npf_bpf_comp.c revision 1.16 1 1.1 rmind /*-
2 1.16 rmind * Copyright (c) 2010-2020 The NetBSD Foundation, Inc.
3 1.1 rmind * All rights reserved.
4 1.1 rmind *
5 1.1 rmind * This material is based upon work partially supported by The
6 1.1 rmind * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
7 1.1 rmind *
8 1.1 rmind * Redistribution and use in source and binary forms, with or without
9 1.1 rmind * modification, are permitted provided that the following conditions
10 1.1 rmind * are met:
11 1.1 rmind * 1. Redistributions of source code must retain the above copyright
12 1.1 rmind * notice, this list of conditions and the following disclaimer.
13 1.1 rmind * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 rmind * notice, this list of conditions and the following disclaimer in the
15 1.1 rmind * documentation and/or other materials provided with the distribution.
16 1.1 rmind *
17 1.1 rmind * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
18 1.1 rmind * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
19 1.1 rmind * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 1.1 rmind * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
21 1.1 rmind * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 1.1 rmind * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 1.1 rmind * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 1.1 rmind * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 1.1 rmind * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 1.1 rmind * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 1.1 rmind * POSSIBILITY OF SUCH DAMAGE.
28 1.1 rmind */
29 1.1 rmind
30 1.1 rmind /*
31 1.1 rmind * BPF byte-code generation for NPF rules.
32 1.14 rmind *
33 1.14 rmind * Overview
34 1.14 rmind *
35 1.15 rmind * Each NPF rule is compiled into a BPF micro-program. There is a
36 1.14 rmind * BPF byte-code fragment for each higher-level filtering logic,
37 1.14 rmind * e.g. to match L4 protocol, IP/mask, etc. The generation process
38 1.14 rmind * combines multiple BPF-byte code fragments into one program.
39 1.14 rmind *
40 1.14 rmind * Basic case
41 1.14 rmind *
42 1.15 rmind * Consider a basic case where all filters should match. They
43 1.14 rmind * are expressed as logical conjunction, e.g.:
44 1.14 rmind *
45 1.14 rmind * A and B and C and D
46 1.14 rmind *
47 1.14 rmind * Each test (filter) criterion can be evaluated to true (match) or
48 1.14 rmind * false (no match) and the logic is as follows:
49 1.14 rmind *
50 1.14 rmind * - If the value is true, then jump to the "next" test (offset 0).
51 1.14 rmind *
52 1.14 rmind * - If the value is false, then jump to the JUMP_MAGIC value (0xff).
53 1.14 rmind * This "magic" value is used to indicate that it will have to be
54 1.14 rmind * patched at a later stage.
55 1.14 rmind *
56 1.14 rmind * Once all byte-code fragments are combined into one, then there
57 1.14 rmind * are two additional steps:
58 1.14 rmind *
59 1.15 rmind * - Two instructions are appended at the end of the program: "return
60 1.15 rmind * success" followed by "return failure".
61 1.14 rmind *
62 1.14 rmind * - All jumps with the JUMP_MAGIC value are patched to point to the
63 1.14 rmind * "return failure" instruction.
64 1.14 rmind *
65 1.14 rmind * Therefore, if all filter criteria will match, then the first
66 1.14 rmind * instruction will be reached, indicating a successful match of the
67 1.14 rmind * rule. Otherwise, if any of the criteria will not match, it will
68 1.15 rmind * take the failure path and the rule will not be matching.
69 1.14 rmind *
70 1.14 rmind * Grouping
71 1.14 rmind *
72 1.16 rmind * Filters can have groups, which have an effect of logical
73 1.14 rmind * disjunction, e.g.:
74 1.14 rmind *
75 1.14 rmind * A and B and (C or D)
76 1.14 rmind *
77 1.14 rmind * In such case, the logic inside the group has to be inverted i.e.
78 1.14 rmind * the jump values swapped. If the test value is true, then jump
79 1.14 rmind * out of the group; if false, then jump "next". At the end of the
80 1.14 rmind * group, an addition failure path is appended and the JUMP_MAGIC
81 1.14 rmind * uses within the group are patched to jump past the said path.
82 1.1 rmind */
83 1.1 rmind
84 1.1 rmind #include <sys/cdefs.h>
85 1.16 rmind __RCSID("$NetBSD: npf_bpf_comp.c,v 1.16 2020/05/30 14:16:56 rmind Exp $");
86 1.1 rmind
87 1.1 rmind #include <stdlib.h>
88 1.1 rmind #include <stdbool.h>
89 1.1 rmind #include <stddef.h>
90 1.1 rmind #include <string.h>
91 1.1 rmind #include <inttypes.h>
92 1.1 rmind #include <err.h>
93 1.1 rmind #include <assert.h>
94 1.1 rmind
95 1.1 rmind #include <netinet/in.h>
96 1.1 rmind #include <netinet/in_systm.h>
97 1.9 christos #define __FAVOR_BSD
98 1.1 rmind #include <netinet/ip.h>
99 1.1 rmind #include <netinet/ip6.h>
100 1.1 rmind #include <netinet/udp.h>
101 1.1 rmind #include <netinet/tcp.h>
102 1.1 rmind #include <netinet/ip_icmp.h>
103 1.1 rmind #include <netinet/icmp6.h>
104 1.1 rmind
105 1.1 rmind #include <net/bpf.h>
106 1.1 rmind
107 1.1 rmind #include "npfctl.h"
108 1.1 rmind
109 1.1 rmind /*
110 1.1 rmind * Note: clear X_EQ_L4OFF when register X is invalidated i.e. it stores
111 1.1 rmind * something other than L4 header offset. Generally, when BPF_LDX is used.
