Home | History | Annotate | Line # | Download | only in npfctl
npf_bpf_comp.c revision 1.16.6.1
      1       1.1     rmind /*-
      2      1.16     rmind  * Copyright (c) 2010-2020 The NetBSD Foundation, Inc.
      3       1.1     rmind  * All rights reserved.
      4       1.1     rmind  *
      5       1.1     rmind  * This material is based upon work partially supported by The
      6       1.1     rmind  * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
      7       1.1     rmind  *
      8       1.1     rmind  * Redistribution and use in source and binary forms, with or without
      9       1.1     rmind  * modification, are permitted provided that the following conditions
     10       1.1     rmind  * are met:
     11       1.1     rmind  * 1. Redistributions of source code must retain the above copyright
     12       1.1     rmind  *    notice, this list of conditions and the following disclaimer.
     13       1.1     rmind  * 2. Redistributions in binary form must reproduce the above copyright
     14       1.1     rmind  *    notice, this list of conditions and the following disclaimer in the
     15       1.1     rmind  *    documentation and/or other materials provided with the distribution.
     16       1.1     rmind  *
     17       1.1     rmind  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     18       1.1     rmind  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     19       1.1     rmind  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     20       1.1     rmind  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     21       1.1     rmind  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22       1.1     rmind  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23       1.1     rmind  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24       1.1     rmind  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25       1.1     rmind  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26       1.1     rmind  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27       1.1     rmind  * POSSIBILITY OF SUCH DAMAGE.
     28       1.1     rmind  */
     29       1.1     rmind 
     30       1.1     rmind /*
     31       1.1     rmind  * BPF byte-code generation for NPF rules.
     32      1.14     rmind  *
     33      1.14     rmind  * Overview
     34      1.14     rmind  *
     35      1.15     rmind  *	Each NPF rule is compiled into a BPF micro-program.  There is a
     36      1.14     rmind  *	BPF byte-code fragment for each higher-level filtering logic,
     37      1.14     rmind  *	e.g. to match L4 protocol, IP/mask, etc.  The generation process
     38      1.14     rmind  *	combines multiple BPF-byte code fragments into one program.
     39      1.14     rmind  *
     40      1.14     rmind  * Basic case
     41      1.14     rmind  *
     42      1.15     rmind  *	Consider a basic case where all filters should match.  They
     43      1.14     rmind  *	are expressed as logical conjunction, e.g.:
     44      1.14     rmind  *
     45      1.14     rmind  *		A and B and C and D
     46      1.14     rmind  *
     47      1.14     rmind  *	Each test (filter) criterion can be evaluated to true (match) or
     48      1.14     rmind  *	false (no match) and the logic is as follows:
     49      1.14     rmind  *
     50      1.14     rmind  *	- If the value is true, then jump to the "next" test (offset 0).
     51      1.14     rmind  *
     52      1.14     rmind  *	- If the value is false, then jump to the JUMP_MAGIC value (0xff).
     53      1.14     rmind  *	This "magic" value is used to indicate that it will have to be
     54      1.14     rmind  *	patched at a later stage.
     55      1.14     rmind  *
     56      1.14     rmind  *	Once all byte-code fragments are combined into one, then there
     57      1.14     rmind  *	are two additional steps:
     58      1.14     rmind  *
     59      1.15     rmind  *	- Two instructions are appended at the end of the program: "return
     60      1.15     rmind  *	success" followed by "return failure".
     61      1.14     rmind  *
     62      1.14     rmind  *	- All jumps with the JUMP_MAGIC value are patched to point to the
     63      1.14     rmind  *	"return failure" instruction.
     64      1.14     rmind  *
     65      1.14     rmind  *	Therefore, if all filter criteria will match, then the first
     66      1.14     rmind  *	instruction will be reached, indicating a successful match of the
     67      1.14     rmind  *	rule.  Otherwise, if any of the criteria will not match, it will
     68      1.15     rmind  *	take the failure path and the rule will not be matching.
     69      1.14     rmind  *
     70      1.14     rmind  * Grouping
     71      1.14     rmind  *
     72      1.16     rmind  *	Filters can have groups, which have an effect of logical
     73      1.14     rmind  *	disjunction, e.g.:
     74      1.14     rmind  *
     75      1.14     rmind  *		A and B and (C or D)
     76      1.14     rmind  *
     77      1.14     rmind  *	In such case, the logic inside the group has to be inverted i.e.
     78      1.14     rmind  *	the jump values swapped.  If the test value is true, then jump
     79      1.14     rmind  *	out of the group; if false, then jump "next".  At the end of the
     80      1.14     rmind  *	group, an addition failure path is appended and the JUMP_MAGIC
     81      1.14     rmind  *	uses within the group are patched to jump past the said path.
     82  1.16.6.1    martin  *
     83  1.16.6.1    martin  *	For multi-word comparisons (IPv6 addresses), there is another
     84  1.16.6.1    martin  *	layer of grouping:
     85  1.16.6.1    martin  *
     86  1.16.6.1    martin  *		A and B and ((C and D) or (E and F))
     87  1.16.6.1    martin  *
     88  1.16.6.1    martin  *	This strains the simple-minded JUMP_MAGIC logic, so for now,
     89  1.16.6.1    martin  *	when generating the jump-if-false targets for (C and D), we
     90  1.16.6.1    martin  *	simply count the number of instructions left to skip over.
     91  1.16.6.1    martin  *
     92  1.16.6.1    martin  *	A better architecture might be to create asm-type labels for
     93  1.16.6.1    martin  *	the jt and jf continuations in the first pass, and then, once
     94  1.16.6.1    martin  *	their offsets are determined, go back and fill them in in the
     95  1.16.6.1    martin  *	second pass.  This would simplify the logic (no need to compute
     96  1.16.6.1    martin  *	exactly how many instructions we're about to generate in a
     97  1.16.6.1    martin  *	chain of conditionals) and eliminate redundant RET #0
     98  1.16.6.1    martin  *	instructions which are currently generated after some groups.
