Home | History | Annotate | Line # | Download | only in npfctl
npf_bpf_comp.c revision 1.11
      1 /*-
      2  * Copyright (c) 2010-2014 The NetBSD Foundation, Inc.
      3  * All rights reserved.
      4  *
      5  * This material is based upon work partially supported by The
      6  * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     19  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     20  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     21  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27  * POSSIBILITY OF SUCH DAMAGE.
     28  */
     29 
     30 /*
     31  * BPF byte-code generation for NPF rules.
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 __RCSID("$NetBSD: npf_bpf_comp.c,v 1.11 2018/09/29 14:41:36 rmind Exp $");
     36 
     37 #include <stdlib.h>
     38 #include <stdbool.h>
     39 #include <stddef.h>
     40 #include <string.h>
     41 #include <inttypes.h>
     42 #include <err.h>
     43 #include <assert.h>
     44 
     45 #include <netinet/in.h>
     46 #include <netinet/in_systm.h>
     47 #define	__FAVOR_BSD
     48 #include <netinet/ip.h>
     49 #include <netinet/ip6.h>
     50 #include <netinet/udp.h>
     51 #include <netinet/tcp.h>
     52 #include <netinet/ip_icmp.h>
     53 #include <netinet/icmp6.h>
     54 
     55 #include <net/bpf.h>
     56 
     57 #include "npfctl.h"
     58 
     59 /*
     60  * Note: clear X_EQ_L4OFF when register X is invalidated i.e. it stores
     61  * something other than L4 header offset.  Generally, when BPF_LDX is used.
     62  */
     63 #define	FETCHED_L3		0x01
     64 #define	CHECKED_L4		0x02
     65 #define	X_EQ_L4OFF		0x04
     66 
     67 struct npf_bpf {
     68 	/*
     69 	 * BPF program code, the allocated length (in bytes), the number
     70 	 * of logical blocks and the flags.
     71 	 */
     72 	struct bpf_program	prog;
     73 	size_t			alen;
     74 	u_int			nblocks;
     75 	sa_family_t		af;
     76 	uint32_t		flags;
     77 
     78 	/* The current group offset and block number. */
     79 	bool			ingroup;
     80 	u_int			goff;
     81 	u_int			gblock;
     82 
     83 	/* BPF marks, allocated length and the real length. */
     84 	uint32_t *		marks;
     85 	size_t			malen;
     86 	size_t			mlen;
     87 };
     88 
     89 /*
     90  * NPF success and failure values to be returned from BPF.
     91  */
     92 #define	NPF_BPF_SUCCESS		((u_int)-1)
     93 #define	NPF_BPF_FAILURE		0
     94 
     95 /*
     96  * Magic value to indicate the failure path, which is fixed up on completion.
     97  * Note: this is the longest jump offset in BPF, since the offset is one byte.
     98  */
     99 #define	JUMP_MAGIC		0xff
    100 
    101 /* Reduce re-allocations by expanding in 64 byte blocks. */
    102 #define	ALLOC_MASK		(64 - 1)
    103 #define	ALLOC_ROUND(x)		(((x) + ALLOC_MASK) & ~ALLOC_MASK)
    104 
    105 #ifndef IPV6_VERSION
    106 #define	IPV6_VERSION		0x60
    107 #endif
    108 
    109 npf_bpf_t *
    110 npfctl_bpf_create(void)
    111 {
    112 	return ecalloc(1, sizeof(npf_bpf_t));
    113 }
    114 
    115 static void
    116 fixup_jumps(npf_bpf_t *ctx, u_int start, u_int end, bool swap)
    117 {
    118 	struct bpf_program *bp = &ctx->prog;
    119 
    120 	for (u_int i = start; i < end; i++) {
    121 		struct bpf_insn *insn = &bp->bf_insns[i];
    122 		const u_int fail_off = end - i;
    123 
    124 		if (fail_off >= JUMP_MAGIC) {
    125 			errx(EXIT_FAILURE, "BPF generation error: "
    126 			    "the number of instructions is over the limit");
    127 		}
    128 		if (BPF_CLASS(insn->code) != BPF_JMP) {
    129 			continue;
    130 		}
    131 		if (swap) {
    132 			uint8_t jt = insn->jt;