112 1.1 rmind */
113 1.1 rmind #define FETCHED_L3 0x01
114 1.16 rmind #define CHECKED_L4_PROTO 0x02
115 1.6 rmind #define X_EQ_L4OFF 0x04
116 1.1 rmind
117 1.1 rmind struct npf_bpf {
118 1.1 rmind /*
119 1.1 rmind * BPF program code, the allocated length (in bytes), the number
120 1.1 rmind * of logical blocks and the flags.
121 1.1 rmind */
122 1.1 rmind struct bpf_program prog;
123 1.1 rmind size_t alen;
124 1.16 rmind unsigned nblocks;
125 1.1 rmind sa_family_t af;
126 1.1 rmind uint32_t flags;
127 1.1 rmind
128 1.14 rmind /*
129 1.16 rmind * Indicators whether we are inside the group and whether this
130 1.16 rmind * group is implementing inverted logic.
131 1.16 rmind *
132 1.14 rmind * The current group offset (counted in BPF instructions)
133 1.14 rmind * and block number at the start of the group.
134 1.14 rmind */
135 1.16 rmind unsigned ingroup;
136 1.16 rmind bool invert;
137 1.16 rmind unsigned goff;
138 1.16 rmind unsigned gblock;
139 1.16 rmind
140 1.16 rmind /* Track inversion (excl. mark). */
141 1.16 rmind uint32_t invflags;
142 1.1 rmind
143 1.1 rmind /* BPF marks, allocated length and the real length. */
144 1.1 rmind uint32_t * marks;
145 1.1 rmind size_t malen;
146 1.1 rmind size_t mlen;
147 1.1 rmind };
148 1.1 rmind
149 1.1 rmind /*
150 1.1 rmind * NPF success and failure values to be returned from BPF.
151 1.1 rmind */
152 1.1 rmind #define NPF_BPF_SUCCESS ((u_int)-1)
153 1.1 rmind #define NPF_BPF_FAILURE 0
154 1.1 rmind
155 1.1 rmind /*
156 1.1 rmind * Magic value to indicate the failure path, which is fixed up on completion.
157 1.1 rmind * Note: this is the longest jump offset in BPF, since the offset is one byte.
158 1.1 rmind */
159 1.1 rmind #define JUMP_MAGIC 0xff
160 1.1 rmind
161 1.1 rmind /* Reduce re-allocations by expanding in 64 byte blocks. */
162 1.1 rmind #define ALLOC_MASK (64 - 1)
163 1.1 rmind #define ALLOC_ROUND(x) (((x) + ALLOC_MASK) & ~ALLOC_MASK)
164 1.1 rmind
165 1.9 christos #ifndef IPV6_VERSION
166 1.9 christos #define IPV6_VERSION 0x60
167 1.9 christos #endif
168 1.9 christos
169 1.1 rmind npf_bpf_t *
170 1.1 rmind npfctl_bpf_create(void)
171 1.1 rmind {
172 1.1 rmind return ecalloc(1, sizeof(npf_bpf_t));
173 1.1 rmind }
174 1.1 rmind
175 1.1 rmind static void
176 1.1 rmind fixup_jumps(npf_bpf_t *ctx, u_int start, u_int end, bool swap)
177 1.1 rmind {
178 1.1 rmind struct bpf_program *bp = &ctx->prog;
179 1.1 rmind
180 1.1 rmind for (u_int i = start; i < end; i++) {
181 1.1 rmind struct bpf_insn *insn = &bp->bf_insns[i];
182 1.1 rmind const u_int fail_off = end - i;
183 1.14 rmind bool seen_magic = false;
184 1.1 rmind
185 1.1 rmind if (fail_off >= JUMP_MAGIC) {
186 1.1 rmind errx(EXIT_FAILURE, "BPF generation error: "
187 1.1 rmind "the number of instructions is over the limit");
188 1.1 rmind }
189 1.1 rmind if (BPF_CLASS(insn->code) != BPF_JMP) {
190 1.1 rmind continue;
191 1.1 rmind }
192 1.14 rmind if (BPF_OP(insn->code) == BPF_JA) {
193 1.14 rmind /*
194 1.14 rmind * BPF_JA can be used to jump to the failure path.
195 1.14 rmind * If we are swapping i.e. inside the group, then
196 1.14 rmind * jump "next"; groups have a failure path appended
197 1.14 rmind * at their end.
198 1.14 rmind */
199 1.14 rmind if (insn->k == JUMP_MAGIC) {
200 1.14 rmind insn->k = swap ? 0 : fail_off;
201 1.14 rmind }
202 1.14 rmind continue;
203 1.14 rmind }
204 1.14 rmind
205 1.14 rmind /*
206 1.14 rmind * Fixup the "magic" value. Swap only the "magic" jumps.