     99       1.1     rmind  */
    100       1.1     rmind 
    101       1.1     rmind #include <sys/cdefs.h>
    102  1.16.6.1    martin __RCSID("$NetBSD: npf_bpf_comp.c,v 1.16.6.1 2024/11/17 13:18:58 martin Exp $");
    103       1.1     rmind 
    104       1.1     rmind #include <stdlib.h>
    105       1.1     rmind #include <stdbool.h>
    106       1.1     rmind #include <stddef.h>
    107       1.1     rmind #include <string.h>
    108       1.1     rmind #include <inttypes.h>
    109       1.1     rmind #include <err.h>
    110       1.1     rmind #include <assert.h>
    111       1.1     rmind 
    112       1.1     rmind #include <netinet/in.h>
    113       1.1     rmind #include <netinet/in_systm.h>
    114       1.9  christos #define	__FAVOR_BSD
    115       1.1     rmind #include <netinet/ip.h>
    116       1.1     rmind #include <netinet/ip6.h>
    117       1.1     rmind #include <netinet/udp.h>
    118       1.1     rmind #include <netinet/tcp.h>
    119       1.1     rmind #include <netinet/ip_icmp.h>
    120       1.1     rmind #include <netinet/icmp6.h>
    121       1.1     rmind 
    122       1.1     rmind #include <net/bpf.h>
    123       1.1     rmind 
    124       1.1     rmind #include "npfctl.h"
    125       1.1     rmind 
    126       1.1     rmind /*
    127       1.1     rmind  * Note: clear X_EQ_L4OFF when register X is invalidated i.e. it stores
    128       1.1     rmind  * something other than L4 header offset.  Generally, when BPF_LDX is used.
    129       1.1     rmind  */
    130       1.1     rmind #define	FETCHED_L3		0x01
    131      1.16     rmind #define	CHECKED_L4_PROTO	0x02
    132       1.6     rmind #define	X_EQ_L4OFF		0x04
    133       1.1     rmind 
    134       1.1     rmind struct npf_bpf {
    135       1.1     rmind 	/*
    136       1.1     rmind 	 * BPF program code, the allocated length (in bytes), the number
    137       1.1     rmind 	 * of logical blocks and the flags.
    138       1.1     rmind 	 */
    139       1.1     rmind 	struct bpf_program	prog;
    140       1.1     rmind 	size_t			alen;
    141      1.16     rmind 	unsigned		nblocks;
    142       1.1     rmind 	sa_family_t		af;
    143       1.1     rmind 	uint32_t		flags;
    144       1.1     rmind 
    145      1.14     rmind 	/*
    146      1.16     rmind 	 * Indicators whether we are inside the group and whether this
    147      1.16     rmind 	 * group is implementing inverted logic.
    148      1.16     rmind 	 *
    149      1.14     rmind 	 * The current group offset (counted in BPF instructions)
    150      1.14     rmind 	 * and block number at the start of the group.
    151      1.14     rmind 	 */
    152      1.16     rmind 	unsigned		ingroup;
    153      1.16     rmind 	bool			invert;
    154  1.16.6.1    martin 	bool			multiword;
    155      1.16     rmind 	unsigned		goff;
    156      1.16     rmind 	unsigned		gblock;
    157      1.16     rmind 
    158      1.16     rmind 	/* Track inversion (excl. mark). */
    159      1.16     rmind 	uint32_t		invflags;
    160       1.1     rmind 
    161       1.1     rmind 	/* BPF marks, allocated length and the real length. */
    162       1.1     rmind 	uint32_t *		marks;
    163       1.1     rmind 	size_t			malen;
    164       1.1     rmind 	size_t			mlen;
    165       1.1     rmind };
    166       1.1     rmind 
    167       1.1     rmind /*
    168       1.1     rmind  * NPF success and failure values to be returned from BPF.
    169       1.1     rmind  */
    170       1.1     rmind #define	NPF_BPF_SUCCESS		((u_int)-1)
    171       1.1     rmind #define	NPF_BPF_FAILURE		0
    172       1.1     rmind 
    173       1.1     rmind /*
    174       1.1     rmind  * Magic value to indicate the failure path, which is fixed up on completion.
    175       1.1     rmind  * Note: this is the longest jump offset in BPF, since the offset is one byte.
    176       1.1     rmind  */
    177       1.1     rmind #define	JUMP_MAGIC		0xff
    178       1.1     rmind 
    179       1.1     rmind /* Reduce re-allocations by expanding in 64 byte blocks. */
    180       1.1     rmind #define	ALLOC_MASK		(64 - 1)
    181       1.1     rmind #define	ALLOC_ROUND(x)		(((x) + ALLOC_MASK) & ~ALLOC_MASK)
    182       1.1     rmind 
    183       1.9  christos #ifndef IPV6_VERSION
    184       1.9  christos #define	IPV6_VERSION		0x60
    185       1.9  christos #endif
    186       1.9  christos 
    187       1.1     rmind npf_bpf_t *
    188       1.1     rmind npfctl_bpf_create(void)
    189       1.1     rmind {
    190       1.1     rmind 	return ecalloc(1, sizeof(npf_bpf_t));
    191       1.1     rmind }
    192       1.1     rmind 
    193       1.1     rmind static void
    194       1.1     rmind fixup_jumps(npf_bpf_t *ctx, u_int start, u_int end, bool swap)
    195       1.1     rmind {
    196       1.1     rmind 	struct bpf_program *bp = &ctx->prog;
    197       1.1     rmind 
    198       1.1     rmind 	for (u_int i = start; i < end; i++) {
    199       1.1     rmind 		struct bpf_insn *insn = &bp->bf_insns[i];
    200       1.1     rmind 		const u_int fail_off = end - i;
    201      1.14     rmind 		bool seen_magic = false;
    202       1.1     rmind 
    203       1.1     rmind 		if (fail_off >= JUMP_MAGIC) {
    204       1.1     rmind 			errx(EXIT_FAILURE, "BPF generation error: "
    205       1.1     rmind 			    "the number of instructions is over the limit");
    206       1.1     rmind 		}
    207       1.1     rmind 		if (BPF_CLASS(insn->code) != BPF_JMP) {
    208       1.1     rmind 			continue;
    209       1.1     rmind 		}
    210      1.14     rmind 		if (BPF_OP(insn->code) == BPF_JA) {
    211      1.14     rmind 			/*
    212      1.14     rmind 			 * BPF_JA can be used to jump to the failure path.
    213      1.14     rmind 			 * If we are swapping i.e. inside the group, then
    214      1.14     rmind 			 * jump "next"; groups have a failure path appended
    215      1.14     rmind 			 * at their end.
