npf_bpf_comp.c revision 1.8 1 1.8 rmind /* $NetBSD: npf_bpf_comp.c,v 1.8 2015/06/08 01:00:43 rmind Exp $ */
2 1.1 rmind
3 1.1 rmind /*-
4 1.5 rmind * Copyright (c) 2010-2014 The NetBSD Foundation, Inc.
5 1.1 rmind * All rights reserved.
6 1.1 rmind *
7 1.1 rmind * This material is based upon work partially supported by The
8 1.1 rmind * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
9 1.1 rmind *
10 1.1 rmind * Redistribution and use in source and binary forms, with or without
11 1.1 rmind * modification, are permitted provided that the following conditions
12 1.1 rmind * are met:
13 1.1 rmind * 1. Redistributions of source code must retain the above copyright
14 1.1 rmind * notice, this list of conditions and the following disclaimer.
15 1.1 rmind * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 rmind * notice, this list of conditions and the following disclaimer in the
17 1.1 rmind * documentation and/or other materials provided with the distribution.
18 1.1 rmind *
19 1.1 rmind * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 rmind * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 rmind * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 rmind * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 rmind * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 rmind * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 rmind * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 rmind * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 rmind * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 rmind * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 rmind * POSSIBILITY OF SUCH DAMAGE.
30 1.1 rmind */
31 1.1 rmind
32 1.1 rmind /*
33 1.1 rmind * BPF byte-code generation for NPF rules.
34 1.1 rmind */
35 1.1 rmind
36 1.1 rmind #include <sys/cdefs.h>
37 1.8 rmind __RCSID("$NetBSD: npf_bpf_comp.c,v 1.8 2015/06/08 01:00:43 rmind Exp $");
38 1.1 rmind
39 1.1 rmind #include <stdlib.h>
40 1.1 rmind #include <stdbool.h>
41 1.1 rmind #include <stddef.h>
42 1.1 rmind #include <string.h>
43 1.1 rmind #include <inttypes.h>
44 1.1 rmind #include <err.h>
45 1.1 rmind #include <assert.h>
46 1.1 rmind
47 1.1 rmind #include <netinet/in.h>
48 1.1 rmind #include <netinet/in_systm.h>
49 1.1 rmind #include <netinet/ip.h>
50 1.1 rmind #include <netinet/ip6.h>
51 1.1 rmind #include <netinet/udp.h>
52 1.1 rmind #include <netinet/tcp.h>
53 1.1 rmind #include <netinet/ip_icmp.h>
54 1.1 rmind #include <netinet/icmp6.h>
55 1.1 rmind
56 1.1 rmind #include <net/bpf.h>
57 1.1 rmind
58 1.1 rmind #include "npfctl.h"
59 1.1 rmind
60 1.1 rmind /*
61 1.1 rmind * Note: clear X_EQ_L4OFF when register X is invalidated i.e. it stores
62 1.1 rmind * something other than L4 header offset. Generally, when BPF_LDX is used.
63 1.1 rmind */
64 1.1 rmind #define FETCHED_L3 0x01
65 1.6 rmind #define CHECKED_L4 0x02
66 1.6 rmind #define X_EQ_L4OFF 0x04
67 1.1 rmind
68 1.1 rmind struct npf_bpf {
69 1.1 rmind /*
70 1.1 rmind * BPF program code, the allocated length (in bytes), the number
71 1.1 rmind * of logical blocks and the flags.
72 1.1 rmind */
73 1.1 rmind struct bpf_program prog;
74 1.1 rmind size_t alen;
75 1.1 rmind u_int nblocks;
76 1.1 rmind sa_family_t af;
77 1.1 rmind uint32_t flags;
78 1.1 rmind
79 1.1 rmind /* The current group offset and block number. */
80 1.1 rmind bool ingroup;
81 1.1 rmind u_int goff;
82 1.1 rmind u_int gblock;
83 1.1 rmind
84 1.1 rmind /* BPF marks, allocated length and the real length. */
85 1.1 rmind uint32_t * marks;
86 1.1 rmind size_t malen;
87 1.1 rmind size_t mlen;
88 1.1 rmind };
89 1.1 rmind
90 1.1 rmind /*
91 1.1 rmind * NPF success and failure values to be returned from BPF.