    133 			insn->jt = insn->jf;
    134 			insn->jf = jt;
    135 		}
    136 		if (insn->jt == JUMP_MAGIC)
    137 			insn->jt = fail_off;
    138 		if (insn->jf == JUMP_MAGIC)
    139 			insn->jf = fail_off;
    140 	}
    141 }
    142 
    143 static void
    144 add_insns(npf_bpf_t *ctx, struct bpf_insn *insns, size_t count)
    145 {
    146 	struct bpf_program *bp = &ctx->prog;
    147 	size_t offset, len, reqlen;
    148 
    149 	/* Note: bf_len is the count of instructions. */
    150 	offset = bp->bf_len * sizeof(struct bpf_insn);
    151 	len = count * sizeof(struct bpf_insn);
    152 
    153 	/* Ensure the memory buffer for the program. */
    154 	reqlen = ALLOC_ROUND(offset + len);
    155 	if (reqlen > ctx->alen) {
    156 		bp->bf_insns = erealloc(bp->bf_insns, reqlen);
    157 		ctx->alen = reqlen;
    158 	}
    159 
    160 	/* Add the code block. */
    161 	memcpy((uint8_t *)bp->bf_insns + offset, insns, len);
    162 	bp->bf_len += count;
    163 }
    164 
    165 static void
    166 done_raw_block(npf_bpf_t *ctx, const uint32_t *m, size_t len)
    167 {
    168 	size_t reqlen, nargs = m[1];
    169 
    170 	if ((len / sizeof(uint32_t) - 2) != nargs) {
    171 		errx(EXIT_FAILURE, "invalid BPF block description");
    172 	}
    173 	reqlen = ALLOC_ROUND(ctx->mlen + len);
    174 	if (reqlen > ctx->malen) {
    175 		ctx->marks = erealloc(ctx->marks, reqlen);
    176 		ctx->malen = reqlen;
    177 	}
    178 	memcpy((uint8_t *)ctx->marks + ctx->mlen, m, len);
    179 	ctx->mlen += len;
    180 }
    181 
    182 static void
    183 done_block(npf_bpf_t *ctx, const uint32_t *m, size_t len)
    184 {
    185 	done_raw_block(ctx, m, len);
    186 	ctx->nblocks++;
    187 }
    188 
    189 struct bpf_program *
    190 npfctl_bpf_complete(npf_bpf_t *ctx)
    191 {
    192 	struct bpf_program *bp = &ctx->prog;
    193 	const u_int retoff = bp->bf_len;
    194 
    195 	/* No instructions (optimised out). */
    196 	if (!bp->bf_len)
    197 		return NULL;
    198 
    199 	/* Add the return fragment (success and failure paths). */
    200 	struct bpf_insn insns_ret[] = {
    201 		BPF_STMT(BPF_RET+BPF_K, NPF_BPF_SUCCESS),
    202 		BPF_STMT(BPF_RET+BPF_K, NPF_BPF_FAILURE),
    203 	};
    204 	add_insns(ctx, insns_ret, __arraycount(insns_ret));
    205 
    206 	/* Fixup all jumps to the main failure path. */
    207 	fixup_jumps(ctx, 0, retoff, false);
    208 
    209 	return &ctx->prog;
    210 }
    211 
    212 const void *
    213 npfctl_bpf_bmarks(npf_bpf_t *ctx, size_t *len)
    214 {
    215 	*len = ctx->mlen;
    216 	return ctx->marks;
    217 }
    218 
    219 void
    220 npfctl_bpf_destroy(npf_bpf_t *ctx)
    221 {
    222 	free(ctx->prog.bf_insns);
    223 	free(ctx->marks);
    224 	free(ctx);
    225 }
    226 
    227 /*
    228  * npfctl_bpf_group: begin a logical group.  It merely uses logical
    229  * disjunction (OR) for compares within the group.
    230  */
    231 void
    232 npfctl_bpf_group(npf_bpf_t *ctx)
    233 {
    234 	struct bpf_program *bp = &ctx->prog;
    235 
    236 	assert(ctx->goff == 0);
    237 	assert(ctx->gblock == 0);
    238 
    239 	ctx->goff = bp->bf_len;
    240 	ctx->gblock = ctx->nblocks;
    241 	ctx->ingroup = true;
    242 }
    243 
    244 void
    245 npfctl_bpf_endgroup(npf_bpf_t *ctx, bool invert)
    246 {
    247 	struct bpf_program *bp = &ctx->prog;
    248 	const size_t curoff = bp->bf_len;
    249 
    250 	/* If there are no blocks or only one - nothing to do. */
    251 	if (!invert && (ctx->nblocks - ctx->gblock) <= 1) {
    252 		ctx->goff = ctx->gblock = 0;
    253 		return;
    254 	}
    255 
    256 	/*
    257 	 * If inverting, then prepend a jump over the statement below.
