npf_build.c revision 1.13.2.3 1 /* $NetBSD: npf_build.c,v 1.13.2.3 2013/06/23 06:29:05 tls Exp $ */
2
3 /*-
4 * Copyright (c) 2011-2013 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This material is based upon work partially supported by The
8 * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * npfctl(8) building of the configuration.
34 */
35
36 #include <sys/cdefs.h>
37 __RCSID("$NetBSD: npf_build.c,v 1.13.2.3 2013/06/23 06:29:05 tls Exp $");
38
39 #include <sys/types.h>
40 #include <sys/ioctl.h>
41
42 #include <stdlib.h>
43 #include <inttypes.h>
44 #include <string.h>
45 #include <errno.h>
46 #include <err.h>
47
48 #include "npfctl.h"
49
50 #define MAX_RULE_NESTING 16
51
52 static nl_config_t * npf_conf = NULL;
53 static bool npf_debug = false;
54 static nl_rule_t * the_rule = NULL;
55
56 static nl_rule_t * current_group[MAX_RULE_NESTING];
57 static unsigned rule_nesting_level = 0;
58 static nl_rule_t * defgroup = NULL;
59
60 void
61 npfctl_config_init(bool debug)
62 {
63 npf_conf = npf_config_create();
64 if (npf_conf == NULL) {
65 errx(EXIT_FAILURE, "npf_config_create failed");
66 }
67 npf_debug = debug;
68 memset(current_group, 0, sizeof(current_group));
69 }
70
71 int
72 npfctl_config_send(int fd, const char *out)
73 {
74 int error;
75
76 if (out) {
77 _npf_config_setsubmit(npf_conf, out);
78 printf("\nSaving to %s\n", out);
79 }
80 if (!defgroup) {
81 errx(EXIT_FAILURE, "default group was not defined");
82 }
83 npf_rule_insert(npf_conf, NULL, defgroup);
84 error = npf_config_submit(npf_conf, fd);
85 if (error) {
86 nl_error_t ne;
87 _npf_config_error(npf_conf, &ne);
88 npfctl_print_error(&ne);
89 }
90 npf_config_destroy(npf_conf);
91 return error;
92 }
93
94 nl_config_t *
95 npfctl_config_ref(void)
96 {
97 return npf_conf;
98 }
99
100 nl_rule_t *
101 npfctl_rule_ref(void)
102 {
103 return the_rule;
104 }
105
106 unsigned long
107 npfctl_debug_addif(const char *ifname)
108 {
109 char tname[] = "npftest";
110 const size_t tnamelen = sizeof(tname) - 1;
111
112 if (!npf_debug || strncmp(ifname, tname, tnamelen) != 0) {
113 return 0;
114 }
115 struct ifaddrs ifa = {
116 .ifa_name = __UNCONST(ifname),
117 .ifa_flags = 0
118 };
119 unsigned long if_idx = atol(ifname + tnamelen) + 1;
120 _npf_debug_addif(npf_conf, &ifa, if_idx);
121 return if_idx;
122 }
123
124 bool
125 npfctl_table_exists_p(const char *id)
126 {
127 return npf_table_exists_p(npf_conf, atoi(id));
128 }
129
130 static in_port_t
131 npfctl_get_singleport(const npfvar_t *vp)
132 {
133 port_range_t *pr;
134 in_port_t *port;
135
136 if (npfvar_get_count(vp) > 1) {
137 yyerror("multiple ports are not valid");
138 }
139 pr = npfvar_get_data(vp, NPFVAR_PORT_RANGE, 0);
140 if (pr->pr_start != pr->pr_end) {
141 yyerror("port range is not valid");
142 }
143 port = &pr->pr_start;
144 return *port;
145 }
146
147 static fam_addr_mask_t *
148 npfctl_get_singlefam(const npfvar_t *vp)
149 {
150 if (npfvar_get_count(vp) > 1) {
151 yyerror("multiple addresses are not valid");
152 }
153 return npfvar_get_data(vp, NPFVAR_FAM, 0);
154 }
155
156 static bool
157 npfctl_build_fam(nc_ctx_t *nc, sa_family_t family,
158 fam_addr_mask_t *fam, int opts)
159 {
160 /*
161 * If family is specified, address does not match it and the
162 * address is extracted from the interface, then simply ignore.