    216      1.14     rmind 			 */
    217      1.14     rmind 			if (insn->k == JUMP_MAGIC) {
    218      1.14     rmind 				insn->k = swap ? 0 : fail_off;
    219      1.14     rmind 			}
    220      1.14     rmind 			continue;
    221      1.14     rmind 		}
    222      1.14     rmind 
    223      1.14     rmind 		/*
    224      1.14     rmind 		 * Fixup the "magic" value.  Swap only the "magic" jumps.
    225      1.14     rmind 		 */
    226      1.14     rmind 
    227      1.14     rmind 		if (insn->jt == JUMP_MAGIC) {
    228      1.14     rmind 			insn->jt = fail_off;
    229      1.14     rmind 			seen_magic = true;
    230      1.14     rmind 		}
    231      1.14     rmind 		if (insn->jf == JUMP_MAGIC) {
    232      1.14     rmind 			insn->jf = fail_off;
    233      1.14     rmind 			seen_magic = true;
    234      1.14     rmind 		}
    235      1.14     rmind 
    236      1.14     rmind 		if (seen_magic && swap) {
    237       1.1     rmind 			uint8_t jt = insn->jt;
    238       1.1     rmind 			insn->jt = insn->jf;
    239       1.1     rmind 			insn->jf = jt;
    240       1.1     rmind 		}
    241       1.1     rmind 	}
    242       1.1     rmind }
    243       1.1     rmind 
    244       1.1     rmind static void
    245       1.1     rmind add_insns(npf_bpf_t *ctx, struct bpf_insn *insns, size_t count)
    246       1.1     rmind {
    247       1.1     rmind 	struct bpf_program *bp = &ctx->prog;
    248       1.1     rmind 	size_t offset, len, reqlen;
    249       1.1     rmind 
    250       1.1     rmind 	/* Note: bf_len is the count of instructions. */
    251       1.1     rmind 	offset = bp->bf_len * sizeof(struct bpf_insn);
    252       1.1     rmind 	len = count * sizeof(struct bpf_insn);
    253       1.1     rmind 
    254       1.1     rmind 	/* Ensure the memory buffer for the program. */
    255       1.1     rmind 	reqlen = ALLOC_ROUND(offset + len);
    256       1.1     rmind 	if (reqlen > ctx->alen) {
    257       1.1     rmind 		bp->bf_insns = erealloc(bp->bf_insns, reqlen);
    258       1.1     rmind 		ctx->alen = reqlen;
    259       1.1     rmind 	}
    260       1.1     rmind 
    261       1.1     rmind 	/* Add the code block. */
    262       1.1     rmind 	memcpy((uint8_t *)bp->bf_insns + offset, insns, len);
    263       1.1     rmind 	bp->bf_len += count;
    264       1.1     rmind }
    265       1.1     rmind 
    266       1.1     rmind static void
    267      1.16     rmind add_bmarks(npf_bpf_t *ctx, const uint32_t *m, size_t len)
    268       1.1     rmind {
    269       1.1     rmind 	size_t reqlen, nargs = m[1];
    270       1.1     rmind 
    271       1.1     rmind 	if ((len / sizeof(uint32_t) - 2) != nargs) {
    272       1.1     rmind 		errx(EXIT_FAILURE, "invalid BPF block description");
    273       1.1     rmind 	}
    274       1.1     rmind 	reqlen = ALLOC_ROUND(ctx->mlen + len);
    275       1.1     rmind 	if (reqlen > ctx->malen) {
    276       1.1     rmind 		ctx->marks = erealloc(ctx->marks, reqlen);
    277       1.1     rmind 		ctx->malen = reqlen;
    278       1.1     rmind 	}
    279       1.1     rmind 	memcpy((uint8_t *)ctx->marks + ctx->mlen, m, len);
    280       1.1     rmind 	ctx->mlen += len;
    281       1.1     rmind }
    282       1.1     rmind 
    283       1.1     rmind static void
    284       1.1     rmind done_block(npf_bpf_t *ctx, const uint32_t *m, size_t len)
    285       1.1     rmind {
    286      1.16     rmind 	add_bmarks(ctx, m, len);
    287       1.1     rmind 	ctx->nblocks++;
    288       1.1     rmind }
    289       1.1     rmind 
    290       1.1     rmind struct bpf_program *
    291       1.1     rmind npfctl_bpf_complete(npf_bpf_t *ctx)
    292       1.1     rmind {
    293       1.1     rmind 	struct bpf_program *bp = &ctx->prog;
    294       1.1     rmind 	const u_int retoff = bp->bf_len;
    295       1.1     rmind 
    296       1.8     rmind 	/* No instructions (optimised out). */
    297       1.8     rmind 	if (!bp->bf_len)
    298       1.8     rmind 		return NULL;
    299       1.8     rmind 
    300       1.1     rmind 	/* Add the return fragment (success and failure paths). */
    301       1.1     rmind 	struct bpf_insn insns_ret[] = {
    302       1.1     rmind 		BPF_STMT(BPF_RET+BPF_K, NPF_BPF_SUCCESS),
    303       1.1     rmind 		BPF_STMT(BPF_RET+BPF_K, NPF_BPF_FAILURE),
    304       1.1     rmind 	};
    305       1.1     rmind 	add_insns(ctx, insns_ret, __arraycount(insns_ret));
    306       1.1     rmind 
    307       1.1     rmind 	/* Fixup all jumps to the main failure path. */
    308       1.1     rmind 	fixup_jumps(ctx, 0, retoff, false);
    309       1.1     rmind 
    310       1.1     rmind 	return &ctx->prog;
    311       1.1     rmind }
    312       1.1     rmind 
    313       1.1     rmind const void *
    314       1.1     rmind npfctl_bpf_bmarks(npf_bpf_t *ctx, size_t *len)
    315       1.1     rmind {
    316       1.1     rmind 	*len = ctx->mlen;
    317       1.1     rmind 	return ctx->marks;
    318       1.1     rmind }
    319       1.1     rmind 
    320       1.1     rmind void
    321       1.1     rmind npfctl_bpf_destroy(npf_bpf_t *ctx)
    322       1.1     rmind {
    323       1.1     rmind 	free(ctx->prog.bf_insns);
    324       1.1     rmind 	free(ctx->marks);
    325       1.1     rmind 	free(ctx);
    326       1.1     rmind }
    327       1.1     rmind 
    328       1.1     rmind /*
    329      1.14     rmind  * npfctl_bpf_group_enter: begin a logical group.  It merely uses logical
    330      1.16     rmind  * disjunction (OR) for comparisons within the group.
