npf_bpf_comp.c revision 1.18 1 1.1 rmind /*-
2 1.16 rmind * Copyright (c) 2010-2020 The NetBSD Foundation, Inc.
3 1.1 rmind * All rights reserved.
4 1.1 rmind *
5 1.1 rmind * This material is based upon work partially supported by The
6 1.1 rmind * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
7 1.1 rmind *
8 1.1 rmind * Redistribution and use in source and binary forms, with or without
9 1.1 rmind * modification, are permitted provided that the following conditions
10 1.1 rmind * are met:
11 1.1 rmind * 1. Redistributions of source code must retain the above copyright
12 1.1 rmind * notice, this list of conditions and the following disclaimer.
13 1.1 rmind * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 rmind * notice, this list of conditions and the following disclaimer in the
15 1.1 rmind * documentation and/or other materials provided with the distribution.
16 1.1 rmind *
17 1.1 rmind * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
18 1.1 rmind * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
19 1.1 rmind * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 1.1 rmind * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
21 1.1 rmind * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 1.1 rmind * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 1.1 rmind * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 1.1 rmind * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 1.1 rmind * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 1.1 rmind * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 1.1 rmind * POSSIBILITY OF SUCH DAMAGE.
28 1.1 rmind */
29 1.1 rmind
30 1.1 rmind /*
31 1.1 rmind * BPF byte-code generation for NPF rules.
32 1.14 rmind *
33 1.14 rmind * Overview
34 1.14 rmind *
35 1.15 rmind * Each NPF rule is compiled into a BPF micro-program. There is a
36 1.14 rmind * BPF byte-code fragment for each higher-level filtering logic,
37 1.14 rmind * e.g. to match L4 protocol, IP/mask, etc. The generation process
38 1.14 rmind * combines multiple BPF-byte code fragments into one program.
39 1.14 rmind *
40 1.14 rmind * Basic case
41 1.14 rmind *
42 1.15 rmind * Consider a basic case where all filters should match. They
43 1.14 rmind * are expressed as logical conjunction, e.g.:
44 1.14 rmind *
45 1.14 rmind * A and B and C and D
46 1.14 rmind *
47 1.14 rmind * Each test (filter) criterion can be evaluated to true (match) or
48 1.14 rmind * false (no match) and the logic is as follows:
49 1.14 rmind *
50 1.14 rmind * - If the value is true, then jump to the "next" test (offset 0).
51 1.14 rmind *
52 1.14 rmind * - If the value is false, then jump to the JUMP_MAGIC value (0xff).
53 1.14 rmind * This "magic" value is used to indicate that it will have to be
54 1.14 rmind * patched at a later stage.
55 1.14 rmind *
56 1.14 rmind * Once all byte-code fragments are combined into one, then there
57 1.14 rmind * are two additional steps:
58 1.14 rmind *
59 1.15 rmind * - Two instructions are appended at the end of the program: "return
60 1.15 rmind * success" followed by "return failure".
61 1.14 rmind *
62 1.14 rmind * - All jumps with the JUMP_MAGIC value are patched to point to the
63 1.14 rmind * "return failure" instruction.
64 1.14 rmind *
65 1.14 rmind * Therefore, if all filter criteria will match, then the first
66 1.14 rmind * instruction will be reached, indicating a successful match of the
67 1.14 rmind * rule. Otherwise, if any of the criteria will not match, it will
68 1.15 rmind * take the failure path and the rule will not be matching.
69 1.14 rmind *
70 1.14 rmind * Grouping
71 1.14 rmind *
72 1.16 rmind * Filters can have groups, which have an effect of logical
73 1.14 rmind * disjunction, e.g.:
74 1.14 rmind *
75 1.14 rmind * A and B and (C or D)
76 1.14 rmind *
77 1.14 rmind * In such case, the logic inside the group has to be inverted i.e.
78 1.14 rmind * the jump values swapped. If the test value is true, then jump
79 1.14 rmind * out of the group; if false, then jump "next". At the end of the
80 1.14 rmind * group, an addition failure path is appended and the JUMP_MAGIC
81 1.14 rmind * uses within the group are patched to jump past the said path.
82 1.17 riastrad *
83 1.17 riastrad * For multi-word comparisons (IPv6 addresses), there is another
84 1.17 riastrad * layer of grouping:
85 1.17 riastrad *
86 1.17 riastrad * A and B and ((C and D) or (E and F))
87 1.17 riastrad *
88 1.17 riastrad * This strains the simple-minded JUMP_MAGIC logic, so for now,
89 1.17 riastrad * when generating the jump-if-false targets for (C and D), we
90 1.17 riastrad * simply count the number of instructions left to skip over.
91 1.17 riastrad *
92 1.17 riastrad * A better architecture might be to create asm-type labels for
93 1.17 riastrad * the jt and jf continuations in the first pass, and then, once
94 1.17 riastrad * their offsets are determined, go back and fill them in in the
95 1.17 riastrad * second pass. This would simplify the logic (no need to compute
96 1.17 riastrad * exactly how many instructions we're about to generate in a
97 1.17 riastrad * chain of conditionals) and eliminate redundant RET #0
98 1.17 riastrad * instructions which are currently generated after some groups.
99 1.1 rmind */
100 1.1 rmind
101 1.1 rmind #include <sys/cdefs.h>
102 1.18 joe __RCSID("$NetBSD: npf_bpf_comp.c,v 1.18 2025/07/01 19:55:15 joe Exp $");
103 1.1 rmind
104 1.1 rmind #include <stdlib.h>
105 1.1 rmind #include <stdbool.h>
106 1.1 rmind #include <stddef.h>
107 1.1 rmind #include <string.h>
108 1.1 rmind #include <inttypes.h>
109 1.1 rmind #include <err.h>
110 1.1 rmind #include <assert.h>
111 1.1 rmind
112 1.1 rmind #include <netinet/in.h>
113 1.1 rmind #include <netinet/in_systm.h>
114 1.9 christos #define __FAVOR_BSD
115 1.1 rmind #include <netinet/ip.h>
116 1.1 rmind #include <netinet/ip6.h>
117 1.1 rmind #include <netinet/udp.h>
118 1.1 rmind #include <netinet/tcp.h>
119 1.1 rmind #include <netinet/ip_icmp.h>
120 1.1 rmind #include <netinet/icmp6.h>
121 1.1 rmind
122 1.1 rmind #include <net/bpf.h>
123 1.1 rmind
124 1.1 rmind #include "npfctl.h"
125 1.1 rmind
126 1.1 rmind /*
127 1.1 rmind * Note: clear X_EQ_L4OFF when register X is invalidated i.e. it stores
128 1.1 rmind * something other than L4 header offset. Generally, when BPF_LDX is used.
