npf_bpf_comp.c revision 1.8.2.1 1 /* $NetBSD: npf_bpf_comp.c,v 1.8.2.1 2017/01/07 08:57:00 pgoyette Exp $ */
2
3 /*-
4 * Copyright (c) 2010-2014 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This material is based upon work partially supported by The
8 * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * BPF byte-code generation for NPF rules.
34 */
35
36 #include <sys/cdefs.h>
37 __RCSID("$NetBSD: npf_bpf_comp.c,v 1.8.2.1 2017/01/07 08:57:00 pgoyette Exp $");
38
39 #include <stdlib.h>
40 #include <stdbool.h>
41 #include <stddef.h>
42 #include <string.h>
43 #include <inttypes.h>
44 #include <err.h>
45 #include <assert.h>
46
47 #include <netinet/in.h>
48 #include <netinet/in_systm.h>
49 #define __FAVOR_BSD
50 #include <netinet/ip.h>
51 #include <netinet/ip6.h>
52 #include <netinet/udp.h>
53 #include <netinet/tcp.h>
54 #include <netinet/ip_icmp.h>
55 #include <netinet/icmp6.h>
56
57 #include <net/bpf.h>
58
59 #include "npfctl.h"
60
61 /*
62 * Note: clear X_EQ_L4OFF when register X is invalidated i.e. it stores
63 * something other than L4 header offset. Generally, when BPF_LDX is used.
64 */
65 #define FETCHED_L3 0x01
66 #define CHECKED_L4 0x02
67 #define X_EQ_L4OFF 0x04
68
69 struct npf_bpf {
70 /*
71 * BPF program code, the allocated length (in bytes), the number
72 * of logical blocks and the flags.
73 */
74 struct bpf_program prog;
75 size_t alen;
76 u_int nblocks;
77 sa_family_t af;
78 uint32_t flags;
79
80 /* The current group offset and block number. */
81 bool ingroup;
82 u_int goff;
83 u_int gblock;
84
85 /* BPF marks, allocated length and the real length. */
86 uint32_t * marks;
87 size_t malen;
88 size_t mlen;
89 };
90
91 /*
92 * NPF success and failure values to be returned from BPF.
93 */
94 #define NPF_BPF_SUCCESS ((u_int)-1)
95 #define NPF_BPF_FAILURE 0
96
97 /*
98 * Magic value to indicate the failure path, which is fixed up on completion.
99 * Note: this is the longest jump offset in BPF, since the offset is one byte.
100 */
101 #define JUMP_MAGIC 0xff
102
103 /* Reduce re-allocations by expanding in 64 byte blocks. */
104 #define ALLOC_MASK (64 - 1)
105 #define ALLOC_ROUND(x) (((x) + ALLOC_MASK) & ~ALLOC_MASK)
106
107 #ifndef IPV6_VERSION
108 #define IPV6_VERSION 0x60
109 #endif
110
111 npf_bpf_t *
112 npfctl_bpf_create(void)
113 {
114 return ecalloc(1, sizeof(npf_bpf_t));
115 }
116
117 static void
118 fixup_jumps(npf_bpf_t *ctx, u_int start, u_int end, bool swap)
119 {
120 struct bpf_program *bp = &ctx->prog;
121
122 for (u_int i = start; i < end; i++) {
123 struct bpf_insn *insn = &bp->bf_insns[i];
124 const u_int fail_off = end - i;
125
126 if (fail_off >= JUMP_MAGIC) {
127 errx(EXIT_FAILURE, "BPF generation error: "
128 "the number of instructions is over the limit");
129 }
130 if (BPF_CLASS(insn->code) != BPF_JMP) {
131 continue;
132 }
133 if (swap) {
134 uint8_t jt = insn->jt;
135 insn->jt = insn->jf;
136 insn->jf = jt;
137 }
138 if (insn->jt == JUMP_MAGIC)
139 insn->jt = fail_off;
140 if (insn->jf == JUMP_MAGIC)
