sunlabel.c revision 1.1 1 /* This file is in the public domain. */
2 /*
3 * Compile-time defines of note:
4 *
5 * S_COMMAND
6 * NO_S_COMMAND
7 * Provide, or don't provide, the S command, which sets
8 * the in-core disklabel (as opposed to the on-disk
9 * disklabel). This depends on <sys/disklabel.h> and
10 * DIOCSDINFO and supporting types as provided by NetBSD.
11 *
12 * GNUC_ATTRIBUTE
13 * NO_GNUC_ATTRIBUTE
14 * Use, or don't use, GNU C's __attribute__ mechanism.
15 * This is presently also overloaded to control use of
16 * __inline__.
17 *
18 * NO_TERMCAP_WIDTH
19 * Never try to use tgetnum() to get the terminal's width.
20 */
21
22 #ifdef DISTRIB
23
24 /* This code compensates for a lack of __progname, by using argv[0]
25 instead. Define DISTRIB if you're on a system with no __progname. */
26 const char *__progname;
27 int main(int, char **);
28 int main_(int, char **);
29 int main(int ac, char **av) { __progname = av[0]; main_(ac,av); }
30 #define main main_
31
32 #endif
33
34 /* If neither S_COMMAND nor NO_S_COMMAND is defined, guess. */
35 #if !defined(S_COMMAND) && !defined(NO_S_COMMAND)
36 #ifdef __NetBSD__
37 #define S_COMMAND
38 #endif
39 #endif
40
41 /* If neither GNUC_ATTRIBUTE nor NO_GNUC_ATTRIBUTE is defined, guess. */
42 #if !defined(GNUC_ATTRIBUTE) && !defined(NO_GNUC_ATTRIBUTE)
43 #if defined(__GNUC__) && \
44 ( (__GNUC__ > 2) || \
45 ( (__GNUC__ == 2) && \
46 defined(__GNUC_MINOR__) && \
47 (__GNUC_MINOR__ >= 7) ) )
48 #define GNUC_ATTRIBUTE
49 #endif
50 #endif
51
52 #include <stdio.h>
53 #include <errno.h>
54 #include <ctype.h>
55 #include <stdlib.h>
56 #include <unistd.h>
57 #include <termcap.h>
58 #include <strings.h>
59 #include <sys/file.h>
60 #include <sys/ioctl.h>
61
62 #ifdef S_COMMAND
63 #include <sys/disklabel.h>
64 #endif
65
66 #ifdef GNUC_ATTRIBUTE
67 #define UNUSED(x) x __attribute__ ((__unused__))
68 #define ATTRIB(x) __attribute__ (x)
69 #define INLINE __inline__
70 #else
71 #define UNUSED(x) x
72 #define ATTRIB(x)
73 #define INLINE
74 #endif
75
76 extern const char *__progname;
77
78 /* NPART is the total number of partitions. This must be <=43, given the
79 amount of space available to store extended partitions. It also must
80 be <=26, given the use of single letters to name partitions. The 8 is
81 the number of `standard' partitions; this arguably should be a #define,
82 since it occurs not only here but scattered throughout the code. */
83 #define NPART 16
84 #define NXPART (NPART-8)
85 #define PARTLETTER(i) ((i)+'a')
86 #define LETTERPART(i) ((i)-'a')
87
88 /* Struct types. */
89 typedef struct field FIELD;
90 typedef struct label LABEL;
91 typedef struct part PART;
92
93 /*
94 * A partition. We keep redundant information around, making sure that
95 * whenever we change one, we keep another constant and update the
96 * third. Which one is which depends. Arguably a partition should
97 * also know its partition number; here, if we need that we cheat,
98 * using (effectively) ptr-&label.partitions[0].
99 */
100 struct part {
101 unsigned int startcyl;
102 unsigned int nblk;
103 unsigned int endcyl;
104 } ;
105
106 /*
107 * A label. As the embedded comments indicate, much of this structure
108 * corresponds directly to Sun's struct dk_label. Some of the values
109 * here are historical holdovers. Apparently really old Suns did
110 * their own sparing in software, so a sector or two per cylinder,
111 * plus a whole cylinder or two at the end, got set aside as spares.
112 * acyl and apc count those spares, and this is also why ncyl and pcyl
113 * both exist. These days the spares generally are hidden from the
114 * host by the disk, and there's no reason not to set
115 * ncyl=pcyl=ceil(device size/spc) and acyl=apc=0.