129 1.1 rmind */
130 1.1 rmind #define FETCHED_L3 0x01
131 1.16 rmind #define CHECKED_L4_PROTO 0x02
132 1.6 rmind #define X_EQ_L4OFF 0x04
133 1.18 joe #define FETCHED_L2 0x08
134 1.1 rmind
135 1.1 rmind struct npf_bpf {
136 1.1 rmind /*
137 1.1 rmind * BPF program code, the allocated length (in bytes), the number
138 1.1 rmind * of logical blocks and the flags.
139 1.1 rmind */
140 1.1 rmind struct bpf_program prog;
141 1.1 rmind size_t alen;
142 1.16 rmind unsigned nblocks;
143 1.1 rmind sa_family_t af;
144 1.1 rmind uint32_t flags;
145 1.18 joe uint8_t eth_type;
146 1.1 rmind
147 1.14 rmind /*
148 1.16 rmind * Indicators whether we are inside the group and whether this
149 1.16 rmind * group is implementing inverted logic.
150 1.16 rmind *
151 1.14 rmind * The current group offset (counted in BPF instructions)
152 1.14 rmind * and block number at the start of the group.
153 1.14 rmind */
154 1.16 rmind unsigned ingroup;
155 1.16 rmind bool invert;
156 1.17 riastrad bool multiword;
157 1.16 rmind unsigned goff;
158 1.16 rmind unsigned gblock;
159 1.16 rmind
160 1.16 rmind /* Track inversion (excl. mark). */
161 1.16 rmind uint32_t invflags;
162 1.1 rmind
163 1.1 rmind /* BPF marks, allocated length and the real length. */
164 1.1 rmind uint32_t * marks;
165 1.1 rmind size_t malen;
166 1.1 rmind size_t mlen;
167 1.1 rmind };
168 1.1 rmind
169 1.1 rmind /*
170 1.1 rmind * NPF success and failure values to be returned from BPF.
171 1.1 rmind */
172 1.1 rmind #define NPF_BPF_SUCCESS ((u_int)-1)
173 1.1 rmind #define NPF_BPF_FAILURE 0
174 1.1 rmind
175 1.1 rmind /*
176 1.1 rmind * Magic value to indicate the failure path, which is fixed up on completion.
177 1.1 rmind * Note: this is the longest jump offset in BPF, since the offset is one byte.
178 1.1 rmind */
179 1.1 rmind #define JUMP_MAGIC 0xff
180 1.1 rmind
181 1.1 rmind /* Reduce re-allocations by expanding in 64 byte blocks. */
182 1.1 rmind #define ALLOC_MASK (64 - 1)
183 1.1 rmind #define ALLOC_ROUND(x) (((x) + ALLOC_MASK) & ~ALLOC_MASK)
184 1.1 rmind
185 1.9 christos #ifndef IPV6_VERSION
186 1.9 christos #define IPV6_VERSION 0x60
187 1.9 christos #endif
188 1.9 christos
189 1.1 rmind npf_bpf_t *
190 1.1 rmind npfctl_bpf_create(void)
191 1.1 rmind {
192 1.1 rmind return ecalloc(1, sizeof(npf_bpf_t));
193 1.1 rmind }
194 1.1 rmind
195 1.1 rmind static void
196 1.1 rmind fixup_jumps(npf_bpf_t *ctx, u_int start, u_int end, bool swap)
197 1.1 rmind {
198 1.1 rmind struct bpf_program *bp = &ctx->prog;
199 1.1 rmind
200 1.1 rmind for (u_int i = start; i < end; i++) {
201 1.1 rmind struct bpf_insn *insn = &bp->bf_insns[i];
202 1.1 rmind const u_int fail_off = end - i;
203 1.14 rmind bool seen_magic = false;
204 1.1 rmind
205 1.1 rmind if (fail_off >= JUMP_MAGIC) {
206 1.1 rmind errx(EXIT_FAILURE, "BPF generation error: "
207 1.1 rmind "the number of instructions is over the limit");
208 1.1 rmind }
209 1.1 rmind if (BPF_CLASS(insn->code) != BPF_JMP) {
210 1.1 rmind continue;
211 1.1 rmind }
212 1.14 rmind if (BPF_OP(insn->code) == BPF_JA) {
213 1.14 rmind /*
214 1.14 rmind * BPF_JA can be used to jump to the failure path.
215 1.14 rmind * If we are swapping i.e. inside the group, then
216 1.14 rmind * jump "next"; groups have a failure path appended
217 1.14 rmind * at their end.
218 1.14 rmind */
219 1.14 rmind if (insn->k == JUMP_MAGIC) {
220 1.14 rmind insn->k = swap ? 0 : fail_off;
221 1.14 rmind }
222 1.14 rmind continue;
223 1.14 rmind }
224 1.14 rmind
225 1.14 rmind /*
226 1.14 rmind * Fixup the "magic" value. Swap only the "magic" jumps.