    331       1.1     rmind  */
    332       1.1     rmind void
    333      1.16     rmind npfctl_bpf_group_enter(npf_bpf_t *ctx, bool invert)
    334       1.1     rmind {
    335       1.1     rmind 	struct bpf_program *bp = &ctx->prog;
    336       1.1     rmind 
    337       1.1     rmind 	assert(ctx->goff == 0);
    338       1.1     rmind 	assert(ctx->gblock == 0);
    339       1.1     rmind 
    340       1.1     rmind 	ctx->goff = bp->bf_len;
    341       1.1     rmind 	ctx->gblock = ctx->nblocks;
    342      1.16     rmind 	ctx->invert = invert;
    343  1.16.6.1    martin 	ctx->multiword = false;
    344      1.16     rmind 	ctx->ingroup++;
    345       1.1     rmind }
    346       1.1     rmind 
    347       1.1     rmind void
    348      1.16     rmind npfctl_bpf_group_exit(npf_bpf_t *ctx)
    349       1.1     rmind {
    350       1.1     rmind 	struct bpf_program *bp = &ctx->prog;
    351       1.1     rmind 	const size_t curoff = bp->bf_len;
    352       1.1     rmind 
    353      1.16     rmind 	assert(ctx->ingroup);
    354      1.16     rmind 	ctx->ingroup--;
    355      1.16     rmind 
    356  1.16.6.1    martin 	/*
    357  1.16.6.1    martin 	 * If we're not inverting, there were only zero or one options,
    358  1.16.6.1    martin 	 * and the last comparison was not a multi-word comparison
    359  1.16.6.1    martin 	 * requiring a fallthrough failure -- nothing to do.
    360  1.16.6.1    martin 	 */
    361  1.16.6.1    martin 	if (!ctx->invert &&
    362  1.16.6.1    martin 	    (ctx->nblocks - ctx->gblock) <= 1 &&
    363  1.16.6.1    martin 	    !ctx->multiword) {
    364       1.1     rmind 		ctx->goff = ctx->gblock = 0;
    365       1.1     rmind 		return;
    366       1.1     rmind 	}
    367       1.1     rmind 
    368       1.1     rmind 	/*
    369      1.10     rmind 	 * If inverting, then prepend a jump over the statement below.
    370      1.14     rmind 	 * On match, it will skip-through and the fail path will be taken.
    371      1.10     rmind 	 */
    372      1.16     rmind 	if (ctx->invert) {
    373      1.10     rmind 		struct bpf_insn insns_ret[] = {
    374      1.10     rmind 			BPF_STMT(BPF_JMP+BPF_JA, 1),
    375      1.10     rmind 		};
    376      1.10     rmind 		add_insns(ctx, insns_ret, __arraycount(insns_ret));
    377      1.10     rmind 	}
    378      1.10     rmind 
    379      1.10     rmind 	/*
    380       1.1     rmind 	 * Append a failure return as a fall-through i.e. if there is
    381       1.1     rmind 	 * no match within the group.
    382       1.1     rmind 	 */
    383       1.1     rmind 	struct bpf_insn insns_ret[] = {
    384       1.1     rmind 		BPF_STMT(BPF_RET+BPF_K, NPF_BPF_FAILURE),
    385       1.1     rmind 	};
    386       1.1     rmind 	add_insns(ctx, insns_ret, __arraycount(insns_ret));
    387       1.1     rmind 
    388       1.1     rmind 	/*
    389       1.1     rmind 	 * Adjust jump offsets: on match - jump outside the group i.e.
    390       1.1     rmind 	 * to the current offset.  Otherwise, jump to the next instruction
    391       1.1     rmind 	 * which would lead to the fall-through code above if none matches.
    392       1.1     rmind 	 */
    393       1.1     rmind 	fixup_jumps(ctx, ctx->goff, curoff, true);
    394       1.1     rmind 	ctx->goff = ctx->gblock = 0;
    395       1.1     rmind }
    396       1.1     rmind 
    397       1.1     rmind static void
    398      1.16     rmind fetch_l3(npf_bpf_t *ctx, sa_family_t af, unsigned flags)
    399       1.1     rmind {
    400      1.16     rmind 	unsigned ver;
    401       1.1     rmind 
    402       1.1     rmind 	switch (af) {
    403       1.1     rmind 	case AF_INET:
    404       1.1     rmind 		ver = IPVERSION;
    405       1.1     rmind 		break;
    406       1.1     rmind 	case AF_INET6:
    407       1.1     rmind 		ver = IPV6_VERSION >> 4;
    408       1.1     rmind 		break;
    409       1.1     rmind 	case AF_UNSPEC:
    410       1.1     rmind 		ver = 0;
    411       1.1     rmind 		break;
    412       1.1     rmind 	default:
    413       1.1     rmind 		abort();
    414       1.1     rmind 	}
    415       1.1     rmind 
    416       1.1     rmind 	/*
    417       1.7     rmind 	 * The memory store is populated with:
    418       1.1     rmind 	 * - BPF_MW_IPVER: IP version (4 or 6).
    419       1.1     rmind 	 * - BPF_MW_L4OFF: L4 header offset.
    420       1.1     rmind 	 * - BPF_MW_L4PROTO: L4 protocol.
    421       1.1     rmind 	 */
    422       1.1     rmind 	if ((ctx->flags & FETCHED_L3) == 0 || (af && ctx->af == 0)) {
    423       1.1     rmind 		const uint8_t jt = ver ? 0 : JUMP_MAGIC;
    424       1.1     rmind 		const uint8_t jf = ver ? JUMP_MAGIC : 0;
    425      1.16     rmind 		const bool ingroup = ctx->ingroup != 0;
    426      1.16     rmind 		const bool invert = ctx->invert;
    427       1.1     rmind 
    428       1.1     rmind 		/*
    429       1.1     rmind 		 * L3 block cannot be inserted in the middle of a group.
    430       1.1     rmind 		 * In fact, it never is.  Check and start the group after.
