npf_bpf_comp.c revision 1.11 1 /*-
2 * Copyright (c) 2010-2014 The NetBSD Foundation, Inc.
3 * All rights reserved.
4 *
5 * This material is based upon work partially supported by The
6 * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
19 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
21 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 * POSSIBILITY OF SUCH DAMAGE.
28 */
29
30 /*
31 * BPF byte-code generation for NPF rules.
32 */
33
34 #include <sys/cdefs.h>
35 __RCSID("$NetBSD: npf_bpf_comp.c,v 1.11 2018/09/29 14:41:36 rmind Exp $");
36
37 #include <stdlib.h>
38 #include <stdbool.h>
39 #include <stddef.h>
40 #include <string.h>
41 #include <inttypes.h>
42 #include <err.h>
43 #include <assert.h>
44
45 #include <netinet/in.h>
46 #include <netinet/in_systm.h>
47 #define __FAVOR_BSD
48 #include <netinet/ip.h>
49 #include <netinet/ip6.h>
50 #include <netinet/udp.h>
51 #include <netinet/tcp.h>
52 #include <netinet/ip_icmp.h>
53 #include <netinet/icmp6.h>
54
55 #include <net/bpf.h>
56
57 #include "npfctl.h"
58
59 /*
60 * Note: clear X_EQ_L4OFF when register X is invalidated i.e. it stores
61 * something other than L4 header offset. Generally, when BPF_LDX is used.
62 */
63 #define FETCHED_L3 0x01
64 #define CHECKED_L4 0x02
65 #define X_EQ_L4OFF 0x04
66
67 struct npf_bpf {
68 /*
69 * BPF program code, the allocated length (in bytes), the number
70 * of logical blocks and the flags.
71 */
72 struct bpf_program prog;
73 size_t alen;
74 u_int nblocks;
75 sa_family_t af;
76 uint32_t flags;
77
78 /* The current group offset and block number. */
79 bool ingroup;
80 u_int goff;
81 u_int gblock;
82
83 /* BPF marks, allocated length and the real length. */
84 uint32_t * marks;
85 size_t malen;
86 size_t mlen;
87 };
88
89 /*
90 * NPF success and failure values to be returned from BPF.
91 */
92 #define NPF_BPF_SUCCESS ((u_int)-1)
93 #define NPF_BPF_FAILURE 0
94
95 /*
96 * Magic value to indicate the failure path, which is fixed up on completion.
97 * Note: this is the longest jump offset in BPF, since the offset is one byte.
98 */
99 #define JUMP_MAGIC 0xff
100
101 /* Reduce re-allocations by expanding in 64 byte blocks. */
102 #define ALLOC_MASK (64 - 1)
103 #define ALLOC_ROUND(x) (((x) + ALLOC_MASK) & ~ALLOC_MASK)
104
105 #ifndef IPV6_VERSION
106 #define IPV6_VERSION 0x60
107 #endif
108
109 npf_bpf_t *
110 npfctl_bpf_create(void)
111 {
112 return ecalloc(1, sizeof(npf_bpf_t));
113 }
114
115 static void
116 fixup_jumps(npf_bpf_t *ctx, u_int start, u_int end, bool swap)
117 {
118 struct bpf_program *bp = &ctx->prog;
119
120 for (u_int i = start; i < end; i++) {
121 struct bpf_insn *insn = &bp->bf_insns[i];
122 const u_int fail_off = end - i;
123
124 if (fail_off >= JUMP_MAGIC) {
125 errx(EXIT_FAILURE, "BPF generation error: "
126 "the number of instructions is over the limit");
127 }
128 if (BPF_CLASS(insn->code) != BPF_JMP) {
129 continue;
130 }
131 if (swap) {
132 uint8_t jt = insn->jt;
133 insn->jt = insn->jf;
134 insn->jf = jt;
135 }
136 if (insn->jt == JUMP_MAGIC)