227 1.14 rmind */
228 1.14 rmind
229 1.14 rmind if (insn->jt == JUMP_MAGIC) {
230 1.14 rmind insn->jt = fail_off;
231 1.14 rmind seen_magic = true;
232 1.14 rmind }
233 1.14 rmind if (insn->jf == JUMP_MAGIC) {
234 1.14 rmind insn->jf = fail_off;
235 1.14 rmind seen_magic = true;
236 1.14 rmind }
237 1.14 rmind
238 1.14 rmind if (seen_magic && swap) {
239 1.1 rmind uint8_t jt = insn->jt;
240 1.1 rmind insn->jt = insn->jf;
241 1.1 rmind insn->jf = jt;
242 1.1 rmind }
243 1.1 rmind }
244 1.1 rmind }
245 1.1 rmind
246 1.1 rmind static void
247 1.1 rmind add_insns(npf_bpf_t *ctx, struct bpf_insn *insns, size_t count)
248 1.1 rmind {
249 1.1 rmind struct bpf_program *bp = &ctx->prog;
250 1.1 rmind size_t offset, len, reqlen;
251 1.1 rmind
252 1.1 rmind /* Note: bf_len is the count of instructions. */
253 1.1 rmind offset = bp->bf_len * sizeof(struct bpf_insn);
254 1.1 rmind len = count * sizeof(struct bpf_insn);
255 1.1 rmind
256 1.1 rmind /* Ensure the memory buffer for the program. */
257 1.1 rmind reqlen = ALLOC_ROUND(offset + len);
258 1.1 rmind if (reqlen > ctx->alen) {
259 1.1 rmind bp->bf_insns = erealloc(bp->bf_insns, reqlen);
260 1.1 rmind ctx->alen = reqlen;
261 1.1 rmind }
262 1.1 rmind
263 1.1 rmind /* Add the code block. */
264 1.1 rmind memcpy((uint8_t *)bp->bf_insns + offset, insns, len);
265 1.1 rmind bp->bf_len += count;
266 1.1 rmind }
267 1.1 rmind
268 1.1 rmind static void
269 1.16 rmind add_bmarks(npf_bpf_t *ctx, const uint32_t *m, size_t len)
270 1.1 rmind {
271 1.1 rmind size_t reqlen, nargs = m[1];
272 1.1 rmind
273 1.1 rmind if ((len / sizeof(uint32_t) - 2) != nargs) {
274 1.1 rmind errx(EXIT_FAILURE, "invalid BPF block description");
275 1.1 rmind }
276 1.1 rmind reqlen = ALLOC_ROUND(ctx->mlen + len);
277 1.1 rmind if (reqlen > ctx->malen) {
278 1.1 rmind ctx->marks = erealloc(ctx->marks, reqlen);
279 1.1 rmind ctx->malen = reqlen;
280 1.1 rmind }
281 1.1 rmind memcpy((uint8_t *)ctx->marks + ctx->mlen, m, len);
282 1.1 rmind ctx->mlen += len;
283 1.1 rmind }
284 1.1 rmind
285 1.1 rmind static void
286 1.1 rmind done_block(npf_bpf_t *ctx, const uint32_t *m, size_t len)
287 1.1 rmind {
288 1.16 rmind add_bmarks(ctx, m, len);
289 1.1 rmind ctx->nblocks++;
290 1.1 rmind }
291 1.1 rmind
292 1.1 rmind struct bpf_program *
293 1.1 rmind npfctl_bpf_complete(npf_bpf_t *ctx)
294 1.1 rmind {
295 1.1 rmind struct bpf_program *bp = &ctx->prog;
296 1.1 rmind const u_int retoff = bp->bf_len;
297 1.1 rmind
298 1.8 rmind /* No instructions (optimised out). */
299 1.8 rmind if (!bp->bf_len)
300 1.8 rmind return NULL;
301 1.8 rmind
302 1.1 rmind /* Add the return fragment (success and failure paths). */
303 1.1 rmind struct bpf_insn insns_ret[] = {
304 1.1 rmind BPF_STMT(BPF_RET+BPF_K, NPF_BPF_SUCCESS),
305 1.1 rmind BPF_STMT(BPF_RET+BPF_K, NPF_BPF_FAILURE),
306 1.1 rmind };
307 1.1 rmind add_insns(ctx, insns_ret, __arraycount(insns_ret));
308 1.1 rmind
309 1.1 rmind /* Fixup all jumps to the main failure path. */
310 1.1 rmind fixup_jumps(ctx, 0, retoff, false);
311 1.1 rmind
312 1.1 rmind return &ctx->prog;
313 1.1 rmind }
314 1.1 rmind
315 1.1 rmind const void *
316 1.1 rmind npfctl_bpf_bmarks(npf_bpf_t *ctx, size_t *len)
317 1.1 rmind {
318 1.1 rmind *len = ctx->mlen;
319 1.1 rmind return ctx->marks;
320 1.1 rmind }
321 1.1 rmind
322 1.1 rmind void
323 1.1 rmind npfctl_bpf_destroy(npf_bpf_t *ctx)
324 1.1 rmind {
325 1.1 rmind free(ctx->prog.bf_insns);
326 1.1 rmind free(ctx->marks);
327 1.1 rmind free(ctx);
328 1.1 rmind }
329 1.1 rmind
330 1.1 rmind /*
331 1.14 rmind * npfctl_bpf_group_enter: begin a logical group. It merely uses logical
332 1.16 rmind * disjunction (OR) for comparisons within the group.
333 1.1 rmind */
334 1.1 rmind void
335 1.16 rmind npfctl_bpf_group_enter(npf_bpf_t *ctx, bool invert)
336 1.1 rmind {
337 1.1 rmind struct bpf_program *bp = &ctx->prog;
338 1.1 rmind
339 1.1 rmind assert(ctx->goff == 0);
340 1.1 rmind assert(ctx->gblock == 0);
341 1.1 rmind
342 1.1 rmind ctx->goff = bp->bf_len;
343 1.1 rmind ctx->gblock = ctx->nblocks;
344 1.16 rmind ctx->invert = invert;
345 1.17 riastrad ctx->multiword = false;
346 1.16 rmind ctx->ingroup++;
347 1.1 rmind }
348 1.1 rmind
349 1.1 rmind void
350 1.16 rmind npfctl_bpf_group_exit(npf_bpf_t *ctx)
351 1.1 rmind {
352 1.1 rmind struct bpf_program *bp = &ctx->prog;
353 1.1 rmind const size_t curoff = bp->bf_len;
354 1.1 rmind
355 1.16 rmind assert(ctx->ingroup);
356 1.16 rmind ctx->ingroup--;
357 1.16 rmind
358 1.17 riastrad /*
359 1.17 riastrad * If we're not inverting, there were only zero or one options,
360 1.17 riastrad * and the last comparison was not a multi-word comparison
361 1.17 riastrad * requiring a fallthrough failure -- nothing to do.