163 * Otherwise, address of invalid family was passed manually.
164 */
165 if (family != AF_UNSPEC && family != fam->fam_family) {
166 if (!fam->fam_ifindex) {
167 yyerror("specified address is not of the required "
168 "family %d", family);
169 }
170 return false;
171 }
172
173 /*
174 * Optimise 0.0.0.0/0 case to be NOP. Otherwise, address with
175 * zero mask would never match and therefore is not valid.
176 */
177 if (fam->fam_mask == 0) {
178 npf_addr_t zero;
179
180 memset(&zero, 0, sizeof(npf_addr_t));
181 if (memcmp(&fam->fam_addr, &zero, sizeof(npf_addr_t))) {
182 yyerror("filter criterion would never match");
183 }
184 return false;
185 }
186
187 switch (fam->fam_family) {
188 case AF_INET:
189 npfctl_gennc_v4cidr(nc, opts,
190 &fam->fam_addr, fam->fam_mask);
191 break;
192 case AF_INET6:
193 npfctl_gennc_v6cidr(nc, opts,
194 &fam->fam_addr, fam->fam_mask);
195 break;
196 default:
197 yyerror("family %d is not supported", fam->fam_family);
198 }
199 return true;
200 }
201
202 static void
203 npfctl_build_vars(nc_ctx_t *nc, sa_family_t family, npfvar_t *vars, int opts)
204 {
205 const int type = npfvar_get_type(vars, 0);
206 size_t i;
207
208 npfctl_ncgen_group(nc);
209 for (i = 0; i < npfvar_get_count(vars); i++) {
210 void *data = npfvar_get_data(vars, type, i);
211 assert(data != NULL);
212
213 switch (type) {
214 case NPFVAR_FAM: {
215 fam_addr_mask_t *fam = data;
216 npfctl_build_fam(nc, family, fam, opts);
217 break;
218 }
219 case NPFVAR_PORT_RANGE: {
220 port_range_t *pr = data;
221 if (opts & NC_MATCH_TCP) {
222 npfctl_gennc_ports(nc, opts & ~NC_MATCH_UDP,
223 pr->pr_start, pr->pr_end);
224 }
225 if (opts & NC_MATCH_UDP) {
226 npfctl_gennc_ports(nc, opts & ~NC_MATCH_TCP,
227 pr->pr_start, pr->pr_end);
228 }
229 break;
230 }
231 case NPFVAR_TABLE: {
232 u_int tid = atoi(data);
233 npfctl_gennc_tbl(nc, opts, tid);
234 break;
235 }
236 default:
237 assert(false);
238 }
239 }
240 npfctl_ncgen_endgroup(nc);
241 }
242
243 static int
244 npfctl_build_proto(nc_ctx_t *nc, sa_family_t family,
245 const opt_proto_t *op, bool noaddrs, bool noports)
246 {
247 const npfvar_t *popts = op->op_opts;
248 const int proto = op->op_proto;
249 int pflag = 0;
250
251 switch (proto) {
252 case IPPROTO_TCP:
253 pflag = NC_MATCH_TCP;
254 if (!popts) {
255 break;
256 }
257 assert(npfvar_get_count(popts) == 2);
258
259 /* Build TCP flags block (optional). */
260 uint8_t *tf, *tf_mask;
261
262 tf = npfvar_get_data(popts, NPFVAR_TCPFLAG, 0);
263 tf_mask = npfvar_get_data(popts, NPFVAR_TCPFLAG, 1);
264 npfctl_gennc_tcpfl(nc, *tf, *tf_mask);
265 noports = false;
266 break;
267 case IPPROTO_UDP:
268 pflag = NC_MATCH_UDP;
269 break;
270 case IPPROTO_ICMP:
271 /*
272 * Build ICMP block.