92 1.1 rmind */
93 1.1 rmind #define NPF_BPF_SUCCESS ((u_int)-1)
94 1.1 rmind #define NPF_BPF_FAILURE 0
95 1.1 rmind
96 1.1 rmind /*
97 1.1 rmind * Magic value to indicate the failure path, which is fixed up on completion.
98 1.1 rmind * Note: this is the longest jump offset in BPF, since the offset is one byte.
99 1.1 rmind */
100 1.1 rmind #define JUMP_MAGIC 0xff
101 1.1 rmind
102 1.1 rmind /* Reduce re-allocations by expanding in 64 byte blocks. */
103 1.1 rmind #define ALLOC_MASK (64 - 1)
104 1.1 rmind #define ALLOC_ROUND(x) (((x) + ALLOC_MASK) & ~ALLOC_MASK)
105 1.1 rmind
106 1.1 rmind npf_bpf_t *
107 1.1 rmind npfctl_bpf_create(void)
108 1.1 rmind {
109 1.1 rmind return ecalloc(1, sizeof(npf_bpf_t));
110 1.1 rmind }
111 1.1 rmind
112 1.1 rmind static void
113 1.1 rmind fixup_jumps(npf_bpf_t *ctx, u_int start, u_int end, bool swap)
114 1.1 rmind {
115 1.1 rmind struct bpf_program *bp = &ctx->prog;
116 1.1 rmind
117 1.1 rmind for (u_int i = start; i < end; i++) {
118 1.1 rmind struct bpf_insn *insn = &bp->bf_insns[i];
119 1.1 rmind const u_int fail_off = end - i;
120 1.1 rmind
121 1.1 rmind if (fail_off >= JUMP_MAGIC) {
122 1.1 rmind errx(EXIT_FAILURE, "BPF generation error: "
123 1.1 rmind "the number of instructions is over the limit");
124 1.1 rmind }
125 1.1 rmind if (BPF_CLASS(insn->code) != BPF_JMP) {
126 1.1 rmind continue;
127 1.1 rmind }
128 1.1 rmind if (swap) {
129 1.1 rmind uint8_t jt = insn->jt;
130 1.1 rmind insn->jt = insn->jf;
131 1.1 rmind insn->jf = jt;
132 1.1 rmind }
133 1.1 rmind if (insn->jt == JUMP_MAGIC)
134 1.1 rmind insn->jt = fail_off;
135 1.1 rmind if (insn->jf == JUMP_MAGIC)
136 1.1 rmind insn->jf = fail_off;
137 1.1 rmind }
138 1.1 rmind }
139 1.1 rmind
140 1.1 rmind static void
141 1.1 rmind add_insns(npf_bpf_t *ctx, struct bpf_insn *insns, size_t count)
142 1.1 rmind {
143 1.1 rmind struct bpf_program *bp = &ctx->prog;
144 1.1 rmind size_t offset, len, reqlen;
145 1.1 rmind
146 1.1 rmind /* Note: bf_len is the count of instructions. */
147 1.1 rmind offset = bp->bf_len * sizeof(struct bpf_insn);
148 1.1 rmind len = count * sizeof(struct bpf_insn);
149 1.1 rmind
150 1.1 rmind /* Ensure the memory buffer for the program. */
151 1.1 rmind reqlen = ALLOC_ROUND(offset + len);
152 1.1 rmind if (reqlen > ctx->alen) {
153 1.1 rmind bp->bf_insns = erealloc(bp->bf_insns, reqlen);
154 1.1 rmind ctx->alen = reqlen;
155 1.1 rmind }
156 1.1 rmind
157 1.1 rmind /* Add the code block. */
158 1.1 rmind memcpy((uint8_t *)bp->bf_insns + offset, insns, len);
159 1.1 rmind bp->bf_len += count;
160 1.1 rmind }
161 1.1 rmind
162 1.1 rmind static void
163 1.1 rmind done_raw_block(npf_bpf_t *ctx, const uint32_t *m, size_t len)
164 1.1 rmind {
165 1.1 rmind size_t reqlen, nargs = m[1];
166 1.1 rmind
167 1.1 rmind if ((len / sizeof(uint32_t) - 2) != nargs) {
168 1.1 rmind errx(EXIT_FAILURE, "invalid BPF block description");
169 1.1 rmind }