    258 	 * If matching, jump will jump below and the fail will happen.
    259 	 */
    260 	if (invert) {
    261 		struct bpf_insn insns_ret[] = {
    262 			BPF_STMT(BPF_JMP+BPF_JA, 1),
    263 		};
    264 		add_insns(ctx, insns_ret, __arraycount(insns_ret));
    265 	}
    266 
    267 	/*
    268 	 * Append a failure return as a fall-through i.e. if there is
    269 	 * no match within the group.
    270 	 */
    271 	struct bpf_insn insns_ret[] = {
    272 		BPF_STMT(BPF_RET+BPF_K, NPF_BPF_FAILURE),
    273 	};
    274 	add_insns(ctx, insns_ret, __arraycount(insns_ret));
    275 
    276 	/*
    277 	 * Adjust jump offsets: on match - jump outside the group i.e.
    278 	 * to the current offset.  Otherwise, jump to the next instruction
    279 	 * which would lead to the fall-through code above if none matches.
    280 	 */
    281 	fixup_jumps(ctx, ctx->goff, curoff, true);
    282 	ctx->goff = ctx->gblock = 0;
    283 }
    284 
    285 static void
    286 fetch_l3(npf_bpf_t *ctx, sa_family_t af, u_int flags)
    287 {
    288 	u_int ver;
    289 
    290 	switch (af) {
    291 	case AF_INET:
    292 		ver = IPVERSION;
    293 		break;
    294 	case AF_INET6:
    295 		ver = IPV6_VERSION >> 4;
    296 		break;
    297 	case AF_UNSPEC:
    298 		ver = 0;
    299 		break;
    300 	default:
    301 		abort();
    302 	}
    303 
    304 	/*
    305 	 * The memory store is populated with:
    306 	 * - BPF_MW_IPVER: IP version (4 or 6).
    307 	 * - BPF_MW_L4OFF: L4 header offset.
    308 	 * - BPF_MW_L4PROTO: L4 protocol.
    309 	 */
    310 	if ((ctx->flags & FETCHED_L3) == 0 || (af && ctx->af == 0)) {
    311 		const uint8_t jt = ver ? 0 : JUMP_MAGIC;
    312 		const uint8_t jf = ver ? JUMP_MAGIC : 0;
    313 		bool ingroup = ctx->ingroup;
    314 
    315 		/*
    316 		 * L3 block cannot be inserted in the middle of a group.
    317 		 * In fact, it never is.  Check and start the group after.
    318 		 */
    319 		if (ingroup) {
    320 			assert(ctx->nblocks == ctx->gblock);
    321 			npfctl_bpf_endgroup(ctx, false);
    322 		}
    323 
    324 		/*
    325 		 * A <- IP version; A == expected-version?
    326 		 * If no particular version specified, check for non-zero.
    327 		 */
    328 		struct bpf_insn insns_af[] = {
    329 			BPF_STMT(BPF_LD+BPF_W+BPF_MEM, BPF_MW_IPVER),
    330 			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, ver, jt, jf),
    331 		};
    332 		add_insns(ctx, insns_af, __arraycount(insns_af));
    333 		ctx->flags |= FETCHED_L3;
    334 		ctx->af = af;
    335 
    336 		if (af) {
    337 			uint32_t mwords[] = { BM_IPVER, 1, af };
    338 			done_raw_block(ctx, mwords, sizeof(mwords));
    339 		}
    340 		if (ingroup) {
    341 			npfctl_bpf_group(ctx);
    342 		}
    343 
    344 	} else if (af && af != ctx->af) {
    345 		errx(EXIT_FAILURE, "address family mismatch");
    346 	}
    347 
    348 	if ((flags & X_EQ_L4OFF) != 0 && (ctx->flags & X_EQ_L4OFF) == 0) {
    349 		/* X <- IP header length */
    350 		struct bpf_insn insns_hlen[] = {
    351 			BPF_STMT(BPF_LDX+BPF_MEM, BPF_MW_L4OFF),
    352 		};
    353 		add_insns(ctx, insns_hlen, __arraycount(insns_hlen));
    354 		ctx->flags |= X_EQ_L4OFF;
    355 	}
    356 }
    357 
    358 /*
    359  * npfctl_bpf_proto: code block to match IP version and L4 protocol.