137 insn->jt = fail_off;
138 if (insn->jf == JUMP_MAGIC)
139 insn->jf = fail_off;
140 }
141 }
142
143 static void
144 add_insns(npf_bpf_t *ctx, struct bpf_insn *insns, size_t count)
145 {
146 struct bpf_program *bp = &ctx->prog;
147 size_t offset, len, reqlen;
148
149 /* Note: bf_len is the count of instructions. */
150 offset = bp->bf_len * sizeof(struct bpf_insn);
151 len = count * sizeof(struct bpf_insn);
152
153 /* Ensure the memory buffer for the program. */
154 reqlen = ALLOC_ROUND(offset + len);
155 if (reqlen > ctx->alen) {
156 bp->bf_insns = erealloc(bp->bf_insns, reqlen);
157 ctx->alen = reqlen;
158 }
159
160 /* Add the code block. */
161 memcpy((uint8_t *)bp->bf_insns + offset, insns, len);
162 bp->bf_len += count;
163 }
164
165 static void
166 done_raw_block(npf_bpf_t *ctx, const uint32_t *m, size_t len)
167 {
168 size_t reqlen, nargs = m[1];
169
170 if ((len / sizeof(uint32_t) - 2) != nargs) {
171 errx(EXIT_FAILURE, "invalid BPF block description");
172 }
173 reqlen = ALLOC_ROUND(ctx->mlen + len);
174 if (reqlen > ctx->malen) {
175 ctx->marks = erealloc(ctx->marks, reqlen);
176 ctx->malen = reqlen;
177 }
178 memcpy((uint8_t *)ctx->marks + ctx->mlen, m, len);
179 ctx->mlen += len;
180 }
181
182 static void
183 done_block(npf_bpf_t *ctx, const uint32_t *m, size_t len)
184 {
185 done_raw_block(ctx, m, len);
186 ctx->nblocks++;
187 }
188
189 struct bpf_program *
190 npfctl_bpf_complete(npf_bpf_t *ctx)
191 {
192 struct bpf_program *bp = &ctx->prog;
193 const u_int retoff = bp->bf_len;
194
195 /* No instructions (optimised out). */
196 if (!bp->bf_len)
197 return NULL;
198
199 /* Add the return fragment (success and failure paths). */
200 struct bpf_insn insns_ret[] = {
201 BPF_STMT(BPF_RET+BPF_K, NPF_BPF_SUCCESS),
202 BPF_STMT(BPF_RET+BPF_K, NPF_BPF_FAILURE),
203 };
204 add_insns(ctx, insns_ret, __arraycount(insns_ret));
205
206 /* Fixup all jumps to the main failure path. */
207 fixup_jumps(ctx, 0, retoff, false);
208
209 return &ctx->prog;
210 }
211
212 const void *
213 npfctl_bpf_bmarks(npf_bpf_t *ctx, size_t *len)
214 {
215 *len = ctx->mlen;
216 return ctx->marks;
217 }
218
219 void
220 npfctl_bpf_destroy(npf_bpf_t *ctx)
221 {
222 free(ctx->prog.bf_insns);
223 free(ctx->marks);
224 free(ctx);
225 }
226
227 /*
228 * npfctl_bpf_group: begin a logical group. It merely uses logical
229 * disjunction (OR) for compares within the group.
230 */
231 void
232 npfctl_bpf_group(npf_bpf_t *ctx)
233 {
234 struct bpf_program *bp = &ctx->prog;
235
236 assert(ctx->goff == 0);
237 assert(ctx->gblock == 0);
238
239 ctx->goff = bp->bf_len;
240 ctx->gblock = ctx->nblocks;
241 ctx->ingroup = true;
242 }
243
244 void
245 npfctl_bpf_endgroup(npf_bpf_t *ctx, bool invert)
246 {
247 struct bpf_program *bp = &ctx->prog;
248 const size_t curoff = bp->bf_len;
249
250 /* If there are no blocks or only one - nothing to do. */
251 if (!invert && (ctx->nblocks - ctx->gblock) <= 1) {
252 ctx->goff = ctx->gblock = 0;
253 return;
254 }
255
256 /*
257 * If inverting, then prepend a jump over the statement below.