362 1.17 riastrad */
363 1.17 riastrad if (!ctx->invert &&
364 1.17 riastrad (ctx->nblocks - ctx->gblock) <= 1 &&
365 1.17 riastrad !ctx->multiword) {
366 1.1 rmind ctx->goff = ctx->gblock = 0;
367 1.1 rmind return;
368 1.1 rmind }
369 1.1 rmind
370 1.1 rmind /*
371 1.10 rmind * If inverting, then prepend a jump over the statement below.
372 1.14 rmind * On match, it will skip-through and the fail path will be taken.
373 1.10 rmind */
374 1.16 rmind if (ctx->invert) {
375 1.10 rmind struct bpf_insn insns_ret[] = {
376 1.10 rmind BPF_STMT(BPF_JMP+BPF_JA, 1),
377 1.10 rmind };
378 1.10 rmind add_insns(ctx, insns_ret, __arraycount(insns_ret));
379 1.10 rmind }
380 1.10 rmind
381 1.10 rmind /*
382 1.1 rmind * Append a failure return as a fall-through i.e. if there is
383 1.1 rmind * no match within the group.
384 1.1 rmind */
385 1.1 rmind struct bpf_insn insns_ret[] = {
386 1.1 rmind BPF_STMT(BPF_RET+BPF_K, NPF_BPF_FAILURE),
387 1.1 rmind };
388 1.1 rmind add_insns(ctx, insns_ret, __arraycount(insns_ret));
389 1.1 rmind
390 1.1 rmind /*
391 1.1 rmind * Adjust jump offsets: on match - jump outside the group i.e.
392 1.1 rmind * to the current offset. Otherwise, jump to the next instruction
393 1.1 rmind * which would lead to the fall-through code above if none matches.
394 1.1 rmind */
395 1.1 rmind fixup_jumps(ctx, ctx->goff, curoff, true);
396 1.1 rmind ctx->goff = ctx->gblock = 0;
397 1.1 rmind }
398 1.1 rmind
399 1.1 rmind static void
400 1.16 rmind fetch_l3(npf_bpf_t *ctx, sa_family_t af, unsigned flags)
401 1.1 rmind {
402 1.16 rmind unsigned ver;
403 1.1 rmind
404 1.1 rmind switch (af) {
405 1.1 rmind case AF_INET:
406 1.1 rmind ver = IPVERSION;
407 1.1 rmind break;
408 1.1 rmind case AF_INET6:
409 1.1 rmind ver = IPV6_VERSION >> 4;
410 1.1 rmind break;
411 1.1 rmind case AF_UNSPEC:
412 1.1 rmind ver = 0;
413 1.1 rmind break;
414 1.1 rmind default:
415 1.1 rmind abort();
416 1.1 rmind }
417 1.1 rmind
418 1.1 rmind /*
419 1.7 rmind * The memory store is populated with:
420 1.1 rmind * - BPF_MW_IPVER: IP version (4 or 6).
421 1.1 rmind * - BPF_MW_L4OFF: L4 header offset.
422 1.1 rmind * - BPF_MW_L4PROTO: L4 protocol.
423 1.1 rmind */
424 1.1 rmind if ((ctx->flags & FETCHED_L3) == 0 || (af && ctx->af == 0)) {
425 1.1 rmind const uint8_t jt = ver ? 0 : JUMP_MAGIC;
426 1.1 rmind const uint8_t jf = ver ? JUMP_MAGIC : 0;
427 1.16 rmind const bool ingroup = ctx->ingroup != 0;
428 1.16 rmind const bool invert = ctx->invert;
429 1.1 rmind
430 1.1 rmind /*
431 1.1 rmind * L3 block cannot be inserted in the middle of a group.
432 1.1 rmind * In fact, it never is. Check and start the group after.
433 1.1 rmind */
434 1.1 rmind if (ingroup) {
435 1.1 rmind assert(ctx->nblocks == ctx->gblock);
436 1.16 rmind npfctl_bpf_group_exit(ctx);
437 1.1 rmind }
438 1.1 rmind
439 1.1 rmind /*
440 1.1 rmind * A <- IP version; A == expected-version?
441 1.1 rmind * If no particular version specified, check for non-zero.
442 1.1 rmind */
443 1.7 rmind struct bpf_insn insns_af[] = {
444 1.7 rmind BPF_STMT(BPF_LD+BPF_W+BPF_MEM, BPF_MW_IPVER),
445 1.7 rmind BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, ver, jt, jf),
446 1.7 rmind };
447 1.7 rmind add_insns(ctx, insns_af, __arraycount(insns_af));
448 1.7 rmind ctx->flags |= FETCHED_L3;
449 1.1 rmind ctx->af = af;
450 1.1 rmind
451 1.1 rmind if (af) {
452 1.1 rmind uint32_t mwords[] = { BM_IPVER, 1, af };
453 1.16 rmind add_bmarks(ctx, mwords, sizeof(mwords));
454 1.1 rmind }
455 1.1 rmind if (ingroup) {
456 1.16 rmind npfctl_bpf_group_enter(ctx, invert);
457 1.1 rmind }
458 1.1 rmind
459 1.1 rmind } else if (af && af != ctx->af) {
460 1.1 rmind errx(EXIT_FAILURE, "address family mismatch");
461 1.1 rmind }
462 1.1 rmind
463 1.1 rmind if ((flags & X_EQ_L4OFF) != 0 && (ctx->flags & X_EQ_L4OFF) == 0) {
464 1.1 rmind /* X <- IP header length */
465 1.1 rmind struct bpf_insn insns_hlen[] = {
466 1.1 rmind BPF_STMT(BPF_LDX+BPF_MEM, BPF_MW_L4OFF),
467 1.1 rmind };
468 1.1 rmind add_insns(ctx, insns_hlen, __arraycount(insns_hlen));
469 1.1 rmind ctx->flags |= X_EQ_L4OFF;
470 1.1 rmind }
471 1.1 rmind }
472 1.1 rmind
473 1.18 joe void
474 1.18 joe fetch_ether_type(npf_bpf_t *ctx, uint16_t type)
475 1.18 joe {
476 1.18 joe if ((ctx->flags & FETCHED_L2) != 0 || (type && ctx->eth_type != 0))
477 1.18 joe return;
478 1.18 joe
479 1.18 joe const uint8_t jt = type ? 0 : JUMP_MAGIC;
480 1.18 joe const uint8_t jf = type ? JUMP_MAGIC : 0;
481 1.18 joe const bool ingroup = ctx->ingroup != 0;
482 1.18 joe const bool invert = ctx->invert;
483 1.18 joe unsigned off = offsetof(struct ether_header, ether_type);
484 1.18 joe
485 1.18 joe /*
486 1.18 joe * L2 block cannot be inserted in the middle of a group.