207 1.14 rmind */
208 1.14 rmind
209 1.14 rmind if (insn->jt == JUMP_MAGIC) {
210 1.14 rmind insn->jt = fail_off;
211 1.14 rmind seen_magic = true;
212 1.14 rmind }
213 1.14 rmind if (insn->jf == JUMP_MAGIC) {
214 1.14 rmind insn->jf = fail_off;
215 1.14 rmind seen_magic = true;
216 1.14 rmind }
217 1.14 rmind
218 1.14 rmind if (seen_magic && swap) {
219 1.1 rmind uint8_t jt = insn->jt;
220 1.1 rmind insn->jt = insn->jf;
221 1.1 rmind insn->jf = jt;
222 1.1 rmind }
223 1.1 rmind }
224 1.1 rmind }
225 1.1 rmind
226 1.1 rmind static void
227 1.1 rmind add_insns(npf_bpf_t *ctx, struct bpf_insn *insns, size_t count)
228 1.1 rmind {
229 1.1 rmind struct bpf_program *bp = &ctx->prog;
230 1.1 rmind size_t offset, len, reqlen;
231 1.1 rmind
232 1.1 rmind /* Note: bf_len is the count of instructions. */
233 1.1 rmind offset = bp->bf_len * sizeof(struct bpf_insn);
234 1.1 rmind len = count * sizeof(struct bpf_insn);
235 1.1 rmind
236 1.1 rmind /* Ensure the memory buffer for the program. */
237 1.1 rmind reqlen = ALLOC_ROUND(offset + len);
238 1.1 rmind if (reqlen > ctx->alen) {
239 1.1 rmind bp->bf_insns = erealloc(bp->bf_insns, reqlen);
240 1.1 rmind ctx->alen = reqlen;
241 1.1 rmind }
242 1.1 rmind
243 1.1 rmind /* Add the code block. */
244 1.1 rmind memcpy((uint8_t *)bp->bf_insns + offset, insns, len);
245 1.1 rmind bp->bf_len += count;
246 1.1 rmind }
247 1.1 rmind
248 1.1 rmind static void
249 1.16 rmind add_bmarks(npf_bpf_t *ctx, const uint32_t *m, size_t len)
250 1.1 rmind {
251 1.1 rmind size_t reqlen, nargs = m[1];
252 1.1 rmind
253 1.1 rmind if ((len / sizeof(uint32_t) - 2) != nargs) {
254 1.1 rmind errx(EXIT_FAILURE, "invalid BPF block description");
255 1.1 rmind }
256 1.1 rmind reqlen = ALLOC_ROUND(ctx->mlen + len);
257 1.1 rmind if (reqlen > ctx->malen) {
258 1.1 rmind ctx->marks = erealloc(ctx->marks, reqlen);
259 1.1 rmind ctx->malen = reqlen;
260 1.1 rmind }
261 1.1 rmind memcpy((uint8_t *)ctx->marks + ctx->mlen, m, len);
262 1.1 rmind ctx->mlen += len;
263 1.1 rmind }
264 1.1 rmind
265 1.1 rmind static void
266 1.1 rmind done_block(npf_bpf_t *ctx, const uint32_t *m, size_t len)
267 1.1 rmind {
268 1.16 rmind add_bmarks(ctx, m, len);
269 1.1 rmind ctx->nblocks++;
270 1.1 rmind }
271 1.1 rmind
272 1.1 rmind struct bpf_program *
273 1.1 rmind npfctl_bpf_complete(npf_bpf_t *ctx)
274 1.1 rmind {
275 1.1 rmind struct bpf_program *bp = &ctx->prog;
276 1.1 rmind const u_int retoff = bp->bf_len;
277 1.1 rmind
278 1.8 rmind /* No instructions (optimised out). */
279 1.8 rmind if (!bp->bf_len)
280 1.8 rmind return NULL;
281 1.8 rmind
282 1.1 rmind /* Add the return fragment (success and failure paths). */
283 1.1 rmind struct bpf_insn insns_ret[] = {
284 1.1 rmind BPF_STMT(BPF_RET+BPF_K, NPF_BPF_SUCCESS),
285 1.1 rmind BPF_STMT(BPF_RET+BPF_K, NPF_BPF_FAILURE),
286 1.1 rmind };
287 1.1 rmind add_insns(ctx, insns_ret, __arraycount(insns_ret));
288 1.1 rmind
289 1.1 rmind /* Fixup all jumps to the main failure path. */
290 1.1 rmind fixup_jumps(ctx, 0, retoff, false);
291 1.1 rmind
292 1.1 rmind return &ctx->prog;
293 1.1 rmind }
294 1.1 rmind
295 1.1 rmind const void *
296 1.1 rmind npfctl_bpf_bmarks(npf_bpf_t *ctx, size_t *len)
297 1.1 rmind {
298 1.1 rmind *len = ctx->mlen;
299 1.1 rmind return ctx->marks;
300 1.1 rmind }
301 1.1 rmind
302 1.1 rmind void
303 1.1 rmind npfctl_bpf_destroy(npf_bpf_t *ctx)
304 1.1 rmind {
305 1.1 rmind free(ctx->prog.bf_insns);
306 1.1 rmind free(ctx->marks);
307 1.1 rmind free(ctx);
308 1.1 rmind }
309 1.1 rmind
310 1.1 rmind /*
311 1.14 rmind * npfctl_bpf_group_enter: begin a logical group. It merely uses logical
312 1.16 rmind * disjunction (OR) for comparisons within the group.
