10 rmind }
342 1.10 rmind
343 1.10 rmind /*
344 1.1 rmind * Append a failure return as a fall-through i.e. if there is
345 1.1 rmind * no match within the group.
346 1.1 rmind */
347 1.1 rmind struct bpf_insn insns_ret[] = {
348 1.1 rmind BPF_STMT(BPF_RET+BPF_K, NPF_BPF_FAILURE),
349 1.1 rmind };
350 1.1 rmind add_insns(ctx, insns_ret, __arraycount(insns_ret));
351 1.1 rmind
352 1.1 rmind /*
353 1.1 rmind * Adjust jump offsets: on match - jump outside the group i.e.
354 1.1 rmind * to the current offset. Otherwise, jump to the next instruction
355 1.1 rmind * which would lead to the fall-through code above if none matches.
356 1.1 rmind */
357 1.1 rmind fixup_jumps(ctx, ctx->goff, curoff, true);
358 1.1 rmind ctx->goff = ctx->gblock = 0;
359 1.1 rmind }
360 1.1 rmind
361 1.1 rmind static void
362 1.1 rmind fetch_l3(npf_bpf_t *ctx, sa_family_t af, u_int flags)
363 1.1 rmind {
364 1.1 rmind u_int ver;
365 1.1 rmind
366 1.1 rmind switch (af) {
367 1.1 rmind case AF_INET:
368 1.1 rmind ver = IPVERSION;
369 1.1 rmind break;
370 1.1 rmind case AF_INET6:
371 1.1 rmind ver = IPV6_VERSION >> 4;
372 1.1 rmind break;
373 1.1 rmind case AF_UNSPEC:
374 1.1 rmind ver = 0;
375 1.1 rmind break;
376 1.1 rmind default:
377 1.1 rmind abort();
378 1.1 rmind }
379 1.1 rmind
380 1.1 rmind /*
381 1.7 rmind * The memory store is populated with:
382 1.1 rmind * - BPF_MW_IPVER: IP version (4 or 6).
383 1.1 rmind * - BPF_MW_L4OFF: L4 header offset.
384 1.1 rmind * - BPF_MW_L4PROTO: L4 protocol.
385 1.1 rmind */
386 1.1 rmind if ((ctx->flags & FETCHED_L3) == 0 || (af && ctx->af == 0)) {
387 1.1 rmind const uint8_t jt = ver ? 0 : JUMP_MAGIC;
388 1.1 rmind const uint8_t jf = ver ? JUMP_MAGIC : 0;
389 1.1 rmind bool ingroup = ctx->ingroup;
390 1.1 rmind
391 1.1 rmind /*
392 1.1 rmind * L3 block cannot be inserted in the middle of a group.
393 1.1 rmind * In fact, it never is. Check and start the group after.
394 1.1 rmind */
395 1.1 rmind if (ingroup) {
396 1.1 rmind assert(ctx->nblocks == ctx->gblock);
397 1.14 rmind npfctl_bpf_group_exit(ctx, false);
398 1.1 rmind }
399 1.1 rmind
400 1.1 rmind /*
401 1.1 rmind * A <- IP version; A == expected-version?
402 1.1 rmind * If no particular version specified, check for non-zero.
403 1.1 rmind */
404 1.7 rmind struct bpf_insn insns_af[] = {
405 1.7 rmind BPF_STMT(BPF_LD+BPF_W+BPF_MEM, BPF_MW_IPVER),
406 1.7 rmind BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, ver, jt, jf),
407 1.7 rmind };
408 1.7 rmind add_insns(ctx, insns_af, __arraycount(insns_af));
409 1.7 rmind ctx->flags |= FETCHED_L3;
410 1.1 rmind ctx->af = af;
411 1.1 rmind
412 1.1 rmind if (af) {
413 1.1 rmind uint32_t mwords[] = { BM_IPVER, 1, af };
414 1.1 rmind done_raw_block(ctx, mwords, sizeof(mwords));
415 1.1 rmind }
416 1.1 rmind if (ingroup) {
417 1.14 rmind npfctl_bpf_group_enter(ctx);
418 1.1 rmind }
419 1.1 rmind
420 1.1 rmind } else if (af && af != ctx->af) {
421 1.1 rmind errx(EXIT_FAILURE, "address family mismatch");
422 1.1 rmind }
423 1.1 rmind
424 1.1 rmind if ((flags & X_EQ_L4OFF) != 0 && (ctx->flags & X_EQ_L4OFF) == 0) {
425 1.1 rmind /* X <- IP header length */
426 1.1 rmind struct bpf_insn insns_hlen[] = {
427 1.1 rmind BPF_STMT(BPF_LDX+BPF_MEM, BPF_MW_L4OFF),
428 1.1 rmind };
429 1.1 rmind add_insns(ctx, insns_hlen, __arraycount(insns_hlen));
430 1.1 rmind ctx->flags |= X_EQ_L4OFF;
431 1.1 rmind }
432 1.1 rmind }
433 1.1 rmind
434 1.1 rmind /*
435 1.1 rmind * npfctl_bpf_proto: code block to match IP version and L4 protocol.