116 *
117 * Note also that the geometry assumptions behind having nhead and
118 * nsect assume that the sect/trk and trk/cyl values are constant
119 * across the whole drive. The latter is still usually true; the
120 * former isn't. In my experience, you can just put fixed values
121 * here; the basis for software knowing the drive geometry is also
122 * mostly invalid these days anyway. (I just use nhead=32 nsect=64,
123 * which gives me 1M "cylinders", a convenient size.)
124 */
125 struct label {
126 /* BEGIN fields taken directly from struct dk_label */
127 char asciilabel[128];
128 unsigned int rpm; /* Spindle rotation speed - arguably useless now */
129 unsigned int pcyl; /* Physical cylinders */
130 unsigned int apc; /* Alternative sectors per cylinder */
131 unsigned int obs1; /* Obsolete? */
132 unsigned int obs2; /* Obsolete? */
133 unsigned int intrlv; /* Interleave - never anything but 1 IME */
134 unsigned int ncyl; /* Number of usable cylinders */
135 unsigned int acyl; /* Alternative cylinders - pcyl minus ncyl */
136 unsigned int nhead; /* Tracks-per-cylinder (usually # of heads) */
137 unsigned int nsect; /* Sectors-per-track */
138 unsigned int obs3; /* Obsolete? */
139 unsigned int obs4; /* Obsolete? */
140 /* END fields taken directly from struct dk_label */
141 unsigned int spc; /* Sectors per cylinder - nhead*nsect */
142 unsigned int dirty : 1; /* Modified since last read */
143 PART partitions[NPART]; /* The partitions themselves */
144 } ;
145
146 /*
147 * Describes a field in the label.
148 *
149 * tag is a short name for the field, like "apc" or "nsect". loc is a
150 * pointer to the place in the label where it's stored. print is a
151 * function to print the value; the second argument is the current
152 * column number, and the return value is the new current column
153 * number. (This allows print functions to do proper line wrapping.)
154 * chval is called to change a field; the first argument is the
155 * command line portion that contains the new value (in text form).
156 * The chval function is responsible for parsing and error-checking as
157 * well as doing the modification. changed is a function which does
158 * field-specific actions necessary when the field has been changed.
159 * This could be rolled into the chval function, but I believe this
160 * way provides better code sharing.
161 *
162 * Note that while the fields in the label vary in size (8, 16, or 32
163 * bits), we store everything as ints in the label struct, above, and
164 * convert when packing and unpacking. This allows us to have only
165 * one numeric chval function.
166 */
167 struct field {
168 const char *tag;
169 void *loc;
170 int (*print)(FIELD *, int);
171 void (*chval)(const char *, FIELD *);
172 void (*changed)(void);
173 int taglen;
174 } ;
175
176 /* LABEL_MAGIC was chosen by Sun and cannot be trivially changed. */
177 #define LABEL_MAGIC 0xdabe
178 /* LABEL_XMAGIC needs to agree between here and any other code that uses
179 extended partitions (mainly the kernel). */
180 #define LABEL_XMAGIC (0x199d1fe2+8)
181
182 static int diskfd; /* fd on the disk */
183 static const char *diskname; /* name of the disk, for messages */
184 static int readonly; /* true iff it's open RO */
185 static unsigned char labelbuf[512]; /* Buffer holding the label sector */
186 static LABEL label; /* The label itself. */
187 static int fixmagic; /* True iff -fixmagic, ignore bad magic #s */
188 static int fixcksum; /* True iff -fixcksum, ignore bad cksums */
189 static int newlabel; /* True iff -new, ignore all on-disk values */
190 static int quiet; /* True iff -quiet, don't print chatter */
191
192 /*
193 * The various functions that go in the field function pointers. The
194 * _ascii functions are for 128-byte string fields (the ASCII label);
195 * the _int functions are for int-valued fields (everything else).
196 * update_spc is a `changed' function for updating the spc value when
197 * changing one of the two values that make it up.