170 1.1 rmind reqlen = ALLOC_ROUND(ctx->mlen + len);
171 1.1 rmind if (reqlen > ctx->malen) {
172 1.1 rmind ctx->marks = erealloc(ctx->marks, reqlen);
173 1.1 rmind ctx->malen = reqlen;
174 1.1 rmind }
175 1.1 rmind memcpy((uint8_t *)ctx->marks + ctx->mlen, m, len);
176 1.1 rmind ctx->mlen += len;
177 1.1 rmind }
178 1.1 rmind
179 1.1 rmind static void
180 1.1 rmind done_block(npf_bpf_t *ctx, const uint32_t *m, size_t len)
181 1.1 rmind {
182 1.1 rmind done_raw_block(ctx, m, len);
183 1.1 rmind ctx->nblocks++;
184 1.1 rmind }
185 1.1 rmind
186 1.1 rmind struct bpf_program *
187 1.1 rmind npfctl_bpf_complete(npf_bpf_t *ctx)
188 1.1 rmind {
189 1.1 rmind struct bpf_program *bp = &ctx->prog;
190 1.1 rmind const u_int retoff = bp->bf_len;
191 1.1 rmind
192 1.8 rmind /* No instructions (optimised out). */
193 1.8 rmind if (!bp->bf_len)
194 1.8 rmind return NULL;
195 1.8 rmind
196 1.1 rmind /* Add the return fragment (success and failure paths). */
197 1.1 rmind struct bpf_insn insns_ret[] = {
198 1.1 rmind BPF_STMT(BPF_RET+BPF_K, NPF_BPF_SUCCESS),
199 1.1 rmind BPF_STMT(BPF_RET+BPF_K, NPF_BPF_FAILURE),
200 1.1 rmind };
201 1.1 rmind add_insns(ctx, insns_ret, __arraycount(insns_ret));
202 1.1 rmind
203 1.1 rmind /* Fixup all jumps to the main failure path. */
204 1.1 rmind fixup_jumps(ctx, 0, retoff, false);
205 1.1 rmind
206 1.1 rmind return &ctx->prog;
207 1.1 rmind }
208 1.1 rmind
209 1.1 rmind const void *
210 1.1 rmind npfctl_bpf_bmarks(npf_bpf_t *ctx, size_t *len)
211 1.1 rmind {
212 1.1 rmind *len = ctx->mlen;
213 1.1 rmind return ctx->marks;
214 1.1 rmind }
215 1.1 rmind
216 1.1 rmind void
217 1.1 rmind npfctl_bpf_destroy(npf_bpf_t *ctx)
218 1.1 rmind {
219 1.1 rmind free(ctx->prog.bf_insns);
220 1.1 rmind free(ctx->marks);
221 1.1 rmind free(ctx);
222 1.1 rmind }
223 1.1 rmind
224 1.1 rmind /*
225 1.1 rmind * npfctl_bpf_group: begin a logical group. It merely uses logical
226 1.1 rmind * disjunction (OR) for compares within the group.
227 1.1 rmind */
228 1.1 rmind void
229 1.1 rmind npfctl_bpf_group(npf_bpf_t *ctx)
230 1.1 rmind {
231 1.1 rmind struct bpf_program *bp = &ctx->prog;
232 1.1 rmind
233 1.1 rmind assert(ctx->goff == 0);
234 1.1 rmind assert(ctx->gblock == 0);
235 1.1 rmind
236 1.1 rmind ctx->goff = bp->bf_len;
237 1.1 rmind ctx->gblock = ctx->nblocks;
238 1.1 rmind ctx->ingroup = true;
239 1.1 rmind }
240 1.1 rmind
241 1.1 rmind void
242 1.1 rmind npfctl_bpf_endgroup(npf_bpf_t *ctx)
243 1.1 rmind {
244 1.1 rmind struct bpf_program *bp = &ctx->prog;
245 1.1 rmind const size_t curoff = bp->bf_len;
246 1.1 rmind
247 1.1 rmind /* If there are no blocks or only one - nothing to do. */
248 1.1 rmind if ((ctx->nblocks - ctx->gblock) <= 1) {
249 1.1 rmind ctx->goff = ctx->gblock = 0;
250 1.1 rmind return;
251 1.1 rmind }
252 1.1 rmind
253 1.1 rmind /*
254 1.1 rmind * Append a failure return as a fall-through i.e. if there is
255 1.1 rmind * no match within the group.