    431       1.1     rmind 		 */
    432       1.1     rmind 		if (ingroup) {
    433       1.1     rmind 			assert(ctx->nblocks == ctx->gblock);
    434      1.16     rmind 			npfctl_bpf_group_exit(ctx);
    435       1.1     rmind 		}
    436       1.1     rmind 
    437       1.1     rmind 		/*
    438       1.1     rmind 		 * A <- IP version; A == expected-version?
    439       1.1     rmind 		 * If no particular version specified, check for non-zero.
    440       1.1     rmind 		 */
    441       1.7     rmind 		struct bpf_insn insns_af[] = {
    442       1.7     rmind 			BPF_STMT(BPF_LD+BPF_W+BPF_MEM, BPF_MW_IPVER),
    443       1.7     rmind 			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, ver, jt, jf),
    444       1.7     rmind 		};
    445       1.7     rmind 		add_insns(ctx, insns_af, __arraycount(insns_af));
    446       1.7     rmind 		ctx->flags |= FETCHED_L3;
    447       1.1     rmind 		ctx->af = af;
    448       1.1     rmind 
    449       1.1     rmind 		if (af) {
    450       1.1     rmind 			uint32_t mwords[] = { BM_IPVER, 1, af };
    451      1.16     rmind 			add_bmarks(ctx, mwords, sizeof(mwords));
    452       1.1     rmind 		}
    453       1.1     rmind 		if (ingroup) {
    454      1.16     rmind 			npfctl_bpf_group_enter(ctx, invert);
    455       1.1     rmind 		}
    456       1.1     rmind 
    457       1.1     rmind 	} else if (af && af != ctx->af) {
    458       1.1     rmind 		errx(EXIT_FAILURE, "address family mismatch");
    459       1.1     rmind 	}
    460       1.1     rmind 
    461       1.1     rmind 	if ((flags & X_EQ_L4OFF) != 0 && (ctx->flags & X_EQ_L4OFF) == 0) {
    462       1.1     rmind 		/* X <- IP header length */
    463       1.1     rmind 		struct bpf_insn insns_hlen[] = {
    464       1.1     rmind 			BPF_STMT(BPF_LDX+BPF_MEM, BPF_MW_L4OFF),
    465       1.1     rmind 		};
    466       1.1     rmind 		add_insns(ctx, insns_hlen, __arraycount(insns_hlen));
    467       1.1     rmind 		ctx->flags |= X_EQ_L4OFF;
    468       1.1     rmind 	}
    469       1.1     rmind }
    470       1.1     rmind 
    471      1.16     rmind static void
    472      1.16     rmind bm_invert_checkpoint(npf_bpf_t *ctx, const unsigned opts)
    473      1.16     rmind {
    474      1.16     rmind 	uint32_t bm = 0;
    475      1.16     rmind 
    476      1.16     rmind 	if (ctx->ingroup && ctx->invert) {
    477      1.16     rmind 		const unsigned seen = ctx->invflags;
    478      1.16     rmind 
    479      1.16     rmind 		if ((opts & MATCH_SRC) != 0 && (seen & MATCH_SRC) == 0) {
    480      1.16     rmind 			bm = BM_SRC_NEG;
    481      1.16     rmind 		}
    482      1.16     rmind 		if ((opts & MATCH_DST) != 0 && (seen & MATCH_DST) == 0) {
    483      1.16     rmind 			bm = BM_DST_NEG;
    484      1.16     rmind 		}
    485      1.16     rmind 		ctx->invflags |= opts & (MATCH_SRC | MATCH_DST);
    486      1.16     rmind 	}
    487      1.16     rmind 	if (bm) {
    488      1.16     rmind 		uint32_t mwords[] = { bm, 0 };
    489      1.16     rmind 		add_bmarks(ctx, mwords, sizeof(mwords));
    490      1.16     rmind 	}
    491      1.16     rmind }
    492      1.16     rmind 
    493       1.1     rmind /*
    494      1.16     rmind  * npfctl_bpf_ipver: match the IP version.
    495       1.1     rmind  */
    496       1.1     rmind void
    497      1.16     rmind npfctl_bpf_ipver(npf_bpf_t *ctx, sa_family_t af)
    498       1.1     rmind {
    499       1.1     rmind 	fetch_l3(ctx, af, 0);
    500      1.16     rmind }
    501       1.1     rmind 
    502      1.16     rmind /*
    503      1.16     rmind  * npfctl_bpf_proto: code block to match IP version and L4 protocol.
    504      1.16     rmind  */
    505      1.16     rmind void
    506      1.16     rmind npfctl_bpf_proto(npf_bpf_t *ctx, unsigned proto)
    507      1.16     rmind {
    508       1.1     rmind 	struct bpf_insn insns_proto[] = {
    509       1.1     rmind 		/* A <- L4 protocol; A == expected-protocol? */
    510       1.1     rmind 		BPF_STMT(BPF_LD+BPF_W+BPF_MEM, BPF_MW_L4PROTO),
    511       1.1     rmind 		BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, proto, 0, JUMP_MAGIC),
    512       1.1     rmind 	};
    513       1.1     rmind 	add_insns(ctx, insns_proto, __arraycount(insns_proto));
    514       1.1     rmind 
    515       1.1     rmind 	uint32_t mwords[] = { BM_PROTO, 1, proto };
    516       1.1     rmind 	done_block(ctx, mwords, sizeof(mwords));
    517      1.16     rmind 	ctx->flags |= CHECKED_L4_PROTO;
    518       1.1     rmind }
    519       1.1     rmind 
    520       1.1     rmind /*
    521       1.1     rmind  * npfctl_bpf_cidr: code block to match IPv4 or IPv6 CIDR.
    522       1.1     rmind  *
    523       1.1     rmind  * => IP address shall be in the network byte order.
    524       1.1     rmind  */
    525       1.1     rmind void
    526      1.16     rmind npfctl_bpf_cidr(npf_bpf_t *ctx, unsigned opts, sa_family_t af,
    527       1.1     rmind     const npf_addr_t *addr, const npf_netmask_t mask)
    528       1.1     rmind {
    529       1.1     rmind 	const uint32_t *awords = (const uint32_t *)addr;
    530  1.16.6.1    martin 	unsigned nwords, origlength, length, maxmask, off;
    531       1.1     rmind 
    532       1.1     rmind 	assert(((opts & MATCH_SRC) != 0) ^ ((opts & MATCH_DST) != 0));
    533       1.1     rmind 	assert((mask && mask <= NPF_MAX_NETMASK) || mask == NPF_NO_NETMASK);
    534       1.1     rmind 
    535       1.1     rmind 	switch (af) {
    536       1.1     rmind 	case AF_INET:
    537       1.1     rmind 		maxmask = 32;
    538       1.1     rmind 		off = (opts & MATCH_SRC) ?