141 insn->jf = fail_off;
142 }
143 }
144
145 static void
146 add_insns(npf_bpf_t *ctx, struct bpf_insn *insns, size_t count)
147 {
148 struct bpf_program *bp = &ctx->prog;
149 size_t offset, len, reqlen;
150
151 /* Note: bf_len is the count of instructions. */
152 offset = bp->bf_len * sizeof(struct bpf_insn);
153 len = count * sizeof(struct bpf_insn);
154
155 /* Ensure the memory buffer for the program. */
156 reqlen = ALLOC_ROUND(offset + len);
157 if (reqlen > ctx->alen) {
158 bp->bf_insns = erealloc(bp->bf_insns, reqlen);
159 ctx->alen = reqlen;
160 }
161
162 /* Add the code block. */
163 memcpy((uint8_t *)bp->bf_insns + offset, insns, len);
164 bp->bf_len += count;
165 }
166
167 static void
168 done_raw_block(npf_bpf_t *ctx, const uint32_t *m, size_t len)
169 {
170 size_t reqlen, nargs = m[1];
171
172 if ((len / sizeof(uint32_t) - 2) != nargs) {
173 errx(EXIT_FAILURE, "invalid BPF block description");
174 }
175 reqlen = ALLOC_ROUND(ctx->mlen + len);
176 if (reqlen > ctx->malen) {
177 ctx->marks = erealloc(ctx->marks, reqlen);
178 ctx->malen = reqlen;
179 }
180 memcpy((uint8_t *)ctx->marks + ctx->mlen, m, len);
181 ctx->mlen += len;
182 }
183
184 static void
185 done_block(npf_bpf_t *ctx, const uint32_t *m, size_t len)
186 {
187 done_raw_block(ctx, m, len);
188 ctx->nblocks++;
189 }
190
191 struct bpf_program *
192 npfctl_bpf_complete(npf_bpf_t *ctx)
193 {
194 struct bpf_program *bp = &ctx->prog;
195 const u_int retoff = bp->bf_len;
196
197 /* No instructions (optimised out). */
198 if (!bp->bf_len)
199 return NULL;
200
201 /* Add the return fragment (success and failure paths). */
202 struct bpf_insn insns_ret[] = {
203 BPF_STMT(BPF_RET+BPF_K, NPF_BPF_SUCCESS),
204 BPF_STMT(BPF_RET+BPF_K, NPF_BPF_FAILURE),
205 };
206 add_insns(ctx, insns_ret, __arraycount(insns_ret));
207
208 /* Fixup all jumps to the main failure path. */
209 fixup_jumps(ctx, 0, retoff, false);
210
211 return &ctx->prog;
212 }
213
214 const void *
215 npfctl_bpf_bmarks(npf_bpf_t *ctx, size_t *len)
216 {
217 *len = ctx->mlen;
218 return ctx->marks;
219 }
220
221 void
222 npfctl_bpf_destroy(npf_bpf_t *ctx)
223 {
224 free(ctx->prog.bf_insns);
225 free(ctx->marks);
226 free(ctx);
227 }
228
229 /*
230 * npfctl_bpf_group: begin a logical group. It merely uses logical
231 * disjunction (OR) for compares within the group.
232 */
233 void
234 npfctl_bpf_group(npf_bpf_t *ctx)
235 {
236 struct bpf_program *bp = &ctx->prog;
237
238 assert(ctx->goff == 0);
239 assert(ctx->gblock == 0);
240
241 ctx->goff = bp->bf_len;
242 ctx->gblock = ctx->nblocks;
243 ctx->ingroup = true;
244 }
245
246 void
247 npfctl_bpf_endgroup(npf_bpf_t *ctx, bool invert)
248 {
249 struct bpf_program *bp = &ctx->prog;
250 const size_t curoff = bp->bf_len;
251
252 /* If there are no blocks or only one - nothing to do. */
253 if (!invert && (ctx->nblocks - ctx->gblock) <= 1) {
254 ctx->goff = ctx->gblock = 0;
255 return;
256 }
257
258 /*
259 * If inverting, then prepend a jump over the statement below.