256 1.1 rmind */
257 1.1 rmind struct bpf_insn insns_ret[] = {
258 1.1 rmind BPF_STMT(BPF_RET+BPF_K, NPF_BPF_FAILURE),
259 1.1 rmind };
260 1.1 rmind add_insns(ctx, insns_ret, __arraycount(insns_ret));
261 1.1 rmind
262 1.1 rmind /*
263 1.1 rmind * Adjust jump offsets: on match - jump outside the group i.e.
264 1.1 rmind * to the current offset. Otherwise, jump to the next instruction
265 1.1 rmind * which would lead to the fall-through code above if none matches.
266 1.1 rmind */
267 1.1 rmind fixup_jumps(ctx, ctx->goff, curoff, true);
268 1.1 rmind ctx->goff = ctx->gblock = 0;
269 1.1 rmind }
270 1.1 rmind
271 1.1 rmind static void
272 1.1 rmind fetch_l3(npf_bpf_t *ctx, sa_family_t af, u_int flags)
273 1.1 rmind {
274 1.1 rmind u_int ver;
275 1.1 rmind
276 1.1 rmind switch (af) {
277 1.1 rmind case AF_INET:
278 1.1 rmind ver = IPVERSION;
279 1.1 rmind break;
280 1.1 rmind case AF_INET6:
281 1.1 rmind ver = IPV6_VERSION >> 4;
282 1.1 rmind break;
283 1.1 rmind case AF_UNSPEC:
284 1.1 rmind ver = 0;
285 1.1 rmind break;
286 1.1 rmind default:
287 1.1 rmind abort();
288 1.1 rmind }
289 1.1 rmind
290 1.1 rmind /*
291 1.7 rmind * The memory store is populated with:
292 1.1 rmind * - BPF_MW_IPVER: IP version (4 or 6).
293 1.1 rmind * - BPF_MW_L4OFF: L4 header offset.
294 1.1 rmind * - BPF_MW_L4PROTO: L4 protocol.
295 1.1 rmind */
296 1.1 rmind if ((ctx->flags & FETCHED_L3) == 0 || (af && ctx->af == 0)) {
297 1.1 rmind const uint8_t jt = ver ? 0 : JUMP_MAGIC;
298 1.1 rmind const uint8_t jf = ver ? JUMP_MAGIC : 0;
299 1.1 rmind bool ingroup = ctx->ingroup;
300 1.1 rmind
301 1.1 rmind /*
302 1.1 rmind * L3 block cannot be inserted in the middle of a group.
303 1.1 rmind * In fact, it never is. Check and start the group after.
304 1.1 rmind */
305 1.1 rmind if (ingroup) {
306 1.1 rmind assert(ctx->nblocks == ctx->gblock);
307 1.1 rmind npfctl_bpf_endgroup(ctx);
308 1.1 rmind }
309 1.1 rmind
310 1.1 rmind /*
311 1.1 rmind * A <- IP version; A == expected-version?
312 1.1 rmind * If no particular version specified, check for non-zero.
313 1.1 rmind */
314 1.7 rmind struct bpf_insn insns_af[] = {
315 1.7 rmind BPF_STMT(BPF_LD+BPF_W+BPF_MEM, BPF_MW_IPVER),
316 1.7 rmind BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, ver, jt, jf),
317 1.7 rmind };
318 1.7 rmind add_insns(ctx, insns_af, __arraycount(insns_af));
319 1.7 rmind ctx->flags |= FETCHED_L3;
320 1.1 rmind ctx->af = af;
321 1.1 rmind
322 1.1 rmind if (af) {
323 1.1 rmind uint32_t mwords[] = { BM_IPVER, 1, af };
324 1.1 rmind done_raw_block(ctx, mwords, sizeof(mwords));
325 1.1 rmind }
326 1.1 rmind if (ingroup) {
327 1.1 rmind npfctl_bpf_group(ctx);
328 1.1 rmind }
329 1.1 rmind
330 1.1 rmind } else if (af && af != ctx->af) {
331 1.1 rmind errx(EXIT_FAILURE, "address family mismatch");
332 1.1 rmind }
333 1.1 rmind
334 1.1 rmind if ((flags & X_EQ_L4OFF) != 0 && (ctx->flags & X_EQ_L4OFF) == 0) {
335 1.1 rmind /* X <- IP header length */
336 1.1 rmind struct bpf_insn insns_hlen[] = {
337 1.1 rmind BPF_STMT(BPF_LDX+BPF_MEM, BPF_MW_L4OFF),
338 1.1 rmind };
339 1.1 rmind add_insns(ctx, insns_hlen, __arraycount(insns_hlen));
340 1.1 rmind ctx->flags |= X_EQ_L4OFF;
341 1.1 rmind }
342 1.1 rmind }
343 1.1 rmind
344 1.1 rmind /*
345 1.1 rmind * npfctl_bpf_proto: code block to match IP version and L4 protocol.