436 1.1 rmind */
437 1.1 rmind void
438 1.1 rmind npfctl_bpf_proto(npf_bpf_t *ctx, sa_family_t af, int proto)
439 1.1 rmind {
440 1.1 rmind assert(af != AF_UNSPEC || proto != -1);
441 1.1 rmind
442 1.1 rmind /* Note: fails if IP version does not match. */
443 1.1 rmind fetch_l3(ctx, af, 0);
444 1.1 rmind if (proto == -1) {
445 1.1 rmind return;
446 1.1 rmind }
447 1.1 rmind
448 1.1 rmind struct bpf_insn insns_proto[] = {
449 1.1 rmind /* A <- L4 protocol; A == expected-protocol? */
450 1.1 rmind BPF_STMT(BPF_LD+BPF_W+BPF_MEM, BPF_MW_L4PROTO),
451 1.1 rmind BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, proto, 0, JUMP_MAGIC),
452 1.1 rmind };
453 1.1 rmind add_insns(ctx, insns_proto, __arraycount(insns_proto));
454 1.1 rmind
455 1.1 rmind uint32_t mwords[] = { BM_PROTO, 1, proto };
456 1.1 rmind done_block(ctx, mwords, sizeof(mwords));
457 1.6 rmind ctx->flags |= CHECKED_L4;
458 1.1 rmind }
459 1.1 rmind
460 1.1 rmind /*
461 1.1 rmind * npfctl_bpf_cidr: code block to match IPv4 or IPv6 CIDR.
462 1.1 rmind *
463 1.1 rmind * => IP address shall be in the network byte order.
464 1.1 rmind */
465 1.1 rmind void
466 1.1 rmind npfctl_bpf_cidr(npf_bpf_t *ctx, u_int opts, sa_family_t af,
467 1.1 rmind const npf_addr_t *addr, const npf_netmask_t mask)
468 1.1 rmind {
469 1.1 rmind const uint32_t *awords = (const uint32_t *)addr;
470 1.1 rmind u_int nwords, length, maxmask, off;
471 1.1 rmind
472 1.1 rmind assert(((opts & MATCH_SRC) != 0) ^ ((opts & MATCH_DST) != 0));
473 1.1 rmind assert((mask && mask <= NPF_MAX_NETMASK) || mask == NPF_NO_NETMASK);
474 1.1 rmind
475 1.1 rmind switch (af) {
476 1.1 rmind case AF_INET:
477 1.1 rmind maxmask = 32;
478 1.1 rmind off = (opts & MATCH_SRC) ?
479 1.1 rmind offsetof(struct ip, ip_src) :
480 1.1 rmind offsetof(struct ip, ip_dst);
481 1.1 rmind nwords = sizeof(struct in_addr) / sizeof(uint32_t);
482 1.1 rmind break;
483 1.1 rmind case AF_INET6:
484 1.1 rmind maxmask = 128;
485 1.1 rmind off = (opts & MATCH_SRC) ?