    539       1.1     rmind 		    offsetof(struct ip, ip_src) :
    540       1.1     rmind 		    offsetof(struct ip, ip_dst);
    541       1.1     rmind 		nwords = sizeof(struct in_addr) / sizeof(uint32_t);
    542       1.1     rmind 		break;
    543       1.1     rmind 	case AF_INET6:
    544       1.1     rmind 		maxmask = 128;
    545       1.1     rmind 		off = (opts & MATCH_SRC) ?
    546       1.1     rmind 		    offsetof(struct ip6_hdr, ip6_src) :
    547       1.1     rmind 		    offsetof(struct ip6_hdr, ip6_dst);
    548       1.1     rmind 		nwords = sizeof(struct in6_addr) / sizeof(uint32_t);
    549       1.1     rmind 		break;
    550       1.1     rmind 	default:
    551       1.1     rmind 		abort();
    552       1.1     rmind 	}
    553       1.1     rmind 
    554       1.1     rmind 	/* Ensure address family. */
    555       1.1     rmind 	fetch_l3(ctx, af, 0);
    556       1.1     rmind 
    557  1.16.6.1    martin 	length = origlength = (mask == NPF_NO_NETMASK) ? maxmask : mask;
    558       1.1     rmind 
    559       1.1     rmind 	/* CAUTION: BPF operates in host byte-order. */
    560      1.16     rmind 	for (unsigned i = 0; i < nwords; i++) {
    561      1.16     rmind 		const unsigned woff = i * sizeof(uint32_t);
    562       1.1     rmind 		uint32_t word = ntohl(awords[i]);
    563       1.1     rmind 		uint32_t wordmask;
    564       1.1     rmind 
    565       1.1     rmind 		if (length >= 32) {
    566       1.1     rmind 			/* The mask is a full word - do not apply it. */
    567       1.1     rmind 			wordmask = 0;
    568       1.1     rmind 			length -= 32;
    569       1.1     rmind 		} else if (length) {
    570       1.4     rmind 			wordmask = 0xffffffff << (32 - length);
    571       1.1     rmind 			length = 0;
    572       1.1     rmind 		} else {
    573       1.3     rmind 			/* The mask became zero - skip the rest. */
    574       1.3     rmind 			break;
    575       1.1     rmind 		}
    576       1.1     rmind 
    577       1.1     rmind 		/* A <- IP address (or one word of it) */
    578       1.1     rmind 		struct bpf_insn insns_ip[] = {
    579       1.1     rmind 			BPF_STMT(BPF_LD+BPF_W+BPF_ABS, off + woff),
    580       1.1     rmind 		};
    581       1.1     rmind 		add_insns(ctx, insns_ip, __arraycount(insns_ip));
    582       1.1     rmind 
    583       1.1     rmind 		/* A <- (A & MASK) */
    584       1.1     rmind 		if (wordmask) {
    585       1.1     rmind 			struct bpf_insn insns_mask[] = {
    586       1.1     rmind 				BPF_STMT(BPF_ALU+BPF_AND+BPF_K, wordmask),
    587       1.1     rmind 			};
    588       1.1     rmind 			add_insns(ctx, insns_mask, __arraycount(insns_mask));
    589       1.1     rmind 		}
    590       1.1     rmind 
    591  1.16.6.1    martin 		/*
    592  1.16.6.1    martin 		 * Determine how many instructions we have to jump
    593  1.16.6.1    martin 		 * ahead if the match fails.
    594  1.16.6.1    martin 		 *
    595  1.16.6.1    martin 		 * - If this is the last word, we jump to the final
    596  1.16.6.1    martin                  *   failure, JUMP_MAGIC.
    597  1.16.6.1    martin 		 *
    598  1.16.6.1    martin 		 * - If this is not the last word, we jump past the
    599  1.16.6.1    martin 		 *   remaining instructions to match this sequence.
    600  1.16.6.1    martin 		 *   Each 32-bit word in the sequence takes two
    601  1.16.6.1    martin 		 *   instructions (BPF_LD and BPF_JMP).  If there is a
    602  1.16.6.1    martin 		 *   partial-word mask ahead, there will be one
    603  1.16.6.1    martin 		 *   additional instruction (BPF_ALU).
    604  1.16.6.1    martin 		 */
    605  1.16.6.1    martin 		uint8_t jf;
    606  1.16.6.1    martin 		if (i + 1 == (origlength + 31)/32) {
    607  1.16.6.1    martin 			jf = JUMP_MAGIC;
    608  1.16.6.1    martin 		} else {
    609  1.16.6.1    martin 			jf = 2*((origlength + 31)/32 - i - 1);
    610  1.16.6.1    martin 			if (origlength % 32 != 0 && wordmask == 0)
    611  1.16.6.1    martin 				jf += 1;
    612  1.16.6.1    martin 		}
    613  1.16.6.1    martin 
    614       1.1     rmind 		/* A == expected-IP-word ? */
    615       1.1     rmind 		struct bpf_insn insns_cmp[] = {
    616  1.16.6.1    martin 			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, word, 0, jf),
    617       1.1     rmind 		};
    618       1.1     rmind 		add_insns(ctx, insns_cmp, __arraycount(insns_cmp));
    619       1.1     rmind 	}
    620       1.1     rmind 
    621  1.16.6.1    martin 	/*
    622  1.16.6.1    martin 	 * If we checked a chain of words in sequence, mark this as a
    623  1.16.6.1    martin 	 * multi-word comparison so if this is in a group there will be
    624  1.16.6.1    martin 	 * a fallthrough case.
    625  1.16.6.1    martin 	 *
    626  1.16.6.1    martin 	 * XXX This is a little silly; the compiler should really just
    627  1.16.6.1    martin 	 * record holes where conditional jumps need success/failure
    628  1.16.6.1    martin 	 * continuations, and go back to fill in the holes when the
    629  1.16.6.1    martin 	 * locations of the continuations are determined later.  But
    630  1.16.6.1    martin 	 * that requires restructuring this code a little more.