273 */
274 if (!noports) {
275 goto invop;
276 }
277 assert(npfvar_get_count(popts) == 2);
278
279 int *icmp_type, *icmp_code;
280 icmp_type = npfvar_get_data(popts, NPFVAR_ICMP, 0);
281 icmp_code = npfvar_get_data(popts, NPFVAR_ICMP, 1);
282 npfctl_gennc_icmp(nc, *icmp_type, *icmp_code);
283 noports = false;
284 break;
285 case IPPROTO_ICMPV6:
286 /*
287 * Build ICMP block.
288 */
289 if (!noports) {
290 goto invop;
291 }
292 assert(npfvar_get_count(popts) == 2);
293
294 int *icmp6_type, *icmp6_code;
295 icmp6_type = npfvar_get_data(popts, NPFVAR_ICMP6, 0);
296 icmp6_code = npfvar_get_data(popts, NPFVAR_ICMP6, 1);
297 npfctl_gennc_icmp6(nc, *icmp6_type, *icmp6_code);
298 noports = false;
299 break;
300 case -1:
301 pflag = NC_MATCH_TCP | NC_MATCH_UDP;
302 noports = false;
303 break;
304 default:
305 /*
306 * No filter options are supported for other protocols,
307 * only the IP addresses are allowed.
308 */
309 if (noports) {
310 break;
311 }
312 invop:
313 yyerror("invalid filter options for protocol %d", proto);
314 }
315
316 /*
317 * Build the protocol block, unless other blocks will implicitly
318 * perform the family/protocol checks for us.
319 */
320 if ((family != AF_UNSPEC && noaddrs) || (proto != -1 && noports)) {
321 uint8_t addrlen;
322
323 switch (family) {
324 case AF_INET:
325 addrlen = sizeof(struct in_addr);
326 break;
327 case AF_INET6:
328 addrlen = sizeof(struct in6_addr);
329 break;
330 default:
331 addrlen = 0;
332 }
333 npfctl_gennc_proto(nc,
334 noaddrs ? addrlen : 0,
335 noports ? proto : 0xff);
336 }
337 return pflag;
338 }
339
340 static bool
341 npfctl_build_ncode(nl_rule_t *rl, sa_family_t family, const opt_proto_t *op,
342 const filt_opts_t *fopts, bool invert)
343 {
344 const addr_port_t *apfrom = &fopts->fo_from;
345 const addr_port_t *apto = &fopts->fo_to;
346 const int proto = op->op_proto;
347 bool noaddrs, noports;
348 nc_ctx_t *nc;
349 void *code;
350 size_t len;
351
352 /*
353 * If none specified, no n-code.
354 */
355 noaddrs = !apfrom->ap_netaddr && !apto->ap_netaddr;
356 noports = !apfrom->ap_portrange && !apto->ap_portrange;
357 if (family == AF_UNSPEC && proto == -1 && !op->op_opts &&
358 noaddrs && noports)
359 return false;
360
361 int srcflag = NC_MATCH_SRC;
362 int dstflag = NC_MATCH_DST;
363
364 if (invert) {
365 srcflag = NC_MATCH_DST;
366 dstflag = NC_MATCH_SRC;
367 }
368
369 nc = npfctl_ncgen_create();
370
371 /* Build layer 4 protocol blocks. */
372 int pflag = npfctl_build_proto(nc, family, op, noaddrs, noports);
373
374 /* Build IP address blocks. */
375 npfctl_build_vars(nc, family, apfrom->ap_netaddr, srcflag);
376 npfctl_build_vars(nc, family, apto->ap_netaddr, dstflag);
377
378 /* Build port-range blocks. */
379 npfctl_build_vars(nc, family, apfrom->ap_portrange, srcflag | pflag);
380 npfctl_build_vars(nc, family, apto->ap_portrange, dstflag | pflag);
381
382 /*
383 * Complete n-code (destroys the context) and pass to the rule.