198 */
199 static int print_ascii(FIELD *, int);
200 static void chval_ascii(const char *, FIELD *);
201 static int print_int(FIELD *, int);
202 static void chval_int(const char *, FIELD *);
203 static void update_spc(void);
204
205 /* The fields themselves. */
206 static FIELD fields[]
207 = { { "ascii", &label.asciilabel[0], print_ascii, chval_ascii, 0 },
208 { "rpm", &label.rpm, print_int, chval_int, 0 },
209 { "pcyl", &label.pcyl, print_int, chval_int, 0 },
210 { "apc", &label.apc, print_int, chval_int, 0 },
211 { "obs1", &label.obs1, print_int, chval_int, 0 },
212 { "obs2", &label.obs2, print_int, chval_int, 0 },
213 { "intrlv", &label.intrlv, print_int, chval_int, 0 },
214 { "ncyl", &label.ncyl, print_int, chval_int, 0 },
215 { "acyl", &label.acyl, print_int, chval_int, 0 },
216 { "nhead", &label.nhead, print_int, chval_int, update_spc },
217 { "nsect", &label.nsect, print_int, chval_int, update_spc },
218 { "obs3", &label.obs3, print_int, chval_int, 0 },
219 { "obs4", &label.obs4, print_int, chval_int, 0 },
220 { 0 } };
221
222 /*
223 * We'd _like_ to use howmany() from the include files, but can't count
224 * on its being present or working.
225 */
226 static INLINE unsigned int how_many(unsigned int, unsigned int)
227 ATTRIB((__const__));
228 static INLINE unsigned int how_many(unsigned int amt, unsigned int unit)
229 {
230 return((amt+unit-1)/unit);
231 }
232
233 /*
234 * Try opening the disk, given a name. If mustsucceed is true, we
235 * "cannot fail"; failures produce gripe-and-exit, and if we return,
236 * our return value is 1. Otherwise, we return 1 on success and 0 on
237 * failure.
238 */
239 static int trydisk(const char *s, int mustsucceed)
240 {
241 int ro;
242
243 ro = 0;
244 diskname = s;
245 diskfd = open(s,O_RDWR,0);
246 if (diskfd < 0)
247 { diskfd = open(s,O_RDWR|O_NDELAY,0);
248 }
249 if (diskfd < 0)
250 { diskfd = open(s,O_RDONLY,0);
251 ro = 1;
252 }
253 if (diskfd < 0)
254 { if (mustsucceed)
255 { fprintf(stderr,"%s: can't open %s: %s\n",__progname,s,strerror(errno));
256 exit(1);
257 }
258 return(0);
259 }
260 if (ro && !quiet) fprintf(stderr,"Note: no write access, label is readonly\n");
261 readonly = ro;
262 return(1);
263 }
264
265 /*
266 * Set the disk device, given the user-supplied string. Note that even
267 * if we malloc, we never free, because either trydisk eventually
268 * succeeds, in which case the string is saved in diskname, or it
269 * fails, in which case we exit and freeing is irrelevant.
270 */
271 static void setdisk(const char *s)
272 {
273 char *tmp;
274
275 if (index(s,'/'))
276 { trydisk(s,1);
277 return;
278 }
279 if (trydisk(s,0)) return;
280 tmp = malloc(strlen(s)+7);
281 sprintf(tmp,"/dev/%s",s);
282 if (trydisk(tmp,0)) return;
283 sprintf(tmp,"/dev/%sc",s);
284 if (trydisk(tmp,0)) return;
285 fprintf(stderr,"%s: can't find device for disk %s\n",__progname,s);
286 exit(1);
287 }
288
289 /*
290 * Handle command-line arguments. We can have at most one non-flag
291 * argument, which is the disk name; we can also have flags
292 *
293 * -disk diskdev
294 * Specifies disk device unambiguously (if it begins with
295 * a dash, it will be mistaken for a flag if simply placed
296 * on the command line).
297 *
298 * -fixmagic
299 * Turns on fixmagic, which causes bad magic numbers to be
300 * ignored (though a complaint is still printed), rather
301 * than being fatal errors.
302 *
303 * -fixsum
304 * Turns on fixcksum, which causes bad checksums to be
305 * ignored (though a complaint is still printed), rather
306 * than being fatal errors.
307 *
308 * -new
309 * Turns on newlabel, which means we're creating a new
310 * label and anything in the label sector should be
311 * ignored. This is a bit like -fixmagic -fixsum, except
312 * that it doesn't print complaints and it ignores
313 * possible garbage on-disk.
314 *
315 * -q
316 * Turns on quiet, which suppresses printing of prompts
317 * and other irrelevant chatter. If you're trying to use
318 * sunlabel in an automated way, you probably want this.