258 * If matching, jump will jump below and the fail will happen.
259 */
260 if (invert) {
261 struct bpf_insn insns_ret[] = {
262 BPF_STMT(BPF_JMP+BPF_JA, 1),
263 };
264 add_insns(ctx, insns_ret, __arraycount(insns_ret));
265 }
266
267 /*
268 * Append a failure return as a fall-through i.e. if there is
269 * no match within the group.
270 */
271 struct bpf_insn insns_ret[] = {
272 BPF_STMT(BPF_RET+BPF_K, NPF_BPF_FAILURE),
273 };
274 add_insns(ctx, insns_ret, __arraycount(insns_ret));
275
276 /*
277 * Adjust jump offsets: on match - jump outside the group i.e.
278 * to the current offset. Otherwise, jump to the next instruction
279 * which would lead to the fall-through code above if none matches.
280 */
281 fixup_jumps(ctx, ctx->goff, curoff, true);
282 ctx->goff = ctx->gblock = 0;
283 }
284
285 static void
286 fetch_l3(npf_bpf_t *ctx, sa_family_t af, u_int flags)
287 {
288 u_int ver;
289
290 switch (af) {
291 case AF_INET:
292 ver = IPVERSION;
293 break;
294 case AF_INET6:
295 ver = IPV6_VERSION >> 4;
296 break;
297 case AF_UNSPEC:
298 ver = 0;
299 break;
300 default:
301 abort();
302 }
303
304 /*
305 * The memory store is populated with:
306 * - BPF_MW_IPVER: IP version (4 or 6).
307 * - BPF_MW_L4OFF: L4 header offset.
308 * - BPF_MW_L4PROTO: L4 protocol.
309 */
310 if ((ctx->flags & FETCHED_L3) == 0 || (af && ctx->af == 0)) {
311 const uint8_t jt = ver ? 0 : JUMP_MAGIC;
312 const uint8_t jf = ver ? JUMP_MAGIC : 0;
313 bool ingroup = ctx->ingroup;
314
315 /*
316 * L3 block cannot be inserted in the middle of a group.
317 * In fact, it never is. Check and start the group after.
318 */
319 if (ingroup) {
320 assert(ctx->nblocks == ctx->gblock);
321 npfctl_bpf_endgroup(ctx, false);
322 }
323
324 /*
325 * A <- IP version; A == expected-version?
326 * If no particular version specified, check for non-zero.
327 */
328 struct bpf_insn insns_af[] = {
329 BPF_STMT(BPF_LD+BPF_W+BPF_MEM, BPF_MW_IPVER),
330 BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, ver, jt, jf),
331 };
332 add_insns(ctx, insns_af, __arraycount(insns_af));
333 ctx->flags |= FETCHED_L3;
334 ctx->af = af;
335
336 if (af) {
337 uint32_t mwords[] = { BM_IPVER, 1, af };
338 done_raw_block(ctx, mwords, sizeof(mwords));
339 }
340 if (ingroup) {
341 npfctl_bpf_group(ctx);
342 }
343
344 } else if (af && af != ctx->af) {
345 errx(EXIT_FAILURE, "address family mismatch");
346 }
347
348 if ((flags & X_EQ_L4OFF) != 0 && (ctx->flags & X_EQ_L4OFF) == 0) {
349 /* X <- IP header length */
350 struct bpf_insn insns_hlen[] = {
351 BPF_STMT(BPF_LDX+BPF_MEM, BPF_MW_L4OFF),
352 };
353 add_insns(ctx, insns_hlen, __arraycount(insns_hlen));
354 ctx->flags |= X_EQ_L4OFF;
355 }
356 }
357
358 /*
359 * npfctl_bpf_proto: code block to match IP version and L4 protocol.