    631  1.16.6.1    martin 	 */
    632  1.16.6.1    martin 	ctx->multiword = (origlength + 31)/32 > 1;
    633  1.16.6.1    martin 
    634       1.1     rmind 	uint32_t mwords[] = {
    635       1.1     rmind 		(opts & MATCH_SRC) ? BM_SRC_CIDR: BM_DST_CIDR, 6,
    636       1.1     rmind 		af, mask, awords[0], awords[1], awords[2], awords[3],
    637       1.1     rmind 	};
    638      1.16     rmind 	bm_invert_checkpoint(ctx, opts);
    639       1.1     rmind 	done_block(ctx, mwords, sizeof(mwords));
    640       1.1     rmind }
    641       1.1     rmind 
    642       1.1     rmind /*
    643       1.1     rmind  * npfctl_bpf_ports: code block to match TCP/UDP port range.
    644       1.1     rmind  *
    645       1.1     rmind  * => Port numbers shall be in the network byte order.
    646       1.1     rmind  */
    647       1.1     rmind void
    648      1.16     rmind npfctl_bpf_ports(npf_bpf_t *ctx, unsigned opts, in_port_t from, in_port_t to)
    649       1.1     rmind {
    650      1.16     rmind 	const unsigned sport_off = offsetof(struct udphdr, uh_sport);
    651      1.16     rmind 	const unsigned dport_off = offsetof(struct udphdr, uh_dport);
    652      1.16     rmind 	unsigned off;
    653       1.1     rmind 
    654       1.1     rmind 	/* TCP and UDP port offsets are the same. */
    655       1.1     rmind 	assert(sport_off == offsetof(struct tcphdr, th_sport));
    656       1.1     rmind 	assert(dport_off == offsetof(struct tcphdr, th_dport));
    657      1.16     rmind 	assert(ctx->flags & CHECKED_L4_PROTO);
    658       1.1     rmind 
    659       1.1     rmind 	assert(((opts & MATCH_SRC) != 0) ^ ((opts & MATCH_DST) != 0));
    660       1.1     rmind 	off = (opts & MATCH_SRC) ? sport_off : dport_off;
    661       1.1     rmind 
    662       1.1     rmind 	/* X <- IP header length */
    663       1.2     rmind 	fetch_l3(ctx, AF_UNSPEC, X_EQ_L4OFF);
    664       1.1     rmind 
    665       1.1     rmind 	struct bpf_insn insns_fetch[] = {
    666       1.1     rmind 		/* A <- port */
    667       1.1     rmind 		BPF_STMT(BPF_LD+BPF_H+BPF_IND, off),
    668       1.1     rmind 	};
    669       1.1     rmind 	add_insns(ctx, insns_fetch, __arraycount(insns_fetch));
    670       1.1     rmind 
    671       1.1     rmind 	/* CAUTION: BPF operates in host byte-order. */
    672       1.1     rmind 	from = ntohs(from);
    673       1.1     rmind 	to = ntohs(to);
    674       1.1     rmind 
    675       1.1     rmind 	if (from == to) {
    676       1.1     rmind 		/* Single port case. */
    677       1.1     rmind 		struct bpf_insn insns_port[] = {
    678       1.1     rmind 			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, from, 0, JUMP_MAGIC),
    679       1.1     rmind 		};
    680       1.1     rmind 		add_insns(ctx, insns_port, __arraycount(insns_port));
    681       1.1     rmind 	} else {
    682       1.1     rmind 		/* Port range case. */
    683       1.1     rmind 		struct bpf_insn insns_range[] = {
    684      1.14     rmind 			BPF_JUMP(BPF_JMP+BPF_JGE+BPF_K, from, 0, 1),
    685      1.14     rmind 			BPF_JUMP(BPF_JMP+BPF_JGT+BPF_K, to, 0, 1),
    686      1.14     rmind 			BPF_STMT(BPF_JMP+BPF_JA, JUMP_MAGIC),
    687       1.1     rmind 		};
    688       1.1     rmind 		add_insns(ctx, insns_range, __arraycount(insns_range));
    689       1.1     rmind 	}
    690       1.1     rmind 
    691       1.1     rmind 	uint32_t mwords[] = {
    692      1.16     rmind 		(opts & MATCH_SRC) ? BM_SRC_PORTS : BM_DST_PORTS, 2, from, to
    693       1.1     rmind 	};
    694       1.1     rmind 	done_block(ctx, mwords, sizeof(mwords));
    695       1.1     rmind }
    696       1.1     rmind 
    697       1.1     rmind /*
    698       1.1     rmind  * npfctl_bpf_tcpfl: code block to match TCP flags.
    699       1.1     rmind  */
    700       1.1     rmind void
    701      1.16     rmind npfctl_bpf_tcpfl(npf_bpf_t *ctx, uint8_t tf, uint8_t tf_mask)
    702       1.1     rmind {
    703      1.16     rmind 	const unsigned tcpfl_off = offsetof(struct tcphdr, th_flags);
    704       1.6     rmind 	const bool usingmask = tf_mask != tf;
    705       1.1     rmind 
    706       1.1     rmind 	/* X <- IP header length */
    707       1.2     rmind 	fetch_l3(ctx, AF_UNSPEC, X_EQ_L4OFF);
    708       1.5     rmind 
    709      1.16     rmind 	if ((ctx->flags & CHECKED_L4_PROTO) == 0) {
    710      1.16     rmind 		const unsigned jf = usingmask ? 3 : 2;
    711      1.16     rmind 		assert(ctx->ingroup == 0);
    712      1.16     rmind 
    713      1.16     rmind 		/*
    714      1.16     rmind 		 * A <- L4 protocol; A == TCP?  If not, jump out.
    715      1.16     rmind 		 *
    716      1.16     rmind 		 * Note: the TCP flag matching might be without 'proto tcp'
    717      1.16     rmind 		 * when using a plain 'stateful' rule.  In such case it also
    718      1.16     rmind 		 * handles other protocols, thus no strict TCP check.