346 1.1 rmind */
347 1.1 rmind void
348 1.1 rmind npfctl_bpf_proto(npf_bpf_t *ctx, sa_family_t af, int proto)
349 1.1 rmind {
350 1.1 rmind assert(af != AF_UNSPEC || proto != -1);
351 1.1 rmind
352 1.1 rmind /* Note: fails if IP version does not match. */
353 1.1 rmind fetch_l3(ctx, af, 0);
354 1.1 rmind if (proto == -1) {
355 1.1 rmind return;
356 1.1 rmind }
357 1.1 rmind
358 1.1 rmind struct bpf_insn insns_proto[] = {
359 1.1 rmind /* A <- L4 protocol; A == expected-protocol? */
360 1.1 rmind BPF_STMT(BPF_LD+BPF_W+BPF_MEM, BPF_MW_L4PROTO),
361 1.1 rmind BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, proto, 0, JUMP_MAGIC),
362 1.1 rmind };
363 1.1 rmind add_insns(ctx, insns_proto, __arraycount(insns_proto));
364 1.1 rmind
365 1.1 rmind uint32_t mwords[] = { BM_PROTO, 1, proto };
366 1.1 rmind done_block(ctx, mwords, sizeof(mwords));
367 1.6 rmind ctx->flags |= CHECKED_L4;
368 1.1 rmind }
369 1.1 rmind
370 1.1 rmind /*
371 1.1 rmind * npfctl_bpf_cidr: code block to match IPv4 or IPv6 CIDR.
372 1.1 rmind *
373 1.1 rmind * => IP address shall be in the network byte order.
374 1.1 rmind */
375 1.1 rmind void
376 1.1 rmind npfctl_bpf_cidr(npf_bpf_t *ctx, u_int opts, sa_family_t af,
377 1.1 rmind const npf_addr_t *addr, const npf_netmask_t mask)
378 1.1 rmind {
379 1.1 rmind const uint32_t *awords = (const uint32_t *)addr;
380 1.1 rmind u_int nwords, length, maxmask, off;
381 1.1 rmind
382 1.1 rmind assert(((opts & MATCH_SRC) != 0) ^ ((opts & MATCH_DST) != 0));
383 1.1 rmind assert((mask && mask <= NPF_MAX_NETMASK) || mask == NPF_NO_NETMASK);
384 1.1 rmind
385 1.1 rmind switch (af) {
386 1.1 rmind case AF_INET:
387 1.1 rmind maxmask = 32;
388 1.1 rmind off = (opts & MATCH_SRC) ?
389 1.1 rmind offsetof(struct ip, ip_src) :
390 1.1 rmind offsetof(struct ip, ip_dst);
391 1.1 rmind nwords = sizeof(struct in_addr) / sizeof(uint32_t);
392 1.1 rmind break;
393 1.1 rmind case AF_INET6:
394 1.1 rmind maxmask = 128;
395 1.1 rmind off = (opts & MATCH_SRC) ?