487 1.18 joe * Check and start the group after.
488 1.18 joe */
489 1.18 joe if (ingroup) {
490 1.18 joe assert(ctx->nblocks == ctx->gblock);
491 1.18 joe npfctl_bpf_group_exit(ctx);
492 1.18 joe }
493 1.18 joe
494 1.18 joe type = ntohs(type);
495 1.18 joe
496 1.18 joe struct bpf_insn insns_et[] = {
497 1.18 joe BPF_STMT(BPF_LD+BPF_H+BPF_ABS, off),
498 1.18 joe BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, type, jt, jf),
499 1.18 joe };
500 1.18 joe add_insns(ctx, insns_et, __arraycount(insns_et));
501 1.18 joe ctx->flags |= FETCHED_L2;
502 1.18 joe ctx->eth_type = type;
503 1.18 joe
504 1.18 joe if (type) { /* bookmark ether type */
505 1.18 joe uint32_t mwords[] = { BM_ETHER_TYPE, 1, htons(type) };
506 1.18 joe add_bmarks(ctx, mwords, sizeof(mwords));
507 1.18 joe }
508 1.18 joe if (ingroup) {
509 1.18 joe npfctl_bpf_group_enter(ctx, invert);
510 1.18 joe }
511 1.18 joe }
512 1.18 joe
513 1.16 rmind static void
514 1.18 joe bm_invert_checkpoint(npf_bpf_t *ctx, const unsigned opts, uint32_t layer)
515 1.16 rmind {
516 1.16 rmind uint32_t bm = 0;
517 1.16 rmind
518 1.16 rmind if (ctx->ingroup && ctx->invert) {
519 1.16 rmind const unsigned seen = ctx->invflags;
520 1.16 rmind
521 1.16 rmind if ((opts & MATCH_SRC) != 0 && (seen & MATCH_SRC) == 0) {
522 1.18 joe bm = (layer & NPF_RULE_LAYER_3) ? BM_SRC_NEG : BM_SRC_ENEG;
523 1.16 rmind }
524 1.16 rmind if ((opts & MATCH_DST) != 0 && (seen & MATCH_DST) == 0) {
525 1.18 joe bm = (layer & NPF_RULE_LAYER_3) ? BM_DST_NEG : BM_DST_ENEG;
526 1.16 rmind }
527 1.16 rmind ctx->invflags |= opts & (MATCH_SRC | MATCH_DST);
528 1.16 rmind }
529 1.16 rmind if (bm) {
530 1.16 rmind uint32_t mwords[] = { bm, 0 };
531 1.16 rmind add_bmarks(ctx, mwords, sizeof(mwords));
532 1.16 rmind }
533 1.16 rmind }
534 1.16 rmind
535 1.1 rmind /*
536 1.16 rmind * npfctl_bpf_ipver: match the IP version.
537 1.1 rmind */
538 1.1 rmind void
539 1.16 rmind npfctl_bpf_ipver(npf_bpf_t *ctx, sa_family_t af)
540 1.1 rmind {
541 1.1 rmind fetch_l3(ctx, af, 0);
542 1.16 rmind }
543 1.1 rmind
544 1.16 rmind /*
545 1.16 rmind * npfctl_bpf_proto: code block to match IP version and L4 protocol.
546 1.16 rmind */
547 1.16 rmind void
548 1.16 rmind npfctl_bpf_proto(npf_bpf_t *ctx, unsigned proto)
549 1.16 rmind {
550 1.1 rmind struct bpf_insn insns_proto[] = {
551 1.1 rmind /* A <- L4 protocol; A == expected-protocol? */
552 1.1 rmind BPF_STMT(BPF_LD+BPF_W+BPF_MEM, BPF_MW_L4PROTO),
553 1.1 rmind BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, proto, 0, JUMP_MAGIC),
554 1.1 rmind };
555 1.1 rmind add_insns(ctx, insns_proto, __arraycount(insns_proto));
556 1.1 rmind
557 1.1 rmind uint32_t mwords[] = { BM_PROTO, 1, proto };
558 1.1 rmind done_block(ctx, mwords, sizeof(mwords));
559 1.16 rmind ctx->flags |= CHECKED_L4_PROTO;
560 1.1 rmind }
561 1.1 rmind
562 1.1 rmind /*
563 1.1 rmind * npfctl_bpf_cidr: code block to match IPv4 or IPv6 CIDR.
564 1.1 rmind *
565 1.1 rmind * => IP address shall be in the network byte order.
566 1.1 rmind */
567 1.1 rmind void
568 1.16 rmind npfctl_bpf_cidr(npf_bpf_t *ctx, unsigned opts, sa_family_t af,
569 1.1 rmind const npf_addr_t *addr, const npf_netmask_t mask)
570 1.1 rmind {
571 1.1 rmind const uint32_t *awords = (const uint32_t *)addr;
572 1.17 riastrad unsigned nwords, origlength, length, maxmask, off;
573 1.1 rmind
574 1.1 rmind assert(((opts & MATCH_SRC) != 0) ^ ((opts & MATCH_DST) != 0));
575 1.1 rmind assert((mask && mask <= NPF_MAX_NETMASK) || mask == NPF_NO_NETMASK);
576 1.1 rmind
577 1.1 rmind switch (af) {
578 1.1 rmind case AF_INET:
579 1.1 rmind maxmask = 32;
580 1.1 rmind off = (opts & MATCH_SRC) ?
581 1.1 rmind offsetof(struct ip, ip_src) :
582 1.1 rmind offsetof(struct ip, ip_dst);
583 1.1 rmind nwords = sizeof(struct in_addr) / sizeof(uint32_t);
584 1.1 rmind break;
585 1.1 rmind case AF_INET6:
586 1.1 rmind maxmask = 128;
587 1.1 rmind off = (opts & MATCH_SRC) ?