313 1.1 rmind */
314 1.1 rmind void
315 1.16 rmind npfctl_bpf_group_enter(npf_bpf_t *ctx, bool invert)
316 1.1 rmind {
317 1.1 rmind struct bpf_program *bp = &ctx->prog;
318 1.1 rmind
319 1.1 rmind assert(ctx->goff == 0);
320 1.1 rmind assert(ctx->gblock == 0);
321 1.1 rmind
322 1.1 rmind ctx->goff = bp->bf_len;
323 1.1 rmind ctx->gblock = ctx->nblocks;
324 1.16 rmind ctx->invert = invert;
325 1.16 rmind ctx->ingroup++;
326 1.1 rmind }
327 1.1 rmind
328 1.1 rmind void
329 1.16 rmind npfctl_bpf_group_exit(npf_bpf_t *ctx)
330 1.1 rmind {
331 1.1 rmind struct bpf_program *bp = &ctx->prog;
332 1.1 rmind const size_t curoff = bp->bf_len;
333 1.1 rmind
334 1.16 rmind assert(ctx->ingroup);
335 1.16 rmind ctx->ingroup--;
336 1.16 rmind
337 1.1 rmind /* If there are no blocks or only one - nothing to do. */
338 1.16 rmind if (!ctx->invert && (ctx->nblocks - ctx->gblock) <= 1) {
339 1.1 rmind ctx->goff = ctx->gblock = 0;
340 1.1 rmind return;
341 1.1 rmind }
342 1.1 rmind
343 1.1 rmind /*
344 1.10 rmind * If inverting, then prepend a jump over the statement below.
345 1.14 rmind * On match, it will skip-through and the fail path will be taken.
346 1.10 rmind */
347 1.16 rmind if (ctx->invert) {
348 1.10 rmind struct bpf_insn insns_ret[] = {
349 1.10 rmind BPF_STMT(BPF_JMP+BPF_JA, 1),
350 1.10 rmind };
351 1.10 rmind add_insns(ctx, insns_ret, __arraycount(insns_ret));
352 1.10 rmind }
353 1.10 rmind
354 1.10 rmind /*
355 1.1 rmind * Append a failure return as a fall-through i.e. if there is
356 1.1 rmind * no match within the group.
357 1.1 rmind */
358 1.1 rmind struct bpf_insn insns_ret[] = {
359 1.1 rmind BPF_STMT(BPF_RET+BPF_K, NPF_BPF_FAILURE),
360 1.1 rmind };
361 1.1 rmind add_insns(ctx, insns_ret, __arraycount(insns_ret));
362 1.1 rmind
363 1.1 rmind /*
364 1.1 rmind * Adjust jump offsets: on match - jump outside the group i.e.
365 1.1 rmind * to the current offset. Otherwise, jump to the next instruction
366 1.1 rmind * which would lead to the fall-through code above if none matches.
367 1.1 rmind */
368 1.1 rmind fixup_jumps(ctx, ctx->goff, curoff, true);
369 1.1 rmind ctx->goff = ctx->gblock = 0;
370 1.1 rmind }
371 1.1 rmind
372 1.1 rmind static void
373 1.16 rmind fetch_l3(npf_bpf_t *ctx, sa_family_t af, unsigned flags)
374 1.1 rmind {
375 1.16 rmind unsigned ver;
376 1.1 rmind
377 1.1 rmind switch (af) {
378 1.1 rmind case AF_INET:
379 1.1 rmind ver = IPVERSION;
380 1.1 rmind break;
381 1.1 rmind case AF_INET6:
382 1.1 rmind ver = IPV6_VERSION >> 4;
383 1.1 rmind break;
384 1.1 rmind case AF_UNSPEC:
385 1.1 rmind ver = 0;
386 1.1 rmind break;
387 1.1 rmind default:
388 1.1 rmind abort();
389 1.1 rmind }
390 1.1 rmind
391 1.1 rmind /*
392 1.7 rmind * The memory store is populated with:
393 1.1 rmind * - BPF_MW_IPVER: IP version (4 or 6).
394 1.1 rmind * - BPF_MW_L4OFF: L4 header offset.
395 1.1 rmind * - BPF_MW_L4PROTO: L4 protocol.
396 1.1 rmind */
397 1.1 rmind if ((ctx->flags & FETCHED_L3) == 0 || (af && ctx->af == 0)) {
398 1.1 rmind const uint8_t jt = ver ? 0 : JUMP_MAGIC;
399 1.1 rmind const uint8_t jf = ver ? JUMP_MAGIC : 0;
400 1.16 rmind const bool ingroup = ctx->ingroup != 0;
401 1.16 rmind const bool invert = ctx->invert;
402 1.1 rmind
403 1.1 rmind /*
404 1.1 rmind * L3 block cannot be inserted in the middle of a group.