260 * If matching, jump will jump below and the fail will happen.
261 */
262 if (invert) {
263 struct bpf_insn insns_ret[] = {
264 BPF_STMT(BPF_JMP+BPF_JA, 1),
265 };
266 add_insns(ctx, insns_ret, __arraycount(insns_ret));
267 }
268
269 /*
270 * Append a failure return as a fall-through i.e. if there is
271 * no match within the group.
272 */
273 struct bpf_insn insns_ret[] = {
274 BPF_STMT(BPF_RET+BPF_K, NPF_BPF_FAILURE),
275 };
276 add_insns(ctx, insns_ret, __arraycount(insns_ret));
277
278 /*
279 * Adjust jump offsets: on match - jump outside the group i.e.
280 * to the current offset. Otherwise, jump to the next instruction
281 * which would lead to the fall-through code above if none matches.
282 */
283 fixup_jumps(ctx, ctx->goff, curoff, true);
284 ctx->goff = ctx->gblock = 0;
285 }
286
287 static void
288 fetch_l3(npf_bpf_t *ctx, sa_family_t af, u_int flags)
289 {
290 u_int ver;
291
292 switch (af) {
293 case AF_INET:
294 ver = IPVERSION;
295 break;
296 case AF_INET6:
297 ver = IPV6_VERSION >> 4;
298 break;
299 case AF_UNSPEC:
300 ver = 0;
301 break;
302 default:
303 abort();
304 }
305
306 /*
307 * The memory store is populated with:
308 * - BPF_MW_IPVER: IP version (4 or 6).
309 * - BPF_MW_L4OFF: L4 header offset.
310 * - BPF_MW_L4PROTO: L4 protocol.
311 */
312 if ((ctx->flags & FETCHED_L3) == 0 || (af && ctx->af == 0)) {
313 const uint8_t jt = ver ? 0 : JUMP_MAGIC;
314 const uint8_t jf = ver ? JUMP_MAGIC : 0;
315 bool ingroup = ctx->ingroup;
316
317 /*
318 * L3 block cannot be inserted in the middle of a group.
319 * In fact, it never is. Check and start the group after.
320 */
321 if (ingroup) {
322 assert(ctx->nblocks == ctx->gblock);
323 npfctl_bpf_endgroup(ctx, false);
324 }
325
326 /*
327 * A <- IP version; A == expected-version?
328 * If no particular version specified, check for non-zero.
329 */
330 struct bpf_insn insns_af[] = {
331 BPF_STMT(BPF_LD+BPF_W+BPF_MEM, BPF_MW_IPVER),
332 BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, ver, jt, jf),
333 };
334 add_insns(ctx, insns_af, __arraycount(insns_af));
335 ctx->flags |= FETCHED_L3;
336 ctx->af = af;
337
338 if (af) {
339 uint32_t mwords[] = { BM_IPVER, 1, af };
340 done_raw_block(ctx, mwords, sizeof(mwords));
341 }
342 if (ingroup) {
343 npfctl_bpf_group(ctx);
344 }
345
346 } else if (af && af != ctx->af) {
347 errx(EXIT_FAILURE, "address family mismatch");
348 }
349
350 if ((flags & X_EQ_L4OFF) != 0 && (ctx->flags & X_EQ_L4OFF) == 0) {
351 /* X <- IP header length */
352 struct bpf_insn insns_hlen[] = {
353 BPF_STMT(BPF_LDX+BPF_MEM, BPF_MW_L4OFF),
354 };
355 add_insns(ctx, insns_hlen, __arraycount(insns_hlen));
356 ctx->flags |= X_EQ_L4OFF;
357 }
358 }
359
360 /*
361 * npfctl_bpf_proto: code block to match IP version and L4 protocol.