    360  */
    361 void
    362 npfctl_bpf_proto(npf_bpf_t *ctx, sa_family_t af, int proto)
    363 {
    364 	assert(af != AF_UNSPEC || proto != -1);
    365 
    366 	/* Note: fails if IP version does not match. */
    367 	fetch_l3(ctx, af, 0);
    368 	if (proto == -1) {
    369 		return;
    370 	}
    371 
    372 	struct bpf_insn insns_proto[] = {
    373 		/* A <- L4 protocol; A == expected-protocol? */
    374 		BPF_STMT(BPF_LD+BPF_W+BPF_MEM, BPF_MW_L4PROTO),
    375 		BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, proto, 0, JUMP_MAGIC),
    376 	};
    377 	add_insns(ctx, insns_proto, __arraycount(insns_proto));
    378 
    379 	uint32_t mwords[] = { BM_PROTO, 1, proto };
    380 	done_block(ctx, mwords, sizeof(mwords));
    381 	ctx->flags |= CHECKED_L4;
    382 }
    383 
    384 /*
    385  * npfctl_bpf_cidr: code block to match IPv4 or IPv6 CIDR.
    386  *
    387  * => IP address shall be in the network byte order.
    388  */
    389 void
    390 npfctl_bpf_cidr(npf_bpf_t *ctx, u_int opts, sa_family_t af,
    391     const npf_addr_t *addr, const npf_netmask_t mask)
    392 {
    393 	const uint32_t *awords = (const uint32_t *)addr;
    394 	u_int nwords, length, maxmask, off;
    395 
    396 	assert(((opts & MATCH_SRC) != 0) ^ ((opts & MATCH_DST) != 0));
    397 	assert((mask && mask <= NPF_MAX_NETMASK) || mask == NPF_NO_NETMASK);
    398 
    399 	switch (af) {
    400 	case AF_INET:
    401 		maxmask = 32;
    402 		off = (opts & MATCH_SRC) ?
    403 		    offsetof(struct ip, ip_src) :
    404 		    offsetof(struct ip, ip_dst);
    405 		nwords = sizeof(struct in_addr) / sizeof(uint32_t);
    406 		break;
    407 	case AF_INET6:
    408 		maxmask = 128;
    409 		off = (opts & MATCH_SRC) ?
    410 		    offsetof(struct ip6_hdr, ip6_src) :
    411 		    offsetof(struct ip6_hdr, ip6_dst);
    412 		nwords = sizeof(struct in6_addr) / sizeof(uint32_t);
    413 		break;
    414 	default:
    415 		abort();
    416 	}
    417 
    418 	/* Ensure address family. */
    419 	fetch_l3(ctx, af, 0);
    420 
    421 	length = (mask == NPF_NO_NETMASK) ? maxmask : mask;
    422 
    423 	/* CAUTION: BPF operates in host byte-order. */
    424 	for (u_int i = 0; i < nwords; i++) {
    425 		const u_int woff = i * sizeof(uint32_t);
    426 		uint32_t word = ntohl(awords[i]);
    427 		uint32_t wordmask;
    428 
    429 		if (length >= 32) {
    430 			/* The mask is a full word - do not apply it. */
    431 			wordmask = 0;
    432 			length -= 32;
    433 		} else if (length) {
    434 			wordmask = 0xffffffff << (32 - length);
    435 			length = 0;
    436 		} else {
    437 			/* The mask became zero - skip the rest. */
    438 			break;
    439 		}
    440 
    441 		/* A <- IP address (or one word of it) */
    442 		struct bpf_insn insns_ip[] = {
    443 			BPF_STMT(BPF_LD+BPF_W+BPF_ABS, off + woff),
    444 		};
    445 		add_insns(ctx, insns_ip, __arraycount(insns_ip));
    446 
    447 		/* A <- (A & MASK) */
    448 		if (wordmask) {
    449 			struct bpf_insn insns_mask[] = {
    450 				BPF_STMT(BPF_ALU+BPF_AND+BPF_K, wordmask),
    451 			};
    452 			add_insns(ctx, insns_mask, __arraycount(insns_mask));
    453 		}
    454 
    455 		/* A == expected-IP-word ? */
    456 		struct bpf_insn insns_cmp[] = {
    457 			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, word, 0, JUMP_MAGIC),
    458 		};
    459 		add_insns(ctx, insns_cmp, __arraycount(insns_cmp));
    460 	}
    461 
    462 	uint32_t mwords[] = {
    463 		(opts & MATCH_SRC) ? BM_SRC_CIDR: BM_DST_CIDR, 6,
    464 		af, mask, awords[0], awords[1], awords[2], awords[3],
    465 	};
    466 	done_block(ctx, mwords, sizeof(mwords));
    467 }
    468 
    469 /*
    470  * npfctl_bpf_ports: code block to match TCP/UDP port range.