405 1.1 rmind * In fact, it never is. Check and start the group after.
406 1.1 rmind */
407 1.1 rmind if (ingroup) {
408 1.1 rmind assert(ctx->nblocks == ctx->gblock);
409 1.16 rmind npfctl_bpf_group_exit(ctx);
410 1.1 rmind }
411 1.1 rmind
412 1.1 rmind /*
413 1.1 rmind * A <- IP version; A == expected-version?
414 1.1 rmind * If no particular version specified, check for non-zero.
415 1.1 rmind */
416 1.7 rmind struct bpf_insn insns_af[] = {
417 1.7 rmind BPF_STMT(BPF_LD+BPF_W+BPF_MEM, BPF_MW_IPVER),
418 1.7 rmind BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, ver, jt, jf),
419 1.7 rmind };
420 1.7 rmind add_insns(ctx, insns_af, __arraycount(insns_af));
421 1.7 rmind ctx->flags |= FETCHED_L3;
422 1.1 rmind ctx->af = af;
423 1.1 rmind
424 1.1 rmind if (af) {
425 1.1 rmind uint32_t mwords[] = { BM_IPVER, 1, af };
426 1.16 rmind add_bmarks(ctx, mwords, sizeof(mwords));
427 1.1 rmind }
428 1.1 rmind if (ingroup) {
429 1.16 rmind npfctl_bpf_group_enter(ctx, invert);
430 1.1 rmind }
431 1.1 rmind
432 1.1 rmind } else if (af && af != ctx->af) {
433 1.1 rmind errx(EXIT_FAILURE, "address family mismatch");
434 1.1 rmind }
435 1.1 rmind
436 1.1 rmind if ((flags & X_EQ_L4OFF) != 0 && (ctx->flags & X_EQ_L4OFF) == 0) {
437 1.1 rmind /* X <- IP header length */
438 1.1 rmind struct bpf_insn insns_hlen[] = {
439 1.1 rmind BPF_STMT(BPF_LDX+BPF_MEM, BPF_MW_L4OFF),
440 1.1 rmind };
441 1.1 rmind add_insns(ctx, insns_hlen, __arraycount(insns_hlen));
442 1.1 rmind ctx->flags |= X_EQ_L4OFF;
443 1.1 rmind }
444 1.1 rmind }
445 1.1 rmind
446 1.16 rmind static void
447 1.16 rmind bm_invert_checkpoint(npf_bpf_t *ctx, const unsigned opts)
448 1.16 rmind {
449 1.16 rmind uint32_t bm = 0;
450 1.16 rmind
451 1.16 rmind if (ctx->ingroup && ctx->invert) {
452 1.16 rmind const unsigned seen = ctx->invflags;
453 1.16 rmind
454 1.16 rmind if ((opts & MATCH_SRC) != 0 && (seen & MATCH_SRC) == 0) {
455 1.16 rmind bm = BM_SRC_NEG;
456 1.16 rmind }
457 1.16 rmind if ((opts & MATCH_DST) != 0 && (seen & MATCH_DST) == 0) {
458 1.16 rmind bm = BM_DST_NEG;
459 1.16 rmind }
460 1.16 rmind ctx->invflags |= opts & (MATCH_SRC | MATCH_DST);
461 1.16 rmind }
462 1.16 rmind if (bm) {
463 1.16 rmind uint32_t mwords[] = { bm, 0 };
464 1.16 rmind add_bmarks(ctx, mwords, sizeof(mwords));
465 1.16 rmind }
466 1.16 rmind }
467 1.16 rmind
468 1.1 rmind /*
469 1.16 rmind * npfctl_bpf_ipver: match the IP version.
470 1.1 rmind */
471 1.1 rmind void
472 1.16 rmind npfctl_bpf_ipver(npf_bpf_t *ctx, sa_family_t af)
473 1.1 rmind {
474 1.1 rmind fetch_l3(ctx, af, 0);
475 1.16 rmind }
476 1.1 rmind
477 1.16 rmind /*
478 1.16 rmind * npfctl_bpf_proto: code block to match IP version and L4 protocol.
479 1.16 rmind */
480 1.16 rmind void
481 1.16 rmind npfctl_bpf_proto(npf_bpf_t *ctx, unsigned proto)
482 1.16 rmind {
483 1.1 rmind struct bpf_insn insns_proto[] = {
484 1.1 rmind /* A <- L4 protocol; A == expected-protocol? */
485 1.1 rmind BPF_STMT(BPF_LD+BPF_W+BPF_MEM, BPF_MW_L4PROTO),
486 1.1 rmind BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, proto, 0, JUMP_MAGIC),
487 1.1 rmind };
488 1.1 rmind add_insns(ctx, insns_proto, __arraycount(insns_proto));
489 1.1 rmind
490 1.1 rmind uint32_t mwords[] = { BM_PROTO, 1, proto };
491 1.1 rmind done_block(ctx, mwords, sizeof(mwords));
492 1.16 rmind ctx->flags |= CHECKED_L4_PROTO;
493 1.1 rmind }
494 1.1 rmind
495 1.1 rmind /*
496 1.1 rmind * npfctl_bpf_cidr: code block to match IPv4 or IPv6 CIDR.