384 */
385 code = npfctl_ncgen_complete(nc, &len);
386 if (npf_debug) {
387 extern char *yytext;
388 extern int yylineno;
389
390 printf("RULE AT LINE %d\n", yylineno - (int)(*yytext == '\n'));
391 npfctl_ncgen_print(code, len);
392 }
393 assert(code && len > 0);
394
395 if (npf_rule_setcode(rl, NPF_CODE_NC, code, len) == -1) {
396 errx(EXIT_FAILURE, "npf_rule_setcode failed");
397 }
398 free(code);
399 return true;
400 }
401
402 static void
403 npfctl_build_rpcall(nl_rproc_t *rp, const char *name, npfvar_t *args)
404 {
405 npf_extmod_t *extmod;
406 nl_ext_t *extcall;
407 int error;
408
409 extmod = npf_extmod_get(name, &extcall);
410 if (extmod == NULL) {
411 yyerror("unknown rule procedure '%s'", name);
412 }
413
414 for (size_t i = 0; i < npfvar_get_count(args); i++) {
415 const char *param, *value;
416 proc_param_t *p;
417
418 p = npfvar_get_data(args, NPFVAR_PROC_PARAM, i);
419 param = p->pp_param;
420 value = p->pp_value;
421
422 error = npf_extmod_param(extmod, extcall, param, value);
423 switch (error) {
424 case EINVAL:
425 yyerror("invalid parameter '%s'", param);
426 default:
427 break;
428 }
429 }
430 error = npf_rproc_extcall(rp, extcall);
431 if (error) {
432 yyerror(error == EEXIST ?
433 "duplicate procedure call" : "unexpected error");
434 }
435 }
436
437 /*
438 * npfctl_build_rproc: create and insert a rule procedure.
439 */
440 void
441 npfctl_build_rproc(const char *name, npfvar_t *procs)
442 {
443 nl_rproc_t *rp;
444 size_t i;
445
446 rp = npf_rproc_create(name);
447 if (rp == NULL) {
448 errx(EXIT_FAILURE, "%s failed", __func__);
449 }
450 npf_rproc_insert(npf_conf, rp);
451
452 for (i = 0; i < npfvar_get_count(procs); i++) {
453 proc_call_t *pc = npfvar_get_data(procs, NPFVAR_PROC, i);
454 npfctl_build_rpcall(rp, pc->pc_name, pc->pc_opts);
455 }
456 }
457
458 void
459 npfctl_build_maprset(const char *name, int attr, u_int if_idx)
460 {
461 const int attr_di = (NPF_RULE_IN | NPF_RULE_OUT);
462 nl_rule_t *rl;
463
464 /* If no direction is not specified, then both. */
465 if ((attr & attr_di) == 0) {
466 attr |= attr_di;
467 }
468 /* Allow only "in/out" attributes. */
469 attr = NPF_RULE_GROUP | NPF_RULE_GROUP | (attr & attr_di);
470 rl = npf_rule_create(name, attr, if_idx);
471 npf_nat_insert(npf_conf, rl, NPF_PRI_LAST);
472 }
473
474 /*
475 * npfctl_build_group: create a group, insert into the global ruleset,
476 * update the current group pointer and increase the nesting level.
477 */
478 void
479 npfctl_build_group(const char *name, int attr, u_int if_idx, bool def)
480 {
481 const int attr_di = (NPF_RULE_IN | NPF_RULE_OUT);
482 nl_rule_t *rl;
483
484 if (def || (attr & attr_di) == 0) {
485 attr |= attr_di;
486 }
487
488 rl = npf_rule_create(name, attr | NPF_RULE_GROUP, if_idx);
489 npf_rule_setprio(rl, NPF_PRI_LAST);
490 if (def) {
491 if (defgroup) {
492 yyerror("multiple default groups are not valid");
493 }
494 if (rule_nesting_level) {
495 yyerror("default group can only be at the top level");
496 }
497 defgroup = rl;
498 } else {
499 nl_rule_t *cg = current_group[rule_nesting_level];
500 npf_rule_insert(npf_conf, cg, rl);
501 }
502
503 /* Set the current group and increase the nesting level. */
504 if (rule_nesting_level >= MAX_RULE_NESTING) {
505 yyerror("rule nesting limit reached");
506 }
507 current_group[++rule_nesting_level] = rl;
508 }
509
510 void
511 npfctl_build_group_end(void)
512 {
513 assert(rule_nesting_level > 0);
514 current_group[rule_nesting_level--] = NULL;
515 }
516
517 /*
518 * npfctl_build_rule: create a rule, build n-code from filter options,
519 * if any, and insert into the ruleset of current group, or set the rule.