    471  *
    472  * => Port numbers shall be in the network byte order.
    473  */
    474 void
    475 npfctl_bpf_ports(npf_bpf_t *ctx, u_int opts, in_port_t from, in_port_t to)
    476 {
    477 	const u_int sport_off = offsetof(struct udphdr, uh_sport);
    478 	const u_int dport_off = offsetof(struct udphdr, uh_dport);
    479 	u_int off;
    480 
    481 	/* TCP and UDP port offsets are the same. */
    482 	assert(sport_off == offsetof(struct tcphdr, th_sport));
    483 	assert(dport_off == offsetof(struct tcphdr, th_dport));
    484 	assert(ctx->flags & CHECKED_L4);
    485 
    486 	assert(((opts & MATCH_SRC) != 0) ^ ((opts & MATCH_DST) != 0));
    487 	off = (opts & MATCH_SRC) ? sport_off : dport_off;
    488 
    489 	/* X <- IP header length */
    490 	fetch_l3(ctx, AF_UNSPEC, X_EQ_L4OFF);
    491 
    492 	struct bpf_insn insns_fetch[] = {
    493 		/* A <- port */
    494 		BPF_STMT(BPF_LD+BPF_H+BPF_IND, off),
    495 	};
    496 	add_insns(ctx, insns_fetch, __arraycount(insns_fetch));
    497 
    498 	/* CAUTION: BPF operates in host byte-order. */
    499 	from = ntohs(from);
    500 	to = ntohs(to);
    501 
    502 	if (from == to) {
    503 		/* Single port case. */
    504 		struct bpf_insn insns_port[] = {
    505 			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, from, 0, JUMP_MAGIC),
    506 		};
    507 		add_insns(ctx, insns_port, __arraycount(insns_port));
    508 	} else {
    509 		/* Port range case. */
    510 		struct bpf_insn insns_range[] = {
    511 			BPF_JUMP(BPF_JMP+BPF_JGE+BPF_K, from, 0, JUMP_MAGIC),
    512 			BPF_JUMP(BPF_JMP+BPF_JGT+BPF_K, to, JUMP_MAGIC, 0),
    513 		};
    514 		add_insns(ctx, insns_range, __arraycount(insns_range));
    515 	}
    516 
    517 	uint32_t mwords[] = {
    518 		opts & MATCH_SRC ? BM_SRC_PORTS : BM_DST_PORTS, 2, from, to
    519 	};
    520 	done_block(ctx, mwords, sizeof(mwords));
    521 }
    522 
    523 /*
    524  * npfctl_bpf_tcpfl: code block to match TCP flags.