497 1.1 rmind *
498 1.1 rmind * => IP address shall be in the network byte order.
499 1.1 rmind */
500 1.1 rmind void
501 1.16 rmind npfctl_bpf_cidr(npf_bpf_t *ctx, unsigned opts, sa_family_t af,
502 1.1 rmind const npf_addr_t *addr, const npf_netmask_t mask)
503 1.1 rmind {
504 1.1 rmind const uint32_t *awords = (const uint32_t *)addr;
505 1.16 rmind unsigned nwords, length, maxmask, off;
506 1.1 rmind
507 1.1 rmind assert(((opts & MATCH_SRC) != 0) ^ ((opts & MATCH_DST) != 0));
508 1.1 rmind assert((mask && mask <= NPF_MAX_NETMASK) || mask == NPF_NO_NETMASK);
509 1.1 rmind
510 1.1 rmind switch (af) {
511 1.1 rmind case AF_INET:
512 1.1 rmind maxmask = 32;
513 1.1 rmind off = (opts & MATCH_SRC) ?
514 1.1 rmind offsetof(struct ip, ip_src) :
515 1.1 rmind offsetof(struct ip, ip_dst);
516 1.1 rmind nwords = sizeof(struct in_addr) / sizeof(uint32_t);
517 1.1 rmind break;
518 1.1 rmind case AF_INET6:
519 1.1 rmind maxmask = 128;
520 1.1 rmind off = (opts & MATCH_SRC) ?
521 1.1 rmind offsetof(struct ip6_hdr, ip6_src) :
522 1.1 rmind offsetof(struct ip6_hdr, ip6_dst);
523 1.1 rmind nwords = sizeof(struct in6_addr) / sizeof(uint32_t);
524 1.1 rmind break;
525 1.1 rmind default:
526 1.1 rmind abort();
527 1.1 rmind }
528 1.1 rmind
529 1.1 rmind /* Ensure address family. */
530 1.1 rmind fetch_l3(ctx, af, 0);
531 1.1 rmind
532 1.1 rmind length = (mask == NPF_NO_NETMASK) ? maxmask : mask;
533 1.1 rmind
534 1.1 rmind /* CAUTION: BPF operates in host byte-order. */
535 1.16 rmind for (unsigned i = 0; i < nwords; i++) {
536 1.16 rmind const unsigned woff = i * sizeof(uint32_t);
537 1.1 rmind uint32_t word = ntohl(awords[i]);
538 1.1 rmind uint32_t wordmask;
539 1.1 rmind
540 1.1 rmind if (length >= 32) {
541 1.1 rmind /* The mask is a full word - do not apply it. */
542 1.1 rmind wordmask = 0;
543 1.1 rmind length -= 32;
544 1.1 rmind } else if (length) {
545 1.4 rmind wordmask = 0xffffffff << (32 - length);
546 1.1 rmind length = 0;
547 1.1 rmind } else {
548 1.3 rmind /* The mask became zero - skip the rest. */
549 1.3 rmind break;
550 1.1 rmind }
551 1.1 rmind
552 1.1 rmind /* A <- IP address (or one word of it) */
553 1.1 rmind struct bpf_insn insns_ip[] = {
554 1.1 rmind BPF_STMT(BPF_LD+BPF_W+BPF_ABS, off + woff),
555 1.1 rmind };
556 1.1 rmind add_insns(ctx, insns_ip, __arraycount(insns_ip));
557 1.1 rmind
558 1.1 rmind /* A <- (A & MASK) */
559 1.1 rmind if (wordmask) {
560 1.1 rmind struct bpf_insn insns_mask[] = {
561 1.1 rmind BPF_STMT(BPF_ALU+BPF_AND+BPF_K, wordmask),
562 1.1 rmind };
563 1.1 rmind add_insns(ctx, insns_mask, __arraycount(insns_mask));
564 1.1 rmind }
565 1.1 rmind
566 1.1 rmind /* A == expected-IP-word ? */
567 1.1 rmind struct bpf_insn insns_cmp[] = {
568 1.1 rmind BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, word, 0, JUMP_MAGIC),
569 1.1 rmind };
570 1.1 rmind add_insns(ctx, insns_cmp, __arraycount(insns_cmp));
571 1.1 rmind }
572 1.1 rmind
573 1.1 rmind uint32_t mwords[] = {
574 1.1 rmind (opts & MATCH_SRC) ? BM_SRC_CIDR: BM_DST_CIDR, 6,
575 1.1 rmind af, mask, awords[0], awords[1], awords[2], awords[3],
576 1.1 rmind };
577 1.16 rmind bm_invert_checkpoint(ctx, opts);
578 1.1 rmind done_block(ctx, mwords, sizeof(mwords));
579 1.1 rmind }
580 1.1 rmind
581 1.1 rmind /*
582 1.1 rmind * npfctl_bpf_ports: code block to match TCP/UDP port range.
583 1.1 rmind *
584 1.1 rmind * => Port numbers shall be in the network byte order.