588 1.1 rmind offsetof(struct ip6_hdr, ip6_src) :
589 1.1 rmind offsetof(struct ip6_hdr, ip6_dst);
590 1.1 rmind nwords = sizeof(struct in6_addr) / sizeof(uint32_t);
591 1.1 rmind break;
592 1.1 rmind default:
593 1.1 rmind abort();
594 1.1 rmind }
595 1.1 rmind
596 1.1 rmind /* Ensure address family. */
597 1.1 rmind fetch_l3(ctx, af, 0);
598 1.1 rmind
599 1.17 riastrad length = origlength = (mask == NPF_NO_NETMASK) ? maxmask : mask;
600 1.1 rmind
601 1.1 rmind /* CAUTION: BPF operates in host byte-order. */
602 1.16 rmind for (unsigned i = 0; i < nwords; i++) {
603 1.16 rmind const unsigned woff = i * sizeof(uint32_t);
604 1.1 rmind uint32_t word = ntohl(awords[i]);
605 1.1 rmind uint32_t wordmask;
606 1.1 rmind
607 1.1 rmind if (length >= 32) {
608 1.1 rmind /* The mask is a full word - do not apply it. */
609 1.1 rmind wordmask = 0;
610 1.1 rmind length -= 32;
611 1.1 rmind } else if (length) {
612 1.4 rmind wordmask = 0xffffffff << (32 - length);
613 1.1 rmind length = 0;
614 1.1 rmind } else {
615 1.3 rmind /* The mask became zero - skip the rest. */
616 1.3 rmind break;
617 1.1 rmind }
618 1.1 rmind
619 1.1 rmind /* A <- IP address (or one word of it) */
620 1.1 rmind struct bpf_insn insns_ip[] = {
621 1.1 rmind BPF_STMT(BPF_LD+BPF_W+BPF_ABS, off + woff),
622 1.1 rmind };
623 1.1 rmind add_insns(ctx, insns_ip, __arraycount(insns_ip));
624 1.1 rmind
625 1.1 rmind /* A <- (A & MASK) */
626 1.1 rmind if (wordmask) {
627 1.1 rmind struct bpf_insn insns_mask[] = {
628 1.1 rmind BPF_STMT(BPF_ALU+BPF_AND+BPF_K, wordmask),
629 1.1 rmind };
630 1.1 rmind add_insns(ctx, insns_mask, __arraycount(insns_mask));
631 1.1 rmind }
632 1.1 rmind
633 1.17 riastrad /*
634 1.17 riastrad * Determine how many instructions we have to jump
635 1.17 riastrad * ahead if the match fails.
636 1.17 riastrad *
637 1.17 riastrad * - If this is the last word, we jump to the final
638 1.17 riastrad * failure, JUMP_MAGIC.
639 1.17 riastrad *
640 1.17 riastrad * - If this is not the last word, we jump past the
641 1.17 riastrad * remaining instructions to match this sequence.
642 1.17 riastrad * Each 32-bit word in the sequence takes two
643 1.17 riastrad * instructions (BPF_LD and BPF_JMP). If there is a
644 1.17 riastrad * partial-word mask ahead, there will be one
645 1.17 riastrad * additional instruction (BPF_ALU).
646 1.17 riastrad */
647 1.17 riastrad uint8_t jf;
648 1.17 riastrad if (i + 1 == (origlength + 31)/32) {
649 1.17 riastrad jf = JUMP_MAGIC;
650 1.17 riastrad } else {
651 1.17 riastrad jf = 2*((origlength + 31)/32 - i - 1);
652 1.17 riastrad if (origlength % 32 != 0 && wordmask == 0)
653 1.17 riastrad jf += 1;
654 1.17 riastrad }
655 1.17 riastrad
656 1.1 rmind /* A == expected-IP-word ? */
657 1.1 rmind struct bpf_insn insns_cmp[] = {
658 1.17 riastrad BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, word, 0, jf),
659 1.1 rmind };
660 1.1 rmind add_insns(ctx, insns_cmp, __arraycount(insns_cmp));
661 1.1 rmind }
662 1.1 rmind
663 1.17 riastrad /*
664 1.17 riastrad * If we checked a chain of words in sequence, mark this as a
665 1.17 riastrad * multi-word comparison so if this is in a group there will be
666 1.17 riastrad * a fallthrough case.
667 1.17 riastrad *
668 1.17 riastrad * XXX This is a little silly; the compiler should really just
669 1.17 riastrad * record holes where conditional jumps need success/failure
670 1.17 riastrad * continuations, and go back to fill in the holes when the
671 1.17 riastrad * locations of the continuations are determined later. But
672 1.17 riastrad * that requires restructuring this code a little more.