360 */
361 void
362 npfctl_bpf_proto(npf_bpf_t *ctx, sa_family_t af, int proto)
363 {
364 assert(af != AF_UNSPEC || proto != -1);
365
366 /* Note: fails if IP version does not match. */
367 fetch_l3(ctx, af, 0);
368 if (proto == -1) {
369 return;
370 }
371
372 struct bpf_insn insns_proto[] = {
373 /* A <- L4 protocol; A == expected-protocol? */
374 BPF_STMT(BPF_LD+BPF_W+BPF_MEM, BPF_MW_L4PROTO),
375 BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, proto, 0, JUMP_MAGIC),
376 };
377 add_insns(ctx, insns_proto, __arraycount(insns_proto));
378
379 uint32_t mwords[] = { BM_PROTO, 1, proto };
380 done_block(ctx, mwords, sizeof(mwords));
381 ctx->flags |= CHECKED_L4;
382 }
383
384 /*
385 * npfctl_bpf_cidr: code block to match IPv4 or IPv6 CIDR.
386 *
387 * => IP address shall be in the network byte order.
388 */
389 void
390 npfctl_bpf_cidr(npf_bpf_t *ctx, u_int opts, sa_family_t af,
391 const npf_addr_t *addr, const npf_netmask_t mask)
392 {
393 const uint32_t *awords = (const uint32_t *)addr;
394 u_int nwords, length, maxmask, off;
395
396 assert(((opts & MATCH_SRC) != 0) ^ ((opts & MATCH_DST) != 0));
397 assert((mask && mask <= NPF_MAX_NETMASK) || mask == NPF_NO_NETMASK);
398
399 switch (af) {
400 case AF_INET:
401 maxmask = 32;
402 off = (opts & MATCH_SRC) ?
403 offsetof(struct ip, ip_src) :
404 offsetof(struct ip, ip_dst);
405 nwords = sizeof(struct in_addr) / sizeof(uint32_t);
406 break;
407 case AF_INET6:
408 maxmask = 128;
409 off = (opts & MATCH_SRC) ?
410 offsetof(struct ip6_hdr, ip6_src) :
411 offsetof(struct ip6_hdr, ip6_dst);
412 nwords = sizeof(struct in6_addr) / sizeof(uint32_t);
413 break;
414 default:
415 abort();
416 }
417
418 /* Ensure address family. */
419 fetch_l3(ctx, af, 0);
420
421 length = (mask == NPF_NO_NETMASK) ? maxmask : mask;
422
423 /* CAUTION: BPF operates in host byte-order. */
424 for (u_int i = 0; i < nwords; i++) {
425 const u_int woff = i * sizeof(uint32_t);
426 uint32_t word = ntohl(awords[i]);
427 uint32_t wordmask;
428
429 if (length >= 32) {
430 /* The mask is a full word - do not apply it. */
431 wordmask = 0;
432 length -= 32;
433 } else if (length) {
434 wordmask = 0xffffffff << (32 - length);
435 length = 0;
436 } else {
437 /* The mask became zero - skip the rest. */
438 break;
439 }
440
441 /* A <- IP address (or one word of it) */
442 struct bpf_insn insns_ip[] = {
443 BPF_STMT(BPF_LD+BPF_W+BPF_ABS, off + woff),
444 };
445 add_insns(ctx, insns_ip, __arraycount(insns_ip));
446
447 /* A <- (A & MASK) */
448 if (wordmask) {
449 struct bpf_insn insns_mask[] = {
450 BPF_STMT(BPF_ALU+BPF_AND+BPF_K, wordmask),
451 };
452 add_insns(ctx, insns_mask, __arraycount(insns_mask));
453 }
454
455 /* A == expected-IP-word ? */
456 struct bpf_insn insns_cmp[] = {
457 BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, word, 0, JUMP_MAGIC),
458 };
459 add_insns(ctx, insns_cmp, __arraycount(insns_cmp));
460 }
461
462 uint32_t mwords[] = {
463 (opts & MATCH_SRC) ? BM_SRC_CIDR: BM_DST_CIDR, 6,
464 af, mask, awords[0], awords[1], awords[2], awords[3],
465 };
466 done_block(ctx, mwords, sizeof(mwords));
467 }
468
469 /*
470 * npfctl_bpf_ports: code block to match TCP/UDP port range.