486 1.1 rmind offsetof(struct ip6_hdr, ip6_src) :
487 1.1 rmind offsetof(struct ip6_hdr, ip6_dst);
488 1.1 rmind nwords = sizeof(struct in6_addr) / sizeof(uint32_t);
489 1.1 rmind break;
490 1.1 rmind default:
491 1.1 rmind abort();
492 1.1 rmind }
493 1.1 rmind
494 1.1 rmind /* Ensure address family. */
495 1.1 rmind fetch_l3(ctx, af, 0);
496 1.1 rmind
497 1.1 rmind length = (mask == NPF_NO_NETMASK) ? maxmask : mask;
498 1.1 rmind
499 1.1 rmind /* CAUTION: BPF operates in host byte-order. */
500 1.1 rmind for (u_int i = 0; i < nwords; i++) {
501 1.1 rmind const u_int woff = i * sizeof(uint32_t);
502 1.1 rmind uint32_t word = ntohl(awords[i]);
503 1.1 rmind uint32_t wordmask;
504 1.1 rmind
505 1.1 rmind if (length >= 32) {
506 1.1 rmind /* The mask is a full word - do not apply it. */
507 1.1 rmind wordmask = 0;
508 1.1 rmind length -= 32;
509 1.1 rmind } else if (length) {
510 1.4 rmind wordmask = 0xffffffff << (32 - length);
511 1.1 rmind length = 0;
512 1.1 rmind } else {
513 1.3 rmind /* The mask became zero - skip the rest. */
514 1.3 rmind break;
515 1.1 rmind }
516 1.1 rmind
517 1.1 rmind /* A <- IP address (or one word of it) */
518 1.1 rmind struct bpf_insn insns_ip[] = {
519 1.1 rmind BPF_STMT(BPF_LD+BPF_W+BPF_ABS, off + woff),
520 1.1 rmind };
521 1.1 rmind add_insns(ctx, insns_ip, __arraycount(insns_ip));
522 1.1 rmind
523 1.1 rmind /* A <- (A & MASK) */
524 1.1 rmind if (wordmask) {
525 1.1 rmind struct bpf_insn insns_mask[] = {
526 1.1 rmind BPF_STMT(BPF_ALU+BPF_AND+BPF_K, wordmask),
527 1.1 rmind };
528 1.1 rmind add_insns(ctx, insns_mask, __arraycount(insns_mask));
529 1.1 rmind }
530 1.1 rmind
531 1.1 rmind /* A == expected-IP-word ? */
532 1.1 rmind struct bpf_insn insns_cmp[] = {
533 1.1 rmind BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, word, 0, JUMP_MAGIC),
534 1.1 rmind };
535 1.1 rmind add_insns(ctx, insns_cmp, __arraycount(insns_cmp));
536 1.1 rmind }
537 1.1 rmind
538 1.1 rmind uint32_t mwords[] = {
539 1.1 rmind (opts & MATCH_SRC) ? BM_SRC_CIDR: BM_DST_CIDR, 6,
540 1.1 rmind af, mask, awords[0], awords[1], awords[2], awords[3],
541 1.1 rmind };
542 1.1 rmind done_block(ctx, mwords, sizeof(mwords));
543 1.1 rmind }
544 1.1 rmind
545 1.1 rmind /*
546 1.1 rmind * npfctl_bpf_ports: code block to match TCP/UDP port range.
547 1.1 rmind *
548 1.1 rmind * => Port numbers shall be in the network byte order.
549 1.1 rmind */
550 1.1 rmind void
551 1.1 rmind npfctl_bpf_ports(npf_bpf_t *ctx, u_int opts, in_port_t from, in_port_t to)
552 1.1 rmind {
553 1.1 rmind const u_int sport_off = offsetof(struct udphdr, uh_sport);
554 1.1 rmind const u_int dport_off = offsetof(struct udphdr, uh_dport);
555 1.1 rmind u_int off;
556 1.1 rmind
557 1.1 rmind /* TCP and UDP port offsets are the same. */
558 1.1 rmind assert(sport_off == offsetof(struct tcphdr, th_sport));
559 1.1 rmind assert(dport_off == offsetof(struct tcphdr, th_dport));
560 1.6 rmind assert(ctx->flags & CHECKED_L4);
561 1.1 rmind
562 1.1 rmind assert(((opts & MATCH_SRC) != 0) ^ ((opts & MATCH_DST) != 0));
563 1.1 rmind off = (opts & MATCH_SRC) ? sport_off : dport_off;
564 1.1 rmind
565 1.1 rmind /* X <- IP header length */
566 1.2 rmind fetch_l3(ctx, AF_UNSPEC, X_EQ_L4OFF);
567 1.1 rmind
568 1.1 rmind struct bpf_insn insns_fetch[] = {