585 1.1 rmind */
586 1.1 rmind void
587 1.16 rmind npfctl_bpf_ports(npf_bpf_t *ctx, unsigned opts, in_port_t from, in_port_t to)
588 1.1 rmind {
589 1.16 rmind const unsigned sport_off = offsetof(struct udphdr, uh_sport);
590 1.16 rmind const unsigned dport_off = offsetof(struct udphdr, uh_dport);
591 1.16 rmind unsigned off;
592 1.1 rmind
593 1.1 rmind /* TCP and UDP port offsets are the same. */
594 1.1 rmind assert(sport_off == offsetof(struct tcphdr, th_sport));
595 1.1 rmind assert(dport_off == offsetof(struct tcphdr, th_dport));
596 1.16 rmind assert(ctx->flags & CHECKED_L4_PROTO);
597 1.1 rmind
598 1.1 rmind assert(((opts & MATCH_SRC) != 0) ^ ((opts & MATCH_DST) != 0));
599 1.1 rmind off = (opts & MATCH_SRC) ? sport_off : dport_off;
600 1.1 rmind
601 1.1 rmind /* X <- IP header length */
602 1.2 rmind fetch_l3(ctx, AF_UNSPEC, X_EQ_L4OFF);
603 1.1 rmind
604 1.1 rmind struct bpf_insn insns_fetch[] = {
605 1.1 rmind /* A <- port */
606 1.1 rmind BPF_STMT(BPF_LD+BPF_H+BPF_IND, off),
607 1.1 rmind };
608 1.1 rmind add_insns(ctx, insns_fetch, __arraycount(insns_fetch));
609 1.1 rmind
610 1.1 rmind /* CAUTION: BPF operates in host byte-order. */
611 1.1 rmind from = ntohs(from);
612 1.1 rmind to = ntohs(to);
613 1.1 rmind
614 1.1 rmind if (from == to) {
615 1.1 rmind /* Single port case. */
616 1.1 rmind struct bpf_insn insns_port[] = {
617 1.1 rmind BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, from, 0, JUMP_MAGIC),
618 1.1 rmind };
619 1.1 rmind add_insns(ctx, insns_port, __arraycount(insns_port));
620 1.1 rmind } else {
621 1.1 rmind /* Port range case. */
622 1.1 rmind struct bpf_insn insns_range[] = {
623 1.14 rmind BPF_JUMP(BPF_JMP+BPF_JGE+BPF_K, from, 0, 1),
624 1.14 rmind BPF_JUMP(BPF_JMP+BPF_JGT+BPF_K, to, 0, 1),
625 1.14 rmind BPF_STMT(BPF_JMP+BPF_JA, JUMP_MAGIC),
626 1.1 rmind };
627 1.1 rmind add_insns(ctx, insns_range, __arraycount(insns_range));
628 1.1 rmind }
629 1.1 rmind
630 1.1 rmind uint32_t mwords[] = {
631 1.16 rmind (opts & MATCH_SRC) ? BM_SRC_PORTS : BM_DST_PORTS, 2, from, to
632 1.1 rmind };
633 1.1 rmind done_block(ctx, mwords, sizeof(mwords));
634 1.1 rmind }
635 1.1 rmind
636 1.1 rmind /*
637 1.1 rmind * npfctl_bpf_tcpfl: code block to match TCP flags.
638 1.1 rmind */
639 1.1 rmind void
640 1.16 rmind npfctl_bpf_tcpfl(npf_bpf_t *ctx, uint8_t tf, uint8_t tf_mask)
641 1.1 rmind {
642 1.16 rmind const unsigned tcpfl_off = offsetof(struct tcphdr, th_flags);
643 1.6 rmind const bool usingmask = tf_mask != tf;
644 1.1 rmind
645 1.1 rmind /* X <- IP header length */
646 1.2 rmind fetch_l3(ctx, AF_UNSPEC, X_EQ_L4OFF);
647 1.5 rmind
648 1.16 rmind if ((ctx->flags & CHECKED_L4_PROTO) == 0) {
649 1.16 rmind const unsigned jf = usingmask ? 3 : 2;
650 1.16 rmind assert(ctx->ingroup == 0);
651 1.16 rmind
652 1.16 rmind /*
653 1.16 rmind * A <- L4 protocol; A == TCP? If not, jump out.
654 1.16 rmind *
655 1.16 rmind * Note: the TCP flag matching might be without 'proto tcp'
656 1.16 rmind * when using a plain 'stateful' rule. In such case it also
657 1.16 rmind * handles other protocols, thus no strict TCP check.