362 */
363 void
364 npfctl_bpf_proto(npf_bpf_t *ctx, sa_family_t af, int proto)
365 {
366 assert(af != AF_UNSPEC || proto != -1);
367
368 /* Note: fails if IP version does not match. */
369 fetch_l3(ctx, af, 0);
370 if (proto == -1) {
371 return;
372 }
373
374 struct bpf_insn insns_proto[] = {
375 /* A <- L4 protocol; A == expected-protocol? */
376 BPF_STMT(BPF_LD+BPF_W+BPF_MEM, BPF_MW_L4PROTO),
377 BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, proto, 0, JUMP_MAGIC),
378 };
379 add_insns(ctx, insns_proto, __arraycount(insns_proto));
380
381 uint32_t mwords[] = { BM_PROTO, 1, proto };
382 done_block(ctx, mwords, sizeof(mwords));
383 ctx->flags |= CHECKED_L4;
384 }
385
386 /*
387 * npfctl_bpf_cidr: code block to match IPv4 or IPv6 CIDR.
388 *
389 * => IP address shall be in the network byte order.
390 */
391 void
392 npfctl_bpf_cidr(npf_bpf_t *ctx, u_int opts, sa_family_t af,
393 const npf_addr_t *addr, const npf_netmask_t mask)
394 {
395 const uint32_t *awords = (const uint32_t *)addr;
396 u_int nwords, length, maxmask, off;
397
398 assert(((opts & MATCH_SRC) != 0) ^ ((opts & MATCH_DST) != 0));
399 assert((mask && mask <= NPF_MAX_NETMASK) || mask == NPF_NO_NETMASK);
400
401 switch (af) {
402 case AF_INET:
403 maxmask = 32;
404 off = (opts & MATCH_SRC) ?
405 offsetof(struct ip, ip_src) :
406 offsetof(struct ip, ip_dst);
407 nwords = sizeof(struct in_addr) / sizeof(uint32_t);
408 break;
409 case AF_INET6:
410 maxmask = 128;
411 off = (opts & MATCH_SRC) ?
412 offsetof(struct ip6_hdr, ip6_src) :
413 offsetof(struct ip6_hdr, ip6_dst);
414 nwords = sizeof(struct in6_addr) / sizeof(uint32_t);
415 break;
416 default:
417 abort();
418 }
419
420 /* Ensure address family. */
421 fetch_l3(ctx, af, 0);
422
423 length = (mask == NPF_NO_NETMASK) ? maxmask : mask;
424
425 /* CAUTION: BPF operates in host byte-order. */
426 for (u_int i = 0; i < nwords; i++) {
427 const u_int woff = i * sizeof(uint32_t);
428 uint32_t word = ntohl(awords[i]);
429 uint32_t wordmask;
430
431 if (length >= 32) {
432 /* The mask is a full word - do not apply it. */
433 wordmask = 0;
434 length -= 32;
435 } else if (length) {
436 wordmask = 0xffffffff << (32 - length);
437 length = 0;
438 } else {
439 /* The mask became zero - skip the rest. */
440 break;
441 }
442
443 /* A <- IP address (or one word of it) */
444 struct bpf_insn insns_ip[] = {
445 BPF_STMT(BPF_LD+BPF_W+BPF_ABS, off + woff),
446 };
447 add_insns(ctx, insns_ip, __arraycount(insns_ip));
448
449 /* A <- (A & MASK) */
450 if (wordmask) {
451 struct bpf_insn insns_mask[] = {
452 BPF_STMT(BPF_ALU+BPF_AND+BPF_K, wordmask),
453 };
454 add_insns(ctx, insns_mask, __arraycount(insns_mask));
455 }
456
457 /* A == expected-IP-word ? */
458 struct bpf_insn insns_cmp[] = {
459 BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, word, 0, JUMP_MAGIC),
460 };
461 add_insns(ctx, insns_cmp, __arraycount(insns_cmp));
462 }
463
464 uint32_t mwords[] = {
465 (opts & MATCH_SRC) ? BM_SRC_CIDR: BM_DST_CIDR, 6,
466 af, mask, awords[0], awords[1], awords[2], awords[3],
467 };
468 done_block(ctx, mwords, sizeof(mwords));
469 }
470
471 /*
472 * npfctl_bpf_ports: code block to match TCP/UDP port range.