319 */
320 static void handleargs(int ac, char **av)
321 {
322 int skip;
323 int errs;
324 int argno;
325
326 skip = 0;
327 errs = 0;
328 argno = 0;
329 for (ac--,av++;ac;ac--,av++)
330 { if (skip > 0)
331 { skip --;
332 continue;
333 }
334 if (**av != '-')
335 { switch (argno++)
336 { case 0:
337 setdisk(*av);
338 break;
339 default:
340 fprintf(stderr,"%s: unrecognized argument `%s'\n",__progname,*av);
341 errs ++;
342 break;
343 }
344 continue;
345 }
346 if (0)
347 {
348 needarg:;
349 fprintf(stderr,"%s: %s needs a following argument\n",__progname,*av);
350 errs ++;
351 continue;
352 }
353 #define WANTARG() do { if (++skip >= ac) goto needarg; } while (0)
354 if (!strcmp(*av,"-disk"))
355 { WANTARG();
356 setdisk(av[skip]);
357 continue;
358 }
359 if (!strcmp(*av,"-fixmagic"))
360 { fixmagic = 1;
361 continue;
362 }
363 if (!strcmp(*av,"-fixsum"))
364 { fixcksum = 1;
365 continue;
366 }
367 if (!strcmp(*av,"-new"))
368 { newlabel = 1;
369 continue;
370 }
371 if (!strcmp(*av,"-q"))
372 { quiet = 1;
373 continue;
374 }
375 #undef WANTARG
376 fprintf(stderr,"%s: unrecognized option `%s'\n",__progname,*av);
377 errs ++;
378 }
379 if (errs)
380 { exit(1);
381 }
382 }
383
384 /*
385 * Sets the ending cylinder for a partition. This exists mainly to
386 * centralize the check. (If spc is zero, cylinder numbers make
387 * little sense, and the code would otherwise die on divide-by-0 if we
388 * barged blindly ahead.) We need to call this on a partition
389 * whenever we change it; we need to call it on all partitions
390 * whenever we change spc.
391 */
392 static void set_endcyl(PART *p)
393 {
394 if (label.spc == 0)
395 { p->endcyl = p->startcyl;
396 }
397 else
398 { p->endcyl = p->startcyl + how_many(p->nblk,label.spc);
399 }
400 }
401
402 /*
403 * Unpack a label from disk into the in-core label structure. If
404 * newlabel is set, we don't actually do so; we just synthesize a
405 * blank label instead. This is where knowledge of the Sun label
406 * format is kept for read; pack_label is the corresponding routine
407 * for write. We are careful to use labelbuf, l_s, or l_l as
408 * appropriate to avoid byte-sex issues, so we can work on
409 * little-endian machines.
410 *
411 * Note that a bad magic number for the extended partition information
412 * is not considered an error; it simply indicates there is no
413 * extended partition information. Arguably this is the Wrong Thing,
414 * and we should take zero as meaning no info, and anything other than
415 * zero or LABEL_XMAGIC as reason to gripe.
416 */
417 static const char *unpack_label(void)
418 {
419 unsigned short int l_s[256];
420 unsigned long int l_l[128];
421 int i;
422 unsigned long int sum;
423 int have_x;
424
425 if (newlabel)
426 { bzero(&label.asciilabel[0],128);
427 label.rpm = 0;
428 label.pcyl = 0;
429 label.apc = 0;
430 label.obs1 = 0;
431 label.obs2 = 0;
432 label.intrlv = 0;
433 label.ncyl = 0;
434 label.acyl = 0;
435 label.nhead = 0;
436 label.nsect = 0;
437 label.obs3 = 0;
438 label.obs4 = 0;
439 for (i=0;i<NPART;i++)