658 1.16 rmind */
659 1.5 rmind struct bpf_insn insns_tcp[] = {
660 1.5 rmind BPF_STMT(BPF_LD+BPF_W+BPF_MEM, BPF_MW_L4PROTO),
661 1.5 rmind BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, IPPROTO_TCP, 0, jf),
662 1.5 rmind };
663 1.5 rmind add_insns(ctx, insns_tcp, __arraycount(insns_tcp));
664 1.5 rmind }
665 1.1 rmind
666 1.1 rmind struct bpf_insn insns_tf[] = {
667 1.1 rmind /* A <- TCP flags */
668 1.1 rmind BPF_STMT(BPF_LD+BPF_B+BPF_IND, tcpfl_off),
669 1.1 rmind };
670 1.1 rmind add_insns(ctx, insns_tf, __arraycount(insns_tf));
671 1.1 rmind
672 1.6 rmind if (usingmask) {
673 1.1 rmind /* A <- (A & mask) */
674 1.1 rmind struct bpf_insn insns_mask[] = {
675 1.1 rmind BPF_STMT(BPF_ALU+BPF_AND+BPF_K, tf_mask),
676 1.1 rmind };
677 1.1 rmind add_insns(ctx, insns_mask, __arraycount(insns_mask));
678 1.1 rmind }
679 1.1 rmind
680 1.1 rmind struct bpf_insn insns_cmp[] = {
681 1.1 rmind /* A == expected-TCP-flags? */
682 1.1 rmind BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, tf, 0, JUMP_MAGIC),
683 1.1 rmind };
684 1.1 rmind add_insns(ctx, insns_cmp, __arraycount(insns_cmp));
685 1.1 rmind
686 1.16 rmind uint32_t mwords[] = { BM_TCPFL, 2, tf, tf_mask };
687 1.12 tih done_block(ctx, mwords, sizeof(mwords));
688 1.1 rmind }
689 1.1 rmind
690 1.1 rmind /*
691 1.1 rmind * npfctl_bpf_icmp: code block to match ICMP type and/or code.
692 1.16 rmind * Note: suitable for both the ICMPv4 and ICMPv6.
693 1.1 rmind */
694 1.1 rmind void
695 1.1 rmind npfctl_bpf_icmp(npf_bpf_t *ctx, int type, int code)
696 1.1 rmind {
697 1.1 rmind const u_int type_off = offsetof(struct icmp, icmp_type);
698 1.1 rmind const u_int code_off = offsetof(struct icmp, icmp_code);
699 1.1 rmind
700 1.16 rmind assert(ctx->flags & CHECKED_L4_PROTO);
701 1.1 rmind assert(offsetof(struct icmp6_hdr, icmp6_type) == type_off);
702 1.1 rmind assert(offsetof(struct icmp6_hdr, icmp6_code) == code_off);
703 1.1 rmind assert(type != -1 || code != -1);
704 1.1 rmind
705 1.1 rmind /* X <- IP header length */
706 1.2 rmind fetch_l3(ctx, AF_UNSPEC, X_EQ_L4OFF);
707 1.1 rmind
708 1.1 rmind if (type != -1) {
709 1.1 rmind struct bpf_insn insns_type[] = {
710 1.1 rmind BPF_STMT(BPF_LD+BPF_B+BPF_IND, type_off),
711 1.1 rmind BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, type, 0, JUMP_MAGIC),
712 1.1 rmind };
713 1.1 rmind add_insns(ctx, insns_type, __arraycount(insns_type));
714 1.1 rmind
715 1.1 rmind uint32_t mwords[] = { BM_ICMP_TYPE, 1, type };
716 1.1 rmind done_block(ctx, mwords, sizeof(mwords));
717 1.1 rmind }
718 1.1 rmind
719 1.1 rmind if (code != -1) {
720 1.1 rmind struct bpf_insn insns_code[] = {
721 1.1 rmind BPF_STMT(BPF_LD+BPF_B+BPF_IND, code_off),
722 1.1 rmind BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, code, 0, JUMP_MAGIC),
723 1.1 rmind };
724 1.1 rmind add_insns(ctx, insns_code, __arraycount(insns_code));
725 1.1 rmind
726 1.1 rmind uint32_t mwords[] = { BM_ICMP_CODE, 1, code };
727 1.1 rmind done_block(ctx, mwords, sizeof(mwords));
728 1.1 rmind }
729 1.1 rmind }
730 1.1 rmind
731 1.1 rmind #define SRC_FLAG_BIT (1U << 31)
732 1.1 rmind
733 1.1 rmind /*
734 1.1 rmind * npfctl_bpf_table: code block to match source/destination IP address
735 1.1 rmind * against NPF table specified by ID.
736 1.1 rmind */
737 1.1 rmind void
738 1.16 rmind npfctl_bpf_table(npf_bpf_t *ctx, unsigned opts, unsigned tid)
739 1.1 rmind {
740 1.1 rmind const bool src = (opts & MATCH_SRC) != 0;
741 1.1 rmind
742 1.1 rmind struct bpf_insn insns_table[] = {
743 1.1 rmind BPF_STMT(BPF_LD+BPF_IMM, (src ? SRC_FLAG_BIT : 0) | tid),
744 1.1 rmind BPF_STMT(BPF_MISC+BPF_COP, NPF_COP_TABLE),
745 1.1 rmind BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0, JUMP_MAGIC, 0),
746 1.1 rmind };
747 1.1 rmind add_insns(ctx, insns_table, __arraycount(insns_table));
748 1.1 rmind
749 1.1 rmind uint32_t mwords[] = { src ? BM_SRC_TABLE: BM_DST_TABLE, 1, tid };
750 1.16 rmind bm_invert_checkpoint(ctx, opts);
751 1.1 rmind done_block(ctx, mwords, sizeof(mwords));
752 1.1 rmind }
753