520 */
521 void
522 npfctl_build_rule(uint32_t attr, u_int if_idx, sa_family_t family,
523 const opt_proto_t *op, const filt_opts_t *fopts, const char *rproc)
524 {
525 nl_rule_t *rl;
526
527 attr |= (npf_conf ? 0 : NPF_RULE_DYNAMIC);
528
529 rl = npf_rule_create(NULL, attr, if_idx);
530 npfctl_build_ncode(rl, family, op, fopts, false);
531 if (rproc) {
532 npf_rule_setproc(rl, rproc);
533 }
534
535 if (npf_conf) {
536 nl_rule_t *cg = current_group[rule_nesting_level];
537
538 if (rproc && !npf_rproc_exists_p(npf_conf, rproc)) {
539 yyerror("rule procedure '%s' is not defined", rproc);
540 }
541 assert(cg != NULL);
542 npf_rule_setprio(rl, NPF_PRI_LAST);
543 npf_rule_insert(npf_conf, cg, rl);
544 } else {
545 /* We have parsed a single rule - set it. */
546 the_rule = rl;
547 }
548 }
549
550 /*
551 * npfctl_build_nat: create a single NAT policy of a specified
552 * type with a given filter options.
553 */
554 static void
555 npfctl_build_nat(int type, u_int if_idx, sa_family_t family,
556 const addr_port_t *ap, const filt_opts_t *fopts, bool binat)
557 {
558 const opt_proto_t op = { .op_proto = -1, .op_opts = NULL };
559 fam_addr_mask_t *am;
560 in_port_t port;
561 nl_nat_t *nat;
562
563 if (!ap->ap_netaddr) {
564 yyerror("%s network segment is not specified",
565 type == NPF_NATIN ? "inbound" : "outbound");
566 }
567 am = npfctl_get_singlefam(ap->ap_netaddr);
568 if (am->fam_family != family) {
569 yyerror("IPv6 NAT is not supported");
570 }
571
572 switch (type) {
573 case NPF_NATOUT:
574 /*
575 * Outbound NAT (or source NAT) policy, usually used for the
576 * traditional NAPT. If it is a half for bi-directional NAT,
577 * then no port translation with mapping.
578 */
579 nat = npf_nat_create(NPF_NATOUT, !binat ?
580 (NPF_NAT_PORTS | NPF_NAT_PORTMAP) : 0,
581 if_idx, &am->fam_addr, am->fam_family, 0);
582 break;
583 case NPF_NATIN:
584 /*
585 * Inbound NAT (or destination NAT). Unless bi-NAT, a port
586 * must be specified, since it has to be redirection.
587 */
588 port = 0;
589 if (!binat) {
590 if (!ap->ap_portrange) {
591 yyerror("inbound port is not specified");
592 }
593 port = npfctl_get_singleport(ap->ap_portrange);
594 }
595 nat = npf_nat_create(NPF_NATIN, !binat ? NPF_NAT_PORTS : 0,
596 if_idx, &am->fam_addr, am->fam_family, port);
597 break;
598 default:
599 assert(false);
600 }
601
602 npfctl_build_ncode(nat, family, &op, fopts, false);
603 npf_nat_insert(npf_conf, nat, NPF_PRI_LAST);
604 }
605
606 /*
607 * npfctl_build_natseg: validate and create NAT policies.