473 *
474 * => Port numbers shall be in the network byte order.
475 */
476 void
477 npfctl_bpf_ports(npf_bpf_t *ctx, u_int opts, in_port_t from, in_port_t to)
478 {
479 const u_int sport_off = offsetof(struct udphdr, uh_sport);
480 const u_int dport_off = offsetof(struct udphdr, uh_dport);
481 u_int off;
482
483 /* TCP and UDP port offsets are the same. */
484 assert(sport_off == offsetof(struct tcphdr, th_sport));
485 assert(dport_off == offsetof(struct tcphdr, th_dport));
486 assert(ctx->flags & CHECKED_L4);
487
488 assert(((opts & MATCH_SRC) != 0) ^ ((opts & MATCH_DST) != 0));
489 off = (opts & MATCH_SRC) ? sport_off : dport_off;
490
491 /* X <- IP header length */
492 fetch_l3(ctx, AF_UNSPEC, X_EQ_L4OFF);
493
494 struct bpf_insn insns_fetch[] = {
495 /* A <- port */
496 BPF_STMT(BPF_LD+BPF_H+BPF_IND, off),
497 };
498 add_insns(ctx, insns_fetch, __arraycount(insns_fetch));
499
500 /* CAUTION: BPF operates in host byte-order. */
501 from = ntohs(from);
502 to = ntohs(to);
503
504 if (from == to) {
505 /* Single port case. */
506 struct bpf_insn insns_port[] = {
507 BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, from, 0, JUMP_MAGIC),
508 };
509 add_insns(ctx, insns_port, __arraycount(insns_port));
510 } else {
511 /* Port range case. */
512 struct bpf_insn insns_range[] = {
513 BPF_JUMP(BPF_JMP+BPF_JGE+BPF_K, from, 0, JUMP_MAGIC),
514 BPF_JUMP(BPF_JMP+BPF_JGT+BPF_K, to, JUMP_MAGIC, 0),
515 };
516 add_insns(ctx, insns_range, __arraycount(insns_range));
517 }
518
519 uint32_t mwords[] = {
520 opts & MATCH_SRC ? BM_SRC_PORTS : BM_DST_PORTS, 2, from, to
521 };
522 done_block(ctx, mwords, sizeof(mwords));
523 }
524
525 /*
526 * npfctl_bpf_tcpfl: code block to match TCP flags.