440 { label.partitions[i].startcyl = 0;
441 label.partitions[i].nblk = 0;
442 set_endcyl(&label.partitions[i]);
443 }
444 label.spc = 0;
445 label.dirty = 1;
446 return(0);
447 }
448 for (i=0;i<256;i++) l_s[i] = (labelbuf[i+i] << 8) | labelbuf[i+i+1];
449 for (i=0;i<128;i++) l_l[i] = (l_s[i+i] << 16) | l_s[i+i+1];
450 if (l_s[254] != LABEL_MAGIC)
451 { if (fixmagic)
452 { label.dirty = 1;
453 printf("(ignoring incorrect magic number)\n");
454 }
455 else
456 { return("bad magic number");
457 }
458 }
459 sum = 0;
460 for (i=0;i<256;i++) sum ^= l_s[i];
461 label.dirty = 0;
462 if (sum != 0)
463 { if (fixcksum)
464 { label.dirty = 1;
465 printf("(ignoring incorrect checksum)\n");
466 }
467 else
468 { return("checksum wrong");
469 }
470 }
471 bcopy(&labelbuf[0],&label.asciilabel[0],128);
472 label.rpm = l_s[210];
473 label.pcyl = l_s[211];
474 label.apc = l_s[212];
475 label.obs1 = l_s[213];
476 label.obs2 = l_s[214];
477 label.intrlv = l_s[215];
478 label.ncyl = l_s[216];
479 label.acyl = l_s[217];
480 label.nhead = l_s[218];
481 label.nsect = l_s[219];
482 label.obs3 = l_s[220];
483 label.obs4 = l_s[221];
484 label.spc = label.nhead * label.nsect;
485 for (i=0;i<8;i++)
486 { label.partitions[i].startcyl = l_l[i+i+111];
487 label.partitions[i].nblk = l_l[i+i+112];
488 set_endcyl(&label.partitions[i]);
489 }
490 have_x = 0;
491 if (l_l[33] == LABEL_XMAGIC)
492 { sum = 0;
493 for (i=0;i<((NXPART*2)+1);i++) sum += l_l[33+i];
494 if (sum != l_l[32])
495 { if (fixcksum)
496 { label.dirty = 1;
497 printf("(ignoring incorrect extended-partition checksum)\n");
498 have_x = 1;
499 }
500 else
501 { printf("(note: extended-partition magic right but checksum wrong)\n");
502 }
503 }
504 else
505 { have_x = 1;
506 }
507 }
508 if (have_x)
509 { for (i=0;i<NXPART;i++)
510 { label.partitions[i+8].startcyl = l_l[i+i+34];
511 label.partitions[i+8].nblk = l_l[i+i+35];
512 set_endcyl(&label.partitions[i+8]);
513 }
514 }
515 else
516 { for (i=0;i<NXPART;i++)
517 { label.partitions[i+8].startcyl = 0;
518 label.partitions[i+8].nblk = 0;
519 set_endcyl(&label.partitions[i+8]);
520 }
521 }
522 return(0);
523 }
524
525 /*
526 * Pack a label from the in-core label structure into on-disk format.
527 * This is where knowledge of the Sun label format is kept for write;
528 * unpack_label is the corresponding routine for read. If all
529 * partitions past the first 8 are size=0 cyl=0, we store all-0s in
530 * the extended partition space, to be fully compatible with Sun
531 * labels. Since AFIAK nothing works in that case that would break if
532 * we put extended partition info there in the same format we'd use if
533 * there were real info there, this is arguably unnecessary, but it's
534 * easy to do.
535 *
536 * We are careful to avoid endianness issues by constructing everything
537 * in an array of shorts. We do this rather than using chars or longs
538 * because the checksum is defined in terms of shorts; using chars or
539 * longs would simplify small amounts of code at the price of
540 * complicating more.