608 */
609 void
610 npfctl_build_natseg(int sd, int type, u_int if_idx, const addr_port_t *ap1,
611 const addr_port_t *ap2, const filt_opts_t *fopts)
612 {
613 sa_family_t af = AF_INET;
614 filt_opts_t imfopts;
615 bool binat;
616
617 if (sd == NPFCTL_NAT_STATIC) {
618 yyerror("static NAT is not yet supported");
619 }
620 assert(sd == NPFCTL_NAT_DYNAMIC);
621 assert(if_idx != 0);
622
623 /*
624 * Bi-directional NAT is a combination of inbound NAT and outbound
625 * NAT policies. Note that the translation address is local IP and
626 * the filter criteria is inverted accordingly.
627 */
628 binat = (NPF_NATIN | NPF_NATOUT) == type;
629
630 /*
631 * If the filter criteria is not specified explicitly, apply implicit
632 * filtering according to the given network segments.
633 *
634 * Note: filled below, depending on the type.
635 */
636 if (__predict_true(!fopts)) {
637 fopts = &imfopts;
638 }
639
640 if (type & NPF_NATIN) {
641 memset(&imfopts, 0, sizeof(filt_opts_t));
642 memcpy(&imfopts.fo_to, ap2, sizeof(addr_port_t));
643 npfctl_build_nat(NPF_NATIN, if_idx, af, ap1, fopts, binat);
644 }
645 if (type & NPF_NATOUT) {
646 memset(&imfopts, 0, sizeof(filt_opts_t));
647 memcpy(&imfopts.fo_from, ap1, sizeof(addr_port_t));
648 npfctl_build_nat(NPF_NATOUT, if_idx, af, ap2, fopts, binat);
649 }
650 }
651
652 /*
653 * npfctl_fill_table: fill NPF table with entries from a specified file.
654 */
655 static void
656 npfctl_fill_table(nl_table_t *tl, u_int type, const char *fname)
657 {
658 char *buf = NULL;
659 int l = 0;
660 FILE *fp;
661 size_t n;
662
663 fp = fopen(fname, "r");
664 if (fp == NULL) {
665 err(EXIT_FAILURE, "open '%s'", fname);
666 }
667 while (l++, getline(&buf, &n, fp) != -1) {
668 fam_addr_mask_t fam;
669 int alen;
670
671 if (*buf == '\n' || *buf == '#') {
672 continue;
673 }
674
675 if (!npfctl_parse_cidr(buf, &fam, &alen)) {
676 errx(EXIT_FAILURE,
677 "%s:%d: invalid table entry", fname, l);
678 }
679 if (type == NPF_TABLE_HASH && fam.fam_mask != NPF_NO_NETMASK) {
680 errx(EXIT_FAILURE,
681 "%s:%d: mask used with the hash table", fname, l);
682 }
683
684 /* Create and add a table entry. */
685 npf_table_add_entry(tl, fam.fam_family,
686 &fam.fam_addr, fam.fam_mask);
687 }
688 if (buf != NULL) {
689 free(buf);
690 }
691 }
692
693 /*
694 * npfctl_build_table: create an NPF table, add to the configuration and,
695 * if required, fill with contents from a file.
696 */
697 void
698 npfctl_build_table(const char *tid, u_int type, const char *fname)
699 {
700 nl_table_t *tl;
701 u_int id;
702
703 id = atoi(tid);
704 tl = npf_table_create(id, type);
705 assert(tl != NULL);
706
707 if (npf_table_insert(npf_conf, tl)) {
708 errx(EXIT_FAILURE, "table '%d' is already defined\n", id);
709 }
710
711 if (fname) {
712 npfctl_fill_table(tl, type, fname);
713 }
714 }
715
716 /*
717 * npfctl_build_alg: create an NPF application level gatewayl and add it
718 * to the configuration.
719 */
720 void
721 npfctl_build_alg(const char *al_name)
722 {
723 if (_npf_alg_load(npf_conf, al_name) != 0) {
724 errx(EXIT_FAILURE, "ALG '%s' already loaded", al_name);
725 }
726 }
727