396 1.1 rmind offsetof(struct ip6_hdr, ip6_src) :
397 1.1 rmind offsetof(struct ip6_hdr, ip6_dst);
398 1.1 rmind nwords = sizeof(struct in6_addr) / sizeof(uint32_t);
399 1.1 rmind break;
400 1.1 rmind default:
401 1.1 rmind abort();
402 1.1 rmind }
403 1.1 rmind
404 1.1 rmind /* Ensure address family. */
405 1.1 rmind fetch_l3(ctx, af, 0);
406 1.1 rmind
407 1.1 rmind length = (mask == NPF_NO_NETMASK) ? maxmask : mask;
408 1.1 rmind
409 1.1 rmind /* CAUTION: BPF operates in host byte-order. */
410 1.1 rmind for (u_int i = 0; i < nwords; i++) {
411 1.1 rmind const u_int woff = i * sizeof(uint32_t);
412 1.1 rmind uint32_t word = ntohl(awords[i]);
413 1.1 rmind uint32_t wordmask;
414 1.1 rmind
415 1.1 rmind if (length >= 32) {
416 1.1 rmind /* The mask is a full word - do not apply it. */
417 1.1 rmind wordmask = 0;
418 1.1 rmind length -= 32;
419 1.1 rmind } else if (length) {
420 1.4 rmind wordmask = 0xffffffff << (32 - length);
421 1.1 rmind length = 0;
422 1.1 rmind } else {
423 1.3 rmind /* The mask became zero - skip the rest. */
424 1.3 rmind break;
425 1.1 rmind }
426 1.1 rmind
427 1.1 rmind /* A <- IP address (or one word of it) */
428 1.1 rmind struct bpf_insn insns_ip[] = {
429 1.1 rmind BPF_STMT(BPF_LD+BPF_W+BPF_ABS, off + woff),
430 1.1 rmind };
431 1.1 rmind add_insns(ctx, insns_ip, __arraycount(insns_ip));
432 1.1 rmind
433 1.1 rmind /* A <- (A & MASK) */
434 1.1 rmind if (wordmask) {
435 1.1 rmind struct bpf_insn insns_mask[] = {
436 1.1 rmind BPF_STMT(BPF_ALU+BPF_AND+BPF_K, wordmask),
437 1.1 rmind };
438 1.1 rmind add_insns(ctx, insns_mask, __arraycount(insns_mask));
439 1.1 rmind }
440 1.1 rmind
441 1.1 rmind /* A == expected-IP-word ? */
442 1.1 rmind struct bpf_insn insns_cmp[] = {
443 1.1 rmind BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, word, 0, JUMP_MAGIC),
444 1.1 rmind };
445 1.1 rmind add_insns(ctx, insns_cmp, __arraycount(insns_cmp));
446 1.1 rmind }
447 1.1 rmind
448 1.1 rmind uint32_t mwords[] = {
449 1.1 rmind (opts & MATCH_SRC) ? BM_SRC_CIDR: BM_DST_CIDR, 6,
450 1.1 rmind af, mask, awords[0], awords[1], awords[2], awords[3],
451 1.1 rmind };
452 1.1 rmind done_block(ctx, mwords, sizeof(mwords));
453 1.1 rmind }
454 1.1 rmind
455 1.1 rmind /*
456 1.1 rmind * npfctl_bpf_ports: code block to match TCP/UDP port range.
457 1.1 rmind *
458 1.1 rmind * => Port numbers shall be in the network byte order.
459 1.1 rmind */
460 1.1 rmind void
461 1.1 rmind npfctl_bpf_ports(npf_bpf_t *ctx, u_int opts, in_port_t from, in_port_t to)
462 1.1 rmind {
463 1.1 rmind const u_int sport_off = offsetof(struct udphdr, uh_sport);
464 1.1 rmind const u_int dport_off = offsetof(struct udphdr, uh_dport);
465 1.1 rmind u_int off;
466 1.1 rmind
467 1.1 rmind /* TCP and UDP port offsets are the same. */
468 1.1 rmind assert(sport_off == offsetof(struct tcphdr, th_sport));
469 1.1 rmind assert(dport_off == offsetof(struct tcphdr, th_dport));
470 1.6 rmind assert(ctx->flags & CHECKED_L4);
471 1.1 rmind
472 1.1 rmind assert(((opts & MATCH_SRC) != 0) ^ ((opts & MATCH_DST) != 0));
473 1.1 rmind off = (opts & MATCH_SRC) ? sport_off : dport_off;
474 1.1 rmind
475 1.1 rmind /* X <- IP header length */
476 1.2 rmind fetch_l3(ctx, AF_UNSPEC, X_EQ_L4OFF);
477 1.1 rmind
478 1.1 rmind struct bpf_insn insns_fetch[] = {
479 1.1 rmind /* A <- port */