673 1.17 riastrad */
674 1.17 riastrad ctx->multiword = (origlength + 31)/32 > 1;
675 1.17 riastrad
676 1.1 rmind uint32_t mwords[] = {
677 1.1 rmind (opts & MATCH_SRC) ? BM_SRC_CIDR: BM_DST_CIDR, 6,
678 1.1 rmind af, mask, awords[0], awords[1], awords[2], awords[3],
679 1.1 rmind };
680 1.18 joe bm_invert_checkpoint(ctx, opts, NPF_RULE_LAYER_3);
681 1.18 joe done_block(ctx, mwords, sizeof(mwords));
682 1.18 joe }
683 1.18 joe
684 1.18 joe /*
685 1.18 joe * for ether address, 6 octets(a word and halfword)
686 1.18 joe * just fetch directly using a word and halfword fetch
687 1.18 joe */
688 1.18 joe void
689 1.18 joe npfctl_bpf_ether(npf_bpf_t *ctx, unsigned opts, struct ether_addr *ether_addr)
690 1.18 joe {
691 1.18 joe uint32_t mac_word;
692 1.18 joe uint16_t mac_hword;
693 1.18 joe unsigned off;
694 1.18 joe assert(((opts & MATCH_SRC) != 0) ^ ((opts & MATCH_DST) != 0));
695 1.18 joe
696 1.18 joe off = (opts & MATCH_SRC) ? offsetof(struct ether_header, ether_shost) :
697 1.18 joe offsetof(struct ether_header, ether_dhost);
698 1.18 joe
699 1.18 joe memcpy(&mac_word, ether_addr, sizeof(mac_word));
700 1.18 joe mac_word = ntohl(mac_word);
701 1.18 joe
702 1.18 joe /* copy the last two bytes of the 6 byte ether address */
703 1.18 joe memcpy(&mac_hword, (uint8_t *)ether_addr + sizeof(mac_word), sizeof(mac_hword));
704 1.18 joe mac_hword = ntohs(mac_hword);
705 1.18 joe
706 1.18 joe /* load and compare first word then do same to last halfword */
707 1.18 joe struct bpf_insn insns_ether_w[] = {
708 1.18 joe BPF_STMT(BPF_LD+BPF_W+BPF_ABS, off),
709 1.18 joe BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, mac_word, 0, JUMP_MAGIC),
710 1.18 joe };
711 1.18 joe add_insns(ctx, insns_ether_w, __arraycount(insns_ether_w));
712 1.18 joe
713 1.18 joe struct bpf_insn insns_ether_h[] = {
714 1.18 joe BPF_STMT(BPF_LD+BPF_H+BPF_ABS, off + sizeof(mac_word)),
715 1.18 joe BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, mac_hword, 0, JUMP_MAGIC),
716 1.18 joe };
717 1.18 joe add_insns(ctx, insns_ether_h, __arraycount(insns_ether_h));
718 1.18 joe
719 1.18 joe uint32_t mwords[] = {
720 1.18 joe (opts & MATCH_SRC) ? BM_SRC_ETHER: BM_DST_ETHER, 2,
721 1.18 joe htonl(mac_word), htons(mac_hword)
722 1.18 joe };
723 1.18 joe
724 1.18 joe bm_invert_checkpoint(ctx, opts, NPF_RULE_LAYER_2);
725 1.1 rmind done_block(ctx, mwords, sizeof(mwords));
726 1.1 rmind }
727 1.1 rmind
728 1.1 rmind /*
729 1.1 rmind * npfctl_bpf_ports: code block to match TCP/UDP port range.
730 1.1 rmind *
731 1.1 rmind * => Port numbers shall be in the network byte order.
732 1.1 rmind */
733 1.1 rmind void
734 1.16 rmind npfctl_bpf_ports(npf_bpf_t *ctx, unsigned opts, in_port_t from, in_port_t to)
735 1.1 rmind {
736 1.16 rmind const unsigned sport_off = offsetof(struct udphdr, uh_sport);
737 1.16 rmind const unsigned dport_off = offsetof(struct udphdr, uh_dport);
738 1.16 rmind unsigned off;
739 1.1 rmind
740 1.1 rmind /* TCP and UDP port offsets are the same. */
741 1.1 rmind assert(sport_off == offsetof(struct tcphdr, th_sport));
742 1.1 rmind assert(dport_off == offsetof(struct tcphdr, th_dport));
743 1.16 rmind assert(ctx->flags & CHECKED_L4_PROTO);
744 1.1 rmind
745 1.1 rmind assert(((opts & MATCH_SRC) != 0) ^ ((opts & MATCH_DST) != 0));
746 1.1 rmind off = (opts & MATCH_SRC) ? sport_off : dport_off;
747 1.1 rmind
748 1.1 rmind /* X <- IP header length */
749 1.2 rmind fetch_l3(ctx, AF_UNSPEC, X_EQ_L4OFF);
750 1.1 rmind
751 1.1 rmind struct bpf_insn insns_fetch[] = {
752 1.1 rmind /* A <- port */
753 1.1 rmind BPF_STMT(BPF_LD+BPF_H+BPF_IND, off),
754 1.1 rmind };
755 1.1 rmind add_insns(ctx, insns_fetch, __arraycount(insns_fetch));
756 1.1 rmind
757 1.1 rmind /* CAUTION: BPF operates in host byte-order. */
758 1.1 rmind from = ntohs(from);
759 1.1 rmind to = ntohs(to);
760 1.1 rmind
761 1.1 rmind if (from == to) {
762 1.1 rmind /* Single port case. */
763 1.1 rmind struct bpf_insn insns_port[] = {
764 1.1 rmind BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, from, 0, JUMP_MAGIC),
765 1.1 rmind };
766 1.1 rmind add_insns(ctx, insns_port, __arraycount(insns_port));
767 1.1 rmind } else {
768 1.1 rmind /* Port range case. */
769 1.1 rmind struct bpf_insn insns_range[] = {
770 1.14 rmind BPF_JUMP(BPF_JMP+BPF_JGE+BPF_K, from, 0, 1),
771 1.14 rmind BPF_JUMP(BPF_JMP+BPF_JGT+BPF_K, to, 0, 1),
772 1.14 rmind BPF_STMT(BPF_JMP+BPF_JA, JUMP_MAGIC),
773 1.1 rmind };
774 1.1 rmind add_insns(ctx, insns_range, __arraycount(insns_range));
775 1.1 rmind }
776 1.1 rmind
777 1.1 rmind uint32_t mwords[] = {
778 1.16 rmind (opts & MATCH_SRC) ? BM_SRC_PORTS : BM_DST_PORTS, 2, from, to
779 1.1 rmind };
780 1.1 rmind done_block(ctx, mwords, sizeof(mwords));
781 1.1 rmind }
782 1.1 rmind
783 1.1 rmind /*
784 1.1 rmind * npfctl_bpf_tcpfl: code block to match TCP flags.
785 1.1 rmind */
786 1.1 rmind void
787 1.16 rmind npfctl_bpf_tcpfl(npf_bpf_t *ctx, uint8_t tf, uint8_t tf_mask)
788 1.1 rmind {
789 1.16 rmind const unsigned tcpfl_off = offsetof(struct tcphdr, th_flags);
790 1.6 rmind const bool usingmask = tf_mask != tf;
791 1.1 rmind
792 1.1 rmind /* X <- IP header length */
793 1.2 rmind fetch_l3(ctx, AF_UNSPEC, X_EQ_L4OFF);
794 1.5 rmind
795 1.16 rmind if ((ctx->flags & CHECKED_L4_PROTO) == 0) {
796 1.16 rmind const unsigned jf = usingmask ? 3 : 2;
797 1.16 rmind assert(ctx->ingroup == 0);
798 1.16 rmind
799 1.16 rmind /*
800 1.16 rmind * A <- L4 protocol; A == TCP? If not, jump out.