569 1.1 rmind /* A <- port */
570 1.1 rmind BPF_STMT(BPF_LD+BPF_H+BPF_IND, off),
571 1.1 rmind };
572 1.1 rmind add_insns(ctx, insns_fetch, __arraycount(insns_fetch));
573 1.1 rmind
574 1.1 rmind /* CAUTION: BPF operates in host byte-order. */
575 1.1 rmind from = ntohs(from);
576 1.1 rmind to = ntohs(to);
577 1.1 rmind
578 1.1 rmind if (from == to) {
579 1.1 rmind /* Single port case. */
580 1.1 rmind struct bpf_insn insns_port[] = {
581 1.1 rmind BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, from, 0, JUMP_MAGIC),
582 1.1 rmind };
583 1.1 rmind add_insns(ctx, insns_port, __arraycount(insns_port));
584 1.1 rmind } else {
585 1.1 rmind /* Port range case. */
586 1.1 rmind struct bpf_insn insns_range[] = {
587 1.14 rmind BPF_JUMP(BPF_JMP+BPF_JGE+BPF_K, from, 0, 1),
588 1.14 rmind BPF_JUMP(BPF_JMP+BPF_JGT+BPF_K, to, 0, 1),
589 1.14 rmind BPF_STMT(BPF_JMP+BPF_JA, JUMP_MAGIC),
590 1.1 rmind };
591 1.1 rmind add_insns(ctx, insns_range, __arraycount(insns_range));
592 1.1 rmind }
593 1.1 rmind
594 1.1 rmind uint32_t mwords[] = {
595 1.1 rmind opts & MATCH_SRC ? BM_SRC_PORTS : BM_DST_PORTS, 2, from, to
596 1.1 rmind };
597 1.1 rmind done_block(ctx, mwords, sizeof(mwords));
598 1.1 rmind }
599 1.1 rmind
600 1.1 rmind /*
601 1.1 rmind * npfctl_bpf_tcpfl: code block to match TCP flags.
602 1.1 rmind */
603 1.1 rmind void
604 1.5 rmind npfctl_bpf_tcpfl(npf_bpf_t *ctx, uint8_t tf, uint8_t tf_mask, bool checktcp)
605 1.1 rmind {
606 1.1 rmind const u_int tcpfl_off = offsetof(struct tcphdr, th_flags);
607 1.6 rmind const bool usingmask = tf_mask != tf;
608 1.1 rmind
609 1.1 rmind /* X <- IP header length */
610 1.2 rmind fetch_l3(ctx, AF_UNSPEC, X_EQ_L4OFF);
611 1.5 rmind if (checktcp) {
612 1.6 rmind const u_int jf = usingmask ? 3 : 2;
613 1.5 rmind assert(ctx->ingroup == false);
614 1.5 rmind
615 1.5 rmind /* A <- L4 protocol; A == TCP? If not, jump out. */
616 1.5 rmind struct bpf_insn insns_tcp[] = {
617 1.5 rmind BPF_STMT(BPF_LD+BPF_W+BPF_MEM, BPF_MW_L4PROTO),
618 1.5 rmind BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, IPPROTO_TCP, 0, jf),
619 1.5 rmind };
620 1.5 rmind add_insns(ctx, insns_tcp, __arraycount(insns_tcp));
621 1.6 rmind } else {
622 1.6 rmind assert(ctx->flags & CHECKED_L4);
623 1.5 rmind }
624 1.1 rmind
625 1.1 rmind struct bpf_insn insns_tf[] = {
626 1.1 rmind /* A <- TCP flags */
627 1.1 rmind BPF_STMT(BPF_LD+BPF_B+BPF_IND, tcpfl_off),
628 1.1 rmind };
629 1.1 rmind add_insns(ctx, insns_tf, __arraycount(insns_tf));
630 1.1 rmind
631 1.6 rmind if (usingmask) {
632 1.1 rmind /* A <- (A & mask) */
633 1.1 rmind struct bpf_insn insns_mask[] = {
634 1.1 rmind BPF_STMT(BPF_ALU+BPF_AND+BPF_K, tf_mask),
635 1.1 rmind };
636 1.1 rmind add_insns(ctx, insns_mask, __arraycount(insns_mask));
637 1.1 rmind }
638 1.1 rmind
639 1.1 rmind struct bpf_insn insns_cmp[] = {
640 1.1 rmind /* A == expected-TCP-flags? */
641 1.1 rmind BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, tf, 0, JUMP_MAGIC),
642 1.1 rmind };
643 1.1 rmind add_insns(ctx, insns_cmp, __arraycount(insns_cmp));
644 1.1 rmind
645 1.12 tih uint32_t mwords[] = { BM_TCPFL, 2, tf, tf_mask};
646 1.12 tih done_block(ctx, mwords, sizeof(mwords));
647 1.1 rmind }
648 1.1 rmind
649 1.1 rmind /*
650 1.1 rmind * npfctl_bpf_icmp: code block to match ICMP type and/or code.