541 */
542 static void pack_label(void)
543 {
544 unsigned short int l_s[256];
545 int i;
546 unsigned short int sum;
547
548 bzero(&l_s[0],512);
549 bcopy(&label.asciilabel[0],&labelbuf[0],128);
550 for (i=0;i<64;i++) l_s[i] = (labelbuf[i+i] << 8) | labelbuf[i+i+1];
551 l_s[210] = label.rpm;
552 l_s[211] = label.pcyl;
553 l_s[212] = label.apc;
554 l_s[213] = label.obs1;
555 l_s[214] = label.obs2;
556 l_s[215] = label.intrlv;
557 l_s[216] = label.ncyl;
558 l_s[217] = label.acyl;
559 l_s[218] = label.nhead;
560 l_s[219] = label.nsect;
561 l_s[220] = label.obs3;
562 l_s[221] = label.obs4;
563 for (i=0;i<8;i++)
564 { l_s[(i*4)+222] = label.partitions[i].startcyl >> 16;
565 l_s[(i*4)+223] = label.partitions[i].startcyl & 0xffff;
566 l_s[(i*4)+224] = label.partitions[i].nblk >> 16;
567 l_s[(i*4)+225] = label.partitions[i].nblk & 0xffff;
568 }
569 for (i=0;i<NXPART;i++)
570 { if (label.partitions[i+8].startcyl || label.partitions[i+8].nblk) break;
571 }
572 if (i < NXPART)
573 { unsigned long int xsum;
574 l_s[66] = LABEL_XMAGIC >> 16;
575 l_s[67] = LABEL_XMAGIC & 0xffff;
576 for (i=0;i<NXPART;i++)
577 { l_s[(i*4)+68] = label.partitions[i+8].startcyl >> 16;
578 l_s[(i*4)+69] = label.partitions[i+8].startcyl & 0xffff;
579 l_s[(i*4)+70] = label.partitions[i+8].nblk >> 16;
580 l_s[(i*4)+71] = label.partitions[i+8].nblk & 0xffff;
581 }
582 xsum = 0;
583 for (i=0;i<((NXPART*2)+1);i++) xsum += (l_s[i+i+66] << 16) | l_s[i+i+67];
584 l_s[64] = xsum >> 16;
585 l_s[65] = xsum & 0xffff;
586 }
587 l_s[254] = LABEL_MAGIC;
588 sum = 0;
589 for (i=0;i<255;i++) sum ^= l_s[i];
590 l_s[255] = sum;
591 for (i=0;i<256;i++)
592 { labelbuf[i+i] = l_s[i] >> 8;
593 labelbuf[i+i+1] = l_s[i] & 0xff;
594 }
595 }
596
597 /*
598 * Get the label. Read it off the disk and unpack it. This function
599 * is nothing but lseek, read, unpack_label, and error checking.
600 */
601 static void getlabel(void)
602 {
603 int rv;
604 const char *lerr;
605
606 if (lseek(diskfd,0,L_SET) < 0)
607 { fprintf(stderr,"%s: lseek to 0 on %s: %s\n",__progname,diskname,strerror(errno));
608 exit(1);
609 }
610 rv = read(diskfd,&labelbuf[0],512);
611 if (rv < 0)
612 { fprintf(stderr,"%s: read label from %s: %s\n",__progname,diskname,strerror(errno));
613 exit(1);
614 }
615 if (rv != 512)
616 { fprintf(stderr,"%s: short read from %s: wanted %d, got %d\n",__progname,diskname,512,rv);
617 exit(1);
618 }
619 lerr = unpack_label();
620 if (lerr)
621 { fprintf(stderr,"%s: bogus label on %s: %s\n",__progname,diskname,lerr);
622 exit(1);
623 }
624 }
625
626 /*
627 * Put the label. Pack it and write it to the disk. This function is
628 * little more than pack_label, lseek, write, and error checking.
629 */
630 static void putlabel(void)
631 {
632 int rv;
633
634 if (readonly)
635 { fprintf(stderr,"%s: no write access to %s\n",__progname,diskname);
636 return;
637 }
638 if (lseek(diskfd,0,L_SET) < 0)
639 { fprintf(stderr,"%s: lseek to 0 on %s: %s\n",__progname,diskname,strerror(errno));
640 exit(1);
641 }
642 pack_label();
643 rv = write(diskfd,&labelbuf[0],512);
644 if (rv < 0)
645 { fprintf(stderr,"%s: write label to %s: %s\n",__progname,diskname,strerror(errno));
646 exit(1);
647 }
648 if (rv != 512)
649 { fprintf(stderr,"%s: short write to %s: wanted %d, got %d\n",__progname,diskname,512,rv);
650 exit(1);
651 }
652 label.dirty = 0;
653 }
654
655 /*
656 * Skip whitespace. Used several places in the command-line parsing
657 * code.
658 */
659 static void skipspaces(const char **cpp)
660 #define cp (*cpp)
661 {
662 while (*cp && isspace(*cp)) cp ++;
663 }
664 #undef cp
665
666 /*
667 * Scan a number. The first arg points to the char * that's moving
668 * along the string. The second arg points to where we should store
669 * the result. The third arg says what we're scanning, for errors.
670 * The return value is 0 on error, or nonzero if all goes well.