801 1.16 rmind *
802 1.16 rmind * Note: the TCP flag matching might be without 'proto tcp'
803 1.16 rmind * when using a plain 'stateful' rule. In such case it also
804 1.16 rmind * handles other protocols, thus no strict TCP check.
805 1.16 rmind */
806 1.5 rmind struct bpf_insn insns_tcp[] = {
807 1.5 rmind BPF_STMT(BPF_LD+BPF_W+BPF_MEM, BPF_MW_L4PROTO),
808 1.5 rmind BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, IPPROTO_TCP, 0, jf),
809 1.5 rmind };
810 1.5 rmind add_insns(ctx, insns_tcp, __arraycount(insns_tcp));
811 1.5 rmind }
812 1.1 rmind
813 1.1 rmind struct bpf_insn insns_tf[] = {
814 1.1 rmind /* A <- TCP flags */
815 1.1 rmind BPF_STMT(BPF_LD+BPF_B+BPF_IND, tcpfl_off),
816 1.1 rmind };
817 1.1 rmind add_insns(ctx, insns_tf, __arraycount(insns_tf));
818 1.1 rmind
819 1.6 rmind if (usingmask) {
820 1.1 rmind /* A <- (A & mask) */
821 1.1 rmind struct bpf_insn insns_mask[] = {
822 1.1 rmind BPF_STMT(BPF_ALU+BPF_AND+BPF_K, tf_mask),
823 1.1 rmind };
824 1.1 rmind add_insns(ctx, insns_mask, __arraycount(insns_mask));
825 1.1 rmind }
826 1.1 rmind
827 1.1 rmind struct bpf_insn insns_cmp[] = {
828 1.1 rmind /* A == expected-TCP-flags? */
829 1.1 rmind BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, tf, 0, JUMP_MAGIC),
830 1.1 rmind };
831 1.1 rmind add_insns(ctx, insns_cmp, __arraycount(insns_cmp));
832 1.1 rmind
833 1.16 rmind uint32_t mwords[] = { BM_TCPFL, 2, tf, tf_mask };
834 1.12 tih done_block(ctx, mwords, sizeof(mwords));
835 1.1 rmind }
836 1.1 rmind
837 1.1 rmind /*
838 1.1 rmind * npfctl_bpf_icmp: code block to match ICMP type and/or code.
839 1.16 rmind * Note: suitable for both the ICMPv4 and ICMPv6.
840 1.1 rmind */
841 1.1 rmind void
842 1.1 rmind npfctl_bpf_icmp(npf_bpf_t *ctx, int type, int code)
843 1.1 rmind {
844 1.1 rmind const u_int type_off = offsetof(struct icmp, icmp_type);
845 1.1 rmind const u_int code_off = offsetof(struct icmp, icmp_code);
846 1.1 rmind
847 1.16 rmind assert(ctx->flags & CHECKED_L4_PROTO);
848 1.1 rmind assert(offsetof(struct icmp6_hdr, icmp6_type) == type_off);
849 1.1 rmind assert(offsetof(struct icmp6_hdr, icmp6_code) == code_off);
850 1.1 rmind assert(type != -1 || code != -1);
851 1.1 rmind
852 1.1 rmind /* X <- IP header length */
853 1.2 rmind fetch_l3(ctx, AF_UNSPEC, X_EQ_L4OFF);
854 1.1 rmind
855 1.1 rmind if (type != -1) {
856 1.1 rmind struct bpf_insn insns_type[] = {
857 1.1 rmind BPF_STMT(BPF_LD+BPF_B+BPF_IND, type_off),
858 1.1 rmind BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, type, 0, JUMP_MAGIC),
859 1.1 rmind };
860 1.1 rmind add_insns(ctx, insns_type, __arraycount(insns_type));
861 1.1 rmind
862 1.1 rmind uint32_t mwords[] = { BM_ICMP_TYPE, 1, type };
863 1.1 rmind done_block(ctx, mwords, sizeof(mwords));
864 1.1 rmind }
865 1.1 rmind
866 1.1 rmind if (code != -1) {
867 1.1 rmind struct bpf_insn insns_code[] = {
868 1.1 rmind BPF_STMT(BPF_LD+BPF_B+BPF_IND, code_off),
869 1.1 rmind BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, code, 0, JUMP_MAGIC),
870 1.1 rmind };
871 1.1 rmind add_insns(ctx, insns_code, __arraycount(insns_code));
872 1.1 rmind
873 1.1 rmind uint32_t mwords[] = { BM_ICMP_CODE, 1, code };
874 1.1 rmind done_block(ctx, mwords, sizeof(mwords));
875 1.1 rmind }
876 1.1 rmind }
877 1.1 rmind
878 1.1 rmind #define SRC_FLAG_BIT (1U << 31)
879 1.1 rmind
880 1.1 rmind /*
881 1.1 rmind * npfctl_bpf_table: code block to match source/destination IP address
882 1.1 rmind * against NPF table specified by ID.
883 1.1 rmind */
884 1.1 rmind void
885 1.16 rmind npfctl_bpf_table(npf_bpf_t *ctx, unsigned opts, unsigned tid)
886 1.1 rmind {
887 1.1 rmind const bool src = (opts & MATCH_SRC) != 0;
888 1.1 rmind
889 1.1 rmind struct bpf_insn insns_table[] = {
890 1.1 rmind BPF_STMT(BPF_LD+BPF_IMM, (src ? SRC_FLAG_BIT : 0) | tid),
891 1.1 rmind BPF_STMT(BPF_MISC+BPF_COP, NPF_COP_TABLE),
892 1.1 rmind BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0, JUMP_MAGIC, 0),
893 1.1 rmind };
894 1.1 rmind add_insns(ctx, insns_table, __arraycount(insns_table));
895 1.1 rmind
896 1.1 rmind uint32_t mwords[] = { src ? BM_SRC_TABLE: BM_DST_TABLE, 1, tid };
897 1.18 joe bm_invert_checkpoint(ctx, opts, NPF_RULE_LAYER_3);
898 1.1 rmind done_block(ctx, mwords, sizeof(mwords));
899 1.1 rmind }
900