471 *
472 * => Port numbers shall be in the network byte order.
473 */
474 void
475 npfctl_bpf_ports(npf_bpf_t *ctx, u_int opts, in_port_t from, in_port_t to)
476 {
477 const u_int sport_off = offsetof(struct udphdr, uh_sport);
478 const u_int dport_off = offsetof(struct udphdr, uh_dport);
479 u_int off;
480
481 /* TCP and UDP port offsets are the same. */
482 assert(sport_off == offsetof(struct tcphdr, th_sport));
483 assert(dport_off == offsetof(struct tcphdr, th_dport));
484 assert(ctx->flags & CHECKED_L4);
485
486 assert(((opts & MATCH_SRC) != 0) ^ ((opts & MATCH_DST) != 0));
487 off = (opts & MATCH_SRC) ? sport_off : dport_off;
488
489 /* X <- IP header length */
490 fetch_l3(ctx, AF_UNSPEC, X_EQ_L4OFF);
491
492 struct bpf_insn insns_fetch[] = {
493 /* A <- port */
494 BPF_STMT(BPF_LD+BPF_H+BPF_IND, off),
495 };
496 add_insns(ctx, insns_fetch, __arraycount(insns_fetch));
497
498 /* CAUTION: BPF operates in host byte-order. */
499 from = ntohs(from);
500 to = ntohs(to);
501
502 if (from == to) {
503 /* Single port case. */
504 struct bpf_insn insns_port[] = {
505 BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, from, 0, JUMP_MAGIC),
506 };
507 add_insns(ctx, insns_port, __arraycount(insns_port));
508 } else {
509 /* Port range case. */
510 struct bpf_insn insns_range[] = {
511 BPF_JUMP(BPF_JMP+BPF_JGE+BPF_K, from, 0, JUMP_MAGIC),
512 BPF_JUMP(BPF_JMP+BPF_JGT+BPF_K, to, JUMP_MAGIC, 0),
513 };
514 add_insns(ctx, insns_range, __arraycount(insns_range));
515 }
516
517 uint32_t mwords[] = {
518 opts & MATCH_SRC ? BM_SRC_PORTS : BM_DST_PORTS, 2, from, to
519 };
520 done_block(ctx, mwords, sizeof(mwords));
521 }
522
523 /*
524 * npfctl_bpf_tcpfl: code block to match TCP flags.