651 1.1 rmind * Note: suitable both for the ICMPv4 and ICMPv6.
652 1.1 rmind */
653 1.1 rmind void
654 1.1 rmind npfctl_bpf_icmp(npf_bpf_t *ctx, int type, int code)
655 1.1 rmind {
656 1.1 rmind const u_int type_off = offsetof(struct icmp, icmp_type);
657 1.1 rmind const u_int code_off = offsetof(struct icmp, icmp_code);
658 1.1 rmind
659 1.6 rmind assert(ctx->flags & CHECKED_L4);
660 1.1 rmind assert(offsetof(struct icmp6_hdr, icmp6_type) == type_off);
661 1.1 rmind assert(offsetof(struct icmp6_hdr, icmp6_code) == code_off);
662 1.1 rmind assert(type != -1 || code != -1);
663 1.1 rmind
664 1.1 rmind /* X <- IP header length */
665 1.2 rmind fetch_l3(ctx, AF_UNSPEC, X_EQ_L4OFF);
666 1.1 rmind
667 1.1 rmind if (type != -1) {
668 1.1 rmind struct bpf_insn insns_type[] = {
669 1.1 rmind BPF_STMT(BPF_LD+BPF_B+BPF_IND, type_off),
670 1.1 rmind BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, type, 0, JUMP_MAGIC),
671 1.1 rmind };
672 1.1 rmind add_insns(ctx, insns_type, __arraycount(insns_type));
673 1.1 rmind
674 1.1 rmind uint32_t mwords[] = { BM_ICMP_TYPE, 1, type };
675 1.1 rmind done_block(ctx, mwords, sizeof(mwords));
676 1.1 rmind }
677 1.1 rmind
678 1.1 rmind if (code != -1) {
679 1.1 rmind struct bpf_insn insns_code[] = {
680 1.1 rmind BPF_STMT(BPF_LD+BPF_B+BPF_IND, code_off),
681 1.1 rmind BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, code, 0, JUMP_MAGIC),
682 1.1 rmind };
683 1.1 rmind add_insns(ctx, insns_code, __arraycount(insns_code));
684 1.1 rmind
685 1.1 rmind uint32_t mwords[] = { BM_ICMP_CODE, 1, code };
686 1.1 rmind done_block(ctx, mwords, sizeof(mwords));
687 1.1 rmind }
688 1.1 rmind }
689 1.1 rmind
690 1.1 rmind #define SRC_FLAG_BIT (1U << 31)
691 1.1 rmind
692 1.1 rmind /*
693 1.1 rmind * npfctl_bpf_table: code block to match source/destination IP address
694 1.1 rmind * against NPF table specified by ID.
695 1.1 rmind */
696 1.1 rmind void
697 1.1 rmind npfctl_bpf_table(npf_bpf_t *ctx, u_int opts, u_int tid)
698 1.1 rmind {
699 1.1 rmind const bool src = (opts & MATCH_SRC) != 0;
700 1.1 rmind
701 1.1 rmind struct bpf_insn insns_table[] = {
702 1.1 rmind BPF_STMT(BPF_LD+BPF_IMM, (src ? SRC_FLAG_BIT : 0) | tid),
703 1.1 rmind BPF_STMT(BPF_MISC+BPF_COP, NPF_COP_TABLE),
704 1.1 rmind BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0, JUMP_MAGIC, 0),
705 1.1 rmind };
706 1.1 rmind add_insns(ctx, insns_table, __arraycount(insns_table));
707 1.1 rmind
708 1.1 rmind uint32_t mwords[] = { src ? BM_SRC_TABLE: BM_DST_TABLE, 1, tid };
709 1.1 rmind done_block(ctx, mwords, sizeof(mwords));
710 1.1 rmind }
711