671 */
672 static int scannum(const char **cpp, unsigned int *np, const char *tag)
673 #define cp (*cpp)
674 {
675 unsigned int v;
676 int nd;
677
678 skipspaces(cpp);
679 v = 0;
680 nd = 0;
681 while (*cp && isdigit(*cp))
682 { v = (10 * v) + (*cp++ - '0');
683 nd ++;
684 }
685 if (nd == 0)
686 { printf("Missing/invalid %s: %s\n",tag,cp);
687 return(0);
688 }
689 *np = v;
690 return(1);
691 }
692 #undef cp
693
694 /*
695 * Change a partition. pno is the number of the partition to change;
696 * numbers is a pointer to the string containing the specification for
697 * the new start and size. This always takes the form "start size",
698 * where start can be
699 *
700 * a number
701 * The partition starts at the beginning of that cylinder.
702 *
703 * start-X
704 * The partition starts at the same place partition X does.
705 *
706 * end-X
707 * The partition starts at the place partition X ends. If
708 * partition X does not exactly on a cylinder boundary, it
709 * is effectively rounded up.
710 *
711 * and size can be
712 *
713 * a number
714 * The partition is that many sectors long.
715 *
716 * num/num/num
717 * The three numbers are cyl/trk/sect counts. n1/n2/n3 is
718 * equivalent to specifying a single number
719 * ((n1*label.nhead)+n2)*label.nsect)+n3. In particular,
720 * if label.nhead or label.nsect is zero, this has limited
721 * usefulness.
722 *
723 * end-X
724 * The partition ends where partition X ends. It is an
725 * error for partition X to end before the specified start
726 * point. This always goes to exactly where partition X
727 * ends, even if that's partway through a cylinder.
728 *
729 * start-X
730 * The partition extends to end exactly where partition X
731 * begins. It is an error for partition X to begin before
732 * the specified start point.
733 *
734 * size-X
735 * The partition has the same size as partition X.
736 *
737 * If label.spc is nonzero but the partition size is not a multiple of
738 * it, a warning is printed, since you usually don't want this. Most
739 * often, in my experience, this comes from specifying a cylinder
740 * count as a single number N instead of N/0/0.
741 */
742 static void chpart(int pno, const char *numbers)
743 {
744 unsigned int cyl0;
745 unsigned int size;
746 unsigned int sizec;
747 unsigned int sizet;
748 unsigned int sizes;
749
750 skipspaces(&numbers);
751 if (!bcmp(numbers,"end-",4) && numbers[4])
752 { int epno;
753 epno = LETTERPART(numbers[4]);
754 if ((epno >= 0) && (epno < NPART))
755 { cyl0 = label.partitions[epno].endcyl;
756 numbers += 5;
757 }
758 else
759 { if (! scannum(&numbers,&cyl0,"starting cylinder")) return;
760 }
761 }
762 else if (!bcmp(numbers,"start-",6) && numbers[6])
763 { int spno;
764 spno = LETTERPART(numbers[6]);
765 if ((spno >= 0) && (spno < NPART))
766 { cyl0 = label.partitions[spno].startcyl;
767 numbers += 7;
768 }
769 else
770 { if (! scannum(&numbers,&cyl0,"starting cylinder")) return;
771 }
772 }
773 else
774 { if (! scannum(&numbers,&cyl0,"starting cylinder")) return;
775 }
776 skipspaces(&numbers);
777 if (!bcmp(numbers,"end-",4) && numbers[4])
778 { int epno;
779 epno = LETTERPART(numbers[4]);
780 if ((epno >= 0) && (epno < NPART))
781 { if (label.partitions[epno].endcyl <= cyl0)
782 { printf("Partition %c ends before cylinder %u\n",PARTLETTER(epno),cyl0);
783 return;
784 }
785 size = label.partitions[epno].nblk;
786 /* Be careful of unsigned arithmetic */
787 if (cyl0 > label.partitions[epno].startcyl)
788 { size -= (cyl0 - label.partitions[epno].startcyl) * label.spc;
789 }
790 else if (cyl0 < label.partitions[epno].startcyl)
791 { size += (label.partitions[epno].startcyl - cyl0) * label.spc;
792 }
793 numbers += 5;
794 }
795 else
796 { if (! scannum(&numbers,&size,"partition size")) return;
797 }
798 }
799 else if (!bcmp(numbers,"start-",6) && numbers[6])