525 */
526 void
527 npfctl_bpf_tcpfl(npf_bpf_t *ctx, uint8_t tf, uint8_t tf_mask, bool checktcp)
528 {
529 const u_int tcpfl_off = offsetof(struct tcphdr, th_flags);
530 const bool usingmask = tf_mask != tf;
531
532 /* X <- IP header length */
533 fetch_l3(ctx, AF_UNSPEC, X_EQ_L4OFF);
534 if (checktcp) {
535 const u_int jf = usingmask ? 3 : 2;
536 assert(ctx->ingroup == false);
537
538 /* A <- L4 protocol; A == TCP? If not, jump out. */
539 struct bpf_insn insns_tcp[] = {
540 BPF_STMT(BPF_LD+BPF_W+BPF_MEM, BPF_MW_L4PROTO),
541 BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, IPPROTO_TCP, 0, jf),
542 };
543 add_insns(ctx, insns_tcp, __arraycount(insns_tcp));
544 } else {
545 assert(ctx->flags & CHECKED_L4);
546 }
547
548 struct bpf_insn insns_tf[] = {
549 /* A <- TCP flags */
550 BPF_STMT(BPF_LD+BPF_B+BPF_IND, tcpfl_off),
551 };
552 add_insns(ctx, insns_tf, __arraycount(insns_tf));
553
554 if (usingmask) {
555 /* A <- (A & mask) */
556 struct bpf_insn insns_mask[] = {
557 BPF_STMT(BPF_ALU+BPF_AND+BPF_K, tf_mask),
558 };
559 add_insns(ctx, insns_mask, __arraycount(insns_mask));
560 }
561
562 struct bpf_insn insns_cmp[] = {
563 /* A == expected-TCP-flags? */
564 BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, tf, 0, JUMP_MAGIC),
565 };
566 add_insns(ctx, insns_cmp, __arraycount(insns_cmp));
567
568 if (!checktcp) {
569 uint32_t mwords[] = { BM_TCPFL, 2, tf, tf_mask};
570 done_block(ctx, mwords, sizeof(mwords));
571 }
572 }
573
574 /*
575 * npfctl_bpf_icmp: code block to match ICMP type and/or code.
576 * Note: suitable both for the ICMPv4 and ICMPv6.
577 */
578 void
579 npfctl_bpf_icmp(npf_bpf_t *ctx, int type, int code)
580 {
581 const u_int type_off = offsetof(struct icmp, icmp_type);
582 const u_int code_off = offsetof(struct icmp, icmp_code);
583
584 assert(ctx->flags & CHECKED_L4);
585 assert(offsetof(struct icmp6_hdr, icmp6_type) == type_off);
586 assert(offsetof(struct icmp6_hdr, icmp6_code) == code_off);
587 assert(type != -1 || code != -1);
588
589 /* X <- IP header length */
590 fetch_l3(ctx, AF_UNSPEC, X_EQ_L4OFF);
591
592 if (type != -1) {
593 struct bpf_insn insns_type[] = {
594 BPF_STMT(BPF_LD+BPF_B+BPF_IND, type_off),
595 BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, type, 0, JUMP_MAGIC),
596 };
597 add_insns(ctx, insns_type, __arraycount(insns_type));
598
599 uint32_t mwords[] = { BM_ICMP_TYPE, 1, type };
600 done_block(ctx, mwords, sizeof(mwords));
601 }
602
603 if (code != -1) {
604 struct bpf_insn insns_code[] = {
605 BPF_STMT(BPF_LD+BPF_B+BPF_IND, code_off),
606 BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, code, 0, JUMP_MAGIC),
607 };
608 add_insns(ctx, insns_code, __arraycount(insns_code));
609
610 uint32_t mwords[] = { BM_ICMP_CODE, 1, code };
611 done_block(ctx, mwords, sizeof(mwords));
612 }
613 }
614
615 #define SRC_FLAG_BIT (1U << 31)
616
617 /*
618 * npfctl_bpf_table: code block to match source/destination IP address
619 * against NPF table specified by ID.
620 */
621 void
622 npfctl_bpf_table(npf_bpf_t *ctx, u_int opts, u_int tid)
623 {
624 const bool src = (opts & MATCH_SRC) != 0;
625
626 struct bpf_insn insns_table[] = {
627 BPF_STMT(BPF_LD+BPF_IMM, (src ? SRC_FLAG_BIT : 0) | tid),
628 BPF_STMT(BPF_MISC+BPF_COP, NPF_COP_TABLE),
629 BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0, JUMP_MAGIC, 0),
630 };
631 add_insns(ctx, insns_table, __arraycount(insns_table));
632
633 uint32_t mwords[] = { src ? BM_SRC_TABLE: BM_DST_TABLE, 1, tid };
634 done_block(ctx, mwords, sizeof(mwords));
635 }
636