480 1.1 rmind BPF_STMT(BPF_LD+BPF_H+BPF_IND, off),
481 1.1 rmind };
482 1.1 rmind add_insns(ctx, insns_fetch, __arraycount(insns_fetch));
483 1.1 rmind
484 1.1 rmind /* CAUTION: BPF operates in host byte-order. */
485 1.1 rmind from = ntohs(from);
486 1.1 rmind to = ntohs(to);
487 1.1 rmind
488 1.1 rmind if (from == to) {
489 1.1 rmind /* Single port case. */
490 1.1 rmind struct bpf_insn insns_port[] = {
491 1.1 rmind BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, from, 0, JUMP_MAGIC),
492 1.1 rmind };
493 1.1 rmind add_insns(ctx, insns_port, __arraycount(insns_port));
494 1.1 rmind } else {
495 1.1 rmind /* Port range case. */
496 1.1 rmind struct bpf_insn insns_range[] = {
497 1.1 rmind BPF_JUMP(BPF_JMP+BPF_JGE+BPF_K, from, 0, JUMP_MAGIC),
498 1.1 rmind BPF_JUMP(BPF_JMP+BPF_JGT+BPF_K, to, JUMP_MAGIC, 0),
499 1.1 rmind };
500 1.1 rmind add_insns(ctx, insns_range, __arraycount(insns_range));
501 1.1 rmind }
502 1.1 rmind
503 1.1 rmind uint32_t mwords[] = {
504 1.1 rmind opts & MATCH_SRC ? BM_SRC_PORTS : BM_DST_PORTS, 2, from, to
505 1.1 rmind };
506 1.1 rmind done_block(ctx, mwords, sizeof(mwords));
507 1.1 rmind }
508 1.1 rmind
509 1.1 rmind /*
510 1.1 rmind * npfctl_bpf_tcpfl: code block to match TCP flags.
511 1.1 rmind */
512 1.1 rmind void
513 1.5 rmind npfctl_bpf_tcpfl(npf_bpf_t *ctx, uint8_t tf, uint8_t tf_mask, bool checktcp)
514 1.1 rmind {
515 1.1 rmind const u_int tcpfl_off = offsetof(struct tcphdr, th_flags);
516 1.6 rmind const bool usingmask = tf_mask != tf;
517 1.1 rmind
518 1.1 rmind /* X <- IP header length */
519 1.2 rmind fetch_l3(ctx, AF_UNSPEC, X_EQ_L4OFF);
520 1.5 rmind if (checktcp) {
521 1.6 rmind const u_int jf = usingmask ? 3 : 2;
522 1.5 rmind assert(ctx->ingroup == false);
523 1.5 rmind
524 1.5 rmind /* A <- L4 protocol; A == TCP? If not, jump out. */
525 1.5 rmind struct bpf_insn insns_tcp[] = {
526 1.5 rmind BPF_STMT(BPF_LD+BPF_W+BPF_MEM, BPF_MW_L4PROTO),
527 1.5 rmind BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, IPPROTO_TCP, 0, jf),
528 1.5 rmind };
529 1.5 rmind add_insns(ctx, insns_tcp, __arraycount(insns_tcp));
530 1.6 rmind } else {
531 1.6 rmind assert(ctx->flags & CHECKED_L4);
532 1.5 rmind }
533 1.1 rmind
534 1.1 rmind struct bpf_insn insns_tf[] = {
535 1.1 rmind /* A <- TCP flags */
536 1.1 rmind BPF_STMT(BPF_LD+BPF_B+BPF_IND, tcpfl_off),
537 1.1 rmind };
538 1.1 rmind add_insns(ctx, insns_tf, __arraycount(insns_tf));
539 1.1 rmind
540 1.6 rmind if (usingmask) {
541 1.1 rmind /* A <- (A & mask) */
542 1.1 rmind struct bpf_insn insns_mask[] = {
543 1.1 rmind BPF_STMT(BPF_ALU+BPF_AND+BPF_K, tf_mask),
544 1.1 rmind };
545 1.1 rmind add_insns(ctx, insns_mask, __arraycount(insns_mask));
546 1.1 rmind }
547 1.1 rmind
548 1.1 rmind struct bpf_insn insns_cmp[] = {
549 1.1 rmind /* A == expected-TCP-flags? */
550 1.1 rmind BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, tf, 0, JUMP_MAGIC),
551 1.1 rmind };
552 1.1 rmind add_insns(ctx, insns_cmp, __arraycount(insns_cmp));
553 1.1 rmind
554 1.5 rmind if (!checktcp) {
555 1.5 rmind uint32_t mwords[] = { BM_TCPFL, 2, tf, tf_mask};
556 1.5 rmind done_block(ctx, mwords, sizeof(mwords));
557 1.5 rmind }
558 1.1 rmind }
559 1.1 rmind
560 1.1 rmind /*
561 1.1 rmind * npfctl_bpf_icmp: code block to match ICMP type and/or code.