    719      1.16     rmind 		 */
    720       1.5     rmind 		struct bpf_insn insns_tcp[] = {
    721       1.5     rmind 			BPF_STMT(BPF_LD+BPF_W+BPF_MEM, BPF_MW_L4PROTO),
    722       1.5     rmind 			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, IPPROTO_TCP, 0, jf),
    723       1.5     rmind 		};
    724       1.5     rmind 		add_insns(ctx, insns_tcp, __arraycount(insns_tcp));
    725       1.5     rmind 	}
    726       1.1     rmind 
    727       1.1     rmind 	struct bpf_insn insns_tf[] = {
    728       1.1     rmind 		/* A <- TCP flags */
    729       1.1     rmind 		BPF_STMT(BPF_LD+BPF_B+BPF_IND, tcpfl_off),
    730       1.1     rmind 	};
    731       1.1     rmind 	add_insns(ctx, insns_tf, __arraycount(insns_tf));
    732       1.1     rmind 
    733       1.6     rmind 	if (usingmask) {
    734       1.1     rmind 		/* A <- (A & mask) */
    735       1.1     rmind 		struct bpf_insn insns_mask[] = {
    736       1.1     rmind 			BPF_STMT(BPF_ALU+BPF_AND+BPF_K, tf_mask),
    737       1.1     rmind 		};
    738       1.1     rmind 		add_insns(ctx, insns_mask, __arraycount(insns_mask));
    739       1.1     rmind 	}
    740       1.1     rmind 
    741       1.1     rmind 	struct bpf_insn insns_cmp[] = {
    742       1.1     rmind 		/* A == expected-TCP-flags? */
    743       1.1     rmind 		BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, tf, 0, JUMP_MAGIC),
    744       1.1     rmind 	};
    745       1.1     rmind 	add_insns(ctx, insns_cmp, __arraycount(insns_cmp));
    746       1.1     rmind 
    747      1.16     rmind 	uint32_t mwords[] = { BM_TCPFL, 2, tf, tf_mask };
    748      1.12       tih 	done_block(ctx, mwords, sizeof(mwords));
    749       1.1     rmind }
    750       1.1     rmind 
    751       1.1     rmind /*
    752       1.1     rmind  * npfctl_bpf_icmp: code block to match ICMP type and/or code.
    753      1.16     rmind  * Note: suitable for both the ICMPv4 and ICMPv6.
    754       1.1     rmind  */
    755       1.1     rmind void
    756       1.1     rmind npfctl_bpf_icmp(npf_bpf_t *ctx, int type, int code)
    757       1.1     rmind {
    758       1.1     rmind 	const u_int type_off = offsetof(struct icmp, icmp_type);
    759       1.1     rmind 	const u_int code_off = offsetof(struct icmp, icmp_code);
    760       1.1     rmind 
    761      1.16     rmind 	assert(ctx->flags & CHECKED_L4_PROTO);
    762       1.1     rmind 	assert(offsetof(struct icmp6_hdr, icmp6_type) == type_off);
    763       1.1     rmind 	assert(offsetof(struct icmp6_hdr, icmp6_code) == code_off);
    764       1.1     rmind 	assert(type != -1 || code != -1);
    765       1.1     rmind 
    766       1.1     rmind 	/* X <- IP header length */
    767       1.2     rmind 	fetch_l3(ctx, AF_UNSPEC, X_EQ_L4OFF);
    768       1.1     rmind 
    769       1.1     rmind 	if (type != -1) {
    770       1.1     rmind 		struct bpf_insn insns_type[] = {
    771       1.1     rmind 			BPF_STMT(BPF_LD+BPF_B+BPF_IND, type_off),
    772       1.1     rmind 			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, type, 0, JUMP_MAGIC),
    773       1.1     rmind 		};
    774       1.1     rmind 		add_insns(ctx, insns_type, __arraycount(insns_type));
    775       1.1     rmind 
    776       1.1     rmind 		uint32_t mwords[] = { BM_ICMP_TYPE, 1, type };
    777       1.1     rmind 		done_block(ctx, mwords, sizeof(mwords));
    778       1.1     rmind 	}
    779       1.1     rmind 
    780       1.1     rmind 	if (code != -1) {
    781       1.1     rmind 		struct bpf_insn insns_code[] = {
    782       1.1     rmind 			BPF_STMT(BPF_LD+BPF_B+BPF_IND, code_off),
    783       1.1     rmind 			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, code, 0, JUMP_MAGIC),
    784       1.1     rmind 		};
    785       1.1     rmind 		add_insns(ctx, insns_code, __arraycount(insns_code));
    786       1.1     rmind 
    787       1.1     rmind 		uint32_t mwords[] = { BM_ICMP_CODE, 1, code };
    788       1.1     rmind 		done_block(ctx, mwords, sizeof(mwords));
    789       1.1     rmind 	}
    790       1.1     rmind }
    791       1.1     rmind 
    792       1.1     rmind #define	SRC_FLAG_BIT	(1U << 31)
    793       1.1     rmind 
    794       1.1     rmind /*
    795       1.1     rmind  * npfctl_bpf_table: code block to match source/destination IP address
    796       1.1     rmind  * against NPF table specified by ID.
    797       1.1     rmind  */
    798       1.1     rmind void
    799      1.16     rmind npfctl_bpf_table(npf_bpf_t *ctx, unsigned opts, unsigned tid)
    800       1.1     rmind {
    801       1.1     rmind 	const bool src = (opts & MATCH_SRC) != 0;
    802       1.1     rmind 
    803       1.1     rmind 	struct bpf_insn insns_table[] = {
    804       1.1     rmind 		BPF_STMT(BPF_LD+BPF_IMM, (src ? SRC_FLAG_BIT : 0) | tid),
    805       1.1     rmind 		BPF_STMT(BPF_MISC+BPF_COP, NPF_COP_TABLE),
    806       1.1     rmind 		BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0, JUMP_MAGIC, 0),
    807       1.1     rmind 	};
    808       1.1     rmind 	add_insns(ctx, insns_table, __arraycount(insns_table));
    809       1.1     rmind 
    810       1.1     rmind 	uint32_t mwords[] = { src ? BM_SRC_TABLE: BM_DST_TABLE, 1, tid };
    811      1.16     rmind 	bm_invert_checkpoint(ctx, opts);
    812       1.1     rmind 	done_block(ctx, mwords, sizeof(mwords));
    813       1.1     rmind }
    814