    525  */
    526 void
    527 npfctl_bpf_tcpfl(npf_bpf_t *ctx, uint8_t tf, uint8_t tf_mask, bool checktcp)
    528 {
    529 	const u_int tcpfl_off = offsetof(struct tcphdr, th_flags);
    530 	const bool usingmask = tf_mask != tf;
    531 
    532 	/* X <- IP header length */
    533 	fetch_l3(ctx, AF_UNSPEC, X_EQ_L4OFF);
    534 	if (checktcp) {
    535 		const u_int jf = usingmask ? 3 : 2;
    536 		assert(ctx->ingroup == false);
    537 
    538 		/* A <- L4 protocol; A == TCP?  If not, jump out. */
    539 		struct bpf_insn insns_tcp[] = {
    540 			BPF_STMT(BPF_LD+BPF_W+BPF_MEM, BPF_MW_L4PROTO),
    541 			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, IPPROTO_TCP, 0, jf),
    542 		};
    543 		add_insns(ctx, insns_tcp, __arraycount(insns_tcp));
    544 	} else {
    545 		assert(ctx->flags & CHECKED_L4);
    546 	}
    547 
    548 	struct bpf_insn insns_tf[] = {
    549 		/* A <- TCP flags */
    550 		BPF_STMT(BPF_LD+BPF_B+BPF_IND, tcpfl_off),
    551 	};
    552 	add_insns(ctx, insns_tf, __arraycount(insns_tf));
    553 
    554 	if (usingmask) {
    555 		/* A <- (A & mask) */
    556 		struct bpf_insn insns_mask[] = {
    557 			BPF_STMT(BPF_ALU+BPF_AND+BPF_K, tf_mask),
    558 		};
    559 		add_insns(ctx, insns_mask, __arraycount(insns_mask));
    560 	}
    561 
    562 	struct bpf_insn insns_cmp[] = {
    563 		/* A == expected-TCP-flags? */
    564 		BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, tf, 0, JUMP_MAGIC),
    565 	};
    566 	add_insns(ctx, insns_cmp, __arraycount(insns_cmp));
    567 
    568 	if (!checktcp) {
    569 		uint32_t mwords[] = { BM_TCPFL, 2, tf, tf_mask};
    570 		done_block(ctx, mwords, sizeof(mwords));
    571 	}
    572 }
    573 
    574 /*
    575  * npfctl_bpf_icmp: code block to match ICMP type and/or code.
    576  * Note: suitable both for the ICMPv4 and ICMPv6.
    577  */
    578 void
    579 npfctl_bpf_icmp(npf_bpf_t *ctx, int type, int code)
    580 {
    581 	const u_int type_off = offsetof(struct icmp, icmp_type);
    582 	const u_int code_off = offsetof(struct icmp, icmp_code);
    583 
    584 	assert(ctx->flags & CHECKED_L4);
    585 	assert(offsetof(struct icmp6_hdr, icmp6_type) == type_off);
    586 	assert(offsetof(struct icmp6_hdr, icmp6_code) == code_off);
    587 	assert(type != -1 || code != -1);
    588 
    589 	/* X <- IP header length */
    590 	fetch_l3(ctx, AF_UNSPEC, X_EQ_L4OFF);
    591 
    592 	if (type != -1) {
    593 		struct bpf_insn insns_type[] = {
    594 			BPF_STMT(BPF_LD+BPF_B+BPF_IND, type_off),
    595 			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, type, 0, JUMP_MAGIC),
    596 		};
    597 		add_insns(ctx, insns_type, __arraycount(insns_type));
    598 
    599 		uint32_t mwords[] = { BM_ICMP_TYPE, 1, type };
    600 		done_block(ctx, mwords, sizeof(mwords));
    601 	}
    602 
    603 	if (code != -1) {
    604 		struct bpf_insn insns_code[] = {
    605 			BPF_STMT(BPF_LD+BPF_B+BPF_IND, code_off),
    606 			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, code, 0, JUMP_MAGIC),
    607 		};
    608 		add_insns(ctx, insns_code, __arraycount(insns_code));
    609 
    610 		uint32_t mwords[] = { BM_ICMP_CODE, 1, code };
    611 		done_block(ctx, mwords, sizeof(mwords));
    612 	}
    613 }
    614 
    615 #define	SRC_FLAG_BIT	(1U << 31)
    616 
    617 /*
    618  * npfctl_bpf_table: code block to match source/destination IP address
    619  * against NPF table specified by ID.
    620  */
    621 void
    622 npfctl_bpf_table(npf_bpf_t *ctx, u_int opts, u_int tid)
    623 {
    624 	const bool src = (opts & MATCH_SRC) != 0;
    625 
    626 	struct bpf_insn insns_table[] = {
    627 		BPF_STMT(BPF_LD+BPF_IMM, (src ? SRC_FLAG_BIT : 0) | tid),
    628 		BPF_STMT(BPF_MISC+BPF_COP, NPF_COP_TABLE),
    629 		BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0, JUMP_MAGIC, 0),
    630 	};
    631 	add_insns(ctx, insns_table, __arraycount(insns_table));
    632 
    633 	uint32_t mwords[] = { src ? BM_SRC_TABLE: BM_DST_TABLE, 1, tid };
    634 	done_block(ctx, mwords, sizeof(mwords));
    635 }
    636