527 */
528 void
529 npfctl_bpf_tcpfl(npf_bpf_t *ctx, uint8_t tf, uint8_t tf_mask, bool checktcp)
530 {
531 const u_int tcpfl_off = offsetof(struct tcphdr, th_flags);
532 const bool usingmask = tf_mask != tf;
533
534 /* X <- IP header length */
535 fetch_l3(ctx, AF_UNSPEC, X_EQ_L4OFF);
536 if (checktcp) {
537 const u_int jf = usingmask ? 3 : 2;
538 assert(ctx->ingroup == false);
539
540 /* A <- L4 protocol; A == TCP? If not, jump out. */
541 struct bpf_insn insns_tcp[] = {
542 BPF_STMT(BPF_LD+BPF_W+BPF_MEM, BPF_MW_L4PROTO),
543 BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, IPPROTO_TCP, 0, jf),
544 };
545 add_insns(ctx, insns_tcp, __arraycount(insns_tcp));
546 } else {
547 assert(ctx->flags & CHECKED_L4);
548 }
549
550 struct bpf_insn insns_tf[] = {
551 /* A <- TCP flags */
552 BPF_STMT(BPF_LD+BPF_B+BPF_IND, tcpfl_off),
553 };
554 add_insns(ctx, insns_tf, __arraycount(insns_tf));
555
556 if (usingmask) {
557 /* A <- (A & mask) */
558 struct bpf_insn insns_mask[] = {
559 BPF_STMT(BPF_ALU+BPF_AND+BPF_K, tf_mask),
560 };
561 add_insns(ctx, insns_mask, __arraycount(insns_mask));
562 }
563
564 struct bpf_insn insns_cmp[] = {
565 /* A == expected-TCP-flags? */
566 BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, tf, 0, JUMP_MAGIC),
567 };
568 add_insns(ctx, insns_cmp, __arraycount(insns_cmp));
569
570 if (!checktcp) {
571 uint32_t mwords[] = { BM_TCPFL, 2, tf, tf_mask};
572 done_block(ctx, mwords, sizeof(mwords));
573 }
574 }
575
576 /*
577 * npfctl_bpf_icmp: code block to match ICMP type and/or code.
578 * Note: suitable both for the ICMPv4 and ICMPv6.
579 */
580 void
581 npfctl_bpf_icmp(npf_bpf_t *ctx, int type, int code)
582 {
583 const u_int type_off = offsetof(struct icmp, icmp_type);
584 const u_int code_off = offsetof(struct icmp, icmp_code);
585
586 assert(ctx->flags & CHECKED_L4);
587 assert(offsetof(struct icmp6_hdr, icmp6_type) == type_off);
588 assert(offsetof(struct icmp6_hdr, icmp6_code) == code_off);
589 assert(type != -1 || code != -1);
590
591 /* X <- IP header length */
592 fetch_l3(ctx, AF_UNSPEC, X_EQ_L4OFF);
593
594 if (type != -1) {
595 struct bpf_insn insns_type[] = {
596 BPF_STMT(BPF_LD+BPF_B+BPF_IND, type_off),
597 BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, type, 0, JUMP_MAGIC),
598 };
599 add_insns(ctx, insns_type, __arraycount(insns_type));
600
601 uint32_t mwords[] = { BM_ICMP_TYPE, 1, type };
602 done_block(ctx, mwords, sizeof(mwords));
603 }
604
605 if (code != -1) {
606 struct bpf_insn insns_code[] = {
607 BPF_STMT(BPF_LD+BPF_B+BPF_IND, code_off),
608 BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, code, 0, JUMP_MAGIC),
609 };
610 add_insns(ctx, insns_code, __arraycount(insns_code));
611
612 uint32_t mwords[] = { BM_ICMP_CODE, 1, code };
613 done_block(ctx, mwords, sizeof(mwords));
614 }
615 }
616
617 #define SRC_FLAG_BIT (1U << 31)
618
619 /*
620 * npfctl_bpf_table: code block to match source/destination IP address
621 * against NPF table specified by ID.
622 */
623 void
624 npfctl_bpf_table(npf_bpf_t *ctx, u_int opts, u_int tid)
625 {
626 const bool src = (opts & MATCH_SRC) != 0;
627
628 struct bpf_insn insns_table[] = {
629 BPF_STMT(BPF_LD+BPF_IMM, (src ? SRC_FLAG_BIT : 0) | tid),
630 BPF_STMT(BPF_MISC+BPF_COP, NPF_COP_TABLE),
631 BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0, JUMP_MAGIC, 0),
632 };
633 add_insns(ctx, insns_table, __arraycount(insns_table));
634
635 uint32_t mwords[] = { src ? BM_SRC_TABLE: BM_DST_TABLE, 1, tid };
636 done_block(ctx, mwords, sizeof(mwords));
637 }
638