562 1.1 rmind * Note: suitable both for the ICMPv4 and ICMPv6.
563 1.1 rmind */
564 1.1 rmind void
565 1.1 rmind npfctl_bpf_icmp(npf_bpf_t *ctx, int type, int code)
566 1.1 rmind {
567 1.1 rmind const u_int type_off = offsetof(struct icmp, icmp_type);
568 1.1 rmind const u_int code_off = offsetof(struct icmp, icmp_code);
569 1.1 rmind
570 1.6 rmind assert(ctx->flags & CHECKED_L4);
571 1.1 rmind assert(offsetof(struct icmp6_hdr, icmp6_type) == type_off);
572 1.1 rmind assert(offsetof(struct icmp6_hdr, icmp6_code) == code_off);
573 1.1 rmind assert(type != -1 || code != -1);
574 1.1 rmind
575 1.1 rmind /* X <- IP header length */
576 1.2 rmind fetch_l3(ctx, AF_UNSPEC, X_EQ_L4OFF);
577 1.1 rmind
578 1.1 rmind if (type != -1) {
579 1.1 rmind struct bpf_insn insns_type[] = {
580 1.1 rmind BPF_STMT(BPF_LD+BPF_B+BPF_IND, type_off),
581 1.1 rmind BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, type, 0, JUMP_MAGIC),
582 1.1 rmind };
583 1.1 rmind add_insns(ctx, insns_type, __arraycount(insns_type));
584 1.1 rmind
585 1.1 rmind uint32_t mwords[] = { BM_ICMP_TYPE, 1, type };
586 1.1 rmind done_block(ctx, mwords, sizeof(mwords));
587 1.1 rmind }
588 1.1 rmind
589 1.1 rmind if (code != -1) {
590 1.1 rmind struct bpf_insn insns_code[] = {
591 1.1 rmind BPF_STMT(BPF_LD+BPF_B+BPF_IND, code_off),
592 1.1 rmind BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, code, 0, JUMP_MAGIC),
593 1.1 rmind };
594 1.1 rmind add_insns(ctx, insns_code, __arraycount(insns_code));
595 1.1 rmind
596 1.1 rmind uint32_t mwords[] = { BM_ICMP_CODE, 1, code };
597 1.1 rmind done_block(ctx, mwords, sizeof(mwords));
598 1.1 rmind }
599 1.1 rmind }
600 1.1 rmind
601 1.1 rmind #define SRC_FLAG_BIT (1U << 31)
602 1.1 rmind
603 1.1 rmind /*
604 1.1 rmind * npfctl_bpf_table: code block to match source/destination IP address
605 1.1 rmind * against NPF table specified by ID.
606 1.1 rmind */
607 1.1 rmind void
608 1.1 rmind npfctl_bpf_table(npf_bpf_t *ctx, u_int opts, u_int tid)
609 1.1 rmind {
610 1.1 rmind const bool src = (opts & MATCH_SRC) != 0;
611 1.1 rmind
612 1.1 rmind struct bpf_insn insns_table[] = {
613 1.1 rmind BPF_STMT(BPF_LD+BPF_IMM, (src ? SRC_FLAG_BIT : 0) | tid),
614 1.1 rmind BPF_STMT(BPF_MISC+BPF_COP, NPF_COP_TABLE),
615 1.1 rmind BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0, JUMP_MAGIC, 0),
616 1.1 rmind };
617 1.1 rmind add_insns(ctx, insns_table, __arraycount(insns_table));
618 1.1 rmind
619 1.1 rmind uint32_t mwords[] = { src ? BM_SRC_TABLE: BM_DST_TABLE, 1, tid };
620 1.1 rmind done_block(ctx, mwords, sizeof(mwords));
621 1.1 rmind }
622