800 { int spno;
801 spno = LETTERPART(numbers[6]);
802 if ((spno >= 0) && (spno < NPART))
803 { if (label.partitions[spno].startcyl <= cyl0)
804 { printf("Partition %c starts before cylinder %u\n",PARTLETTER(spno),cyl0);
805 return;
806 }
807 size = (label.partitions[spno].startcyl - cyl0) * label.spc;
808 numbers += 7;
809 }
810 else
811 { if (! scannum(&numbers,&size,"partition size")) return;
812 }
813 }
814 else if (!bcmp(numbers,"size-",5) && numbers[5])
815 { int spno;
816 spno = LETTERPART(numbers[5]);
817 if ((spno >= 0) && (spno < NPART))
818 { size = label.partitions[spno].nblk;
819 numbers += 6;
820 }
821 else
822 { if (! scannum(&numbers,&size,"partition size")) return;
823 }
824 }
825 else
826 { if (! scannum(&numbers,&size,"partition size")) return;
827 skipspaces(&numbers);
828 if (*numbers == '/')
829 { sizec = size;
830 numbers ++;
831 if (! scannum(&numbers,&sizet,"partition size track value")) return;
832 skipspaces(&numbers);
833 if (*numbers != '/')
834 { printf("invalid c/t/s syntax - no second slash\n");
835 return;
836 }
837 numbers ++;
838 if (! scannum(&numbers,&sizes,"partition size sector value")) return;
839 size = sizes + (label.nsect * (sizet + (label.nhead * sizec)));
840 }
841 }
842 if (label.spc && (size % label.spc))
843 { printf("Warning: size is not a multiple of cylinder size (is %u/%u/%u)\n",size/label.spc,(size%label.spc)/label.nsect,size%label.nsect);
844 }
845 label.partitions[pno].startcyl = cyl0;
846 label.partitions[pno].nblk = size;
847 set_endcyl(&label.partitions[pno]);
848 if ( (label.partitions[pno].startcyl*label.spc)+label.partitions[pno].nblk >
849 label.spc*label.ncyl )
850 { printf("Warning: partition extends beyond end of disk\n");
851 }
852 label.dirty = 1;
853 }
854
855 /*
856 * Change a 128-byte-string field. There's currently only one such,
857 * the ASCII label field.
858 */
859 static void chval_ascii(const char *cp, FIELD *f)
860 {
861 const char *nl;
862
863 skipspaces(&cp);
864 nl = index(cp,'\n');
865 if (nl == 0) nl = cp + strlen(cp);
866 if (nl-cp > 128)
867 { printf("ascii label string too long - max 128 characters\n");
868 }
869 else
870 { bzero(f->loc,128);
871 bcopy(cp,f->loc,nl-cp);
872 label.dirty = 1;
873 }
874 }
875
876 /*
877 * Change an int-valued field. As noted above, there's only one
878 * function, regardless of the field size in the on-disk label.
879 */
880 static void chval_int(const char *cp, FIELD *f)
881 {
882 int v;
883
884 if (! scannum(&cp,&v,"value")) return;
885 *(unsigned int *)f->loc = v;
886 label.dirty = 1;
887 }
888
889 /*
890 * Change a field's value. The string argument contains the field name
891 * and the new value in text form. Look up the field and call its
892 * chval and changed functions.
893 */
894 static void chvalue(const char *str)
895 {
896 const char *cp;
897 int n;
898 int i;
899
900 if (fields[0].taglen < 1)
901 { for (i=0;fields[i].tag;i++) fields[i].taglen = strlen(fields[i].tag);
902 }
903 skipspaces(&str);
904 cp = str;
905 while (*cp && !isspace(*cp)) cp ++;
906 n = cp - str;
907 for (i=0;fields[i].tag;i++)
908 { if ((n == fields[i].taglen) && !bcmp(str,fields[i].tag,n))
909 { (*fields[i].chval)(cp,&fields[i]);
910 if (fields[i].changed) (*fields[i].changed)();
911 break;
912 }
913 }
914 if (! fields[i].tag)
915 { printf("bad name %.*s - see l output for names\n",n,str);
916 }
917 }
918
919 /*
920 * `changed' function for the ntrack and nsect fields; update label.spc
921 * and call set_endcyl on all partitions.
922 */
923 static void update_spc(void)
924 {
925 int i;
926
927 label.spc = label.nhead * label.nsect;
928 for (i=0;i<NPART;i++) set_endcyl(&label.partitions[i]);
929 }
930
931 /*
932 * Print function for 128-byte-string fields. Currently only the ASCII
933 * label, but we don't depend on that.
934 */
935 static int print_ascii(FIELD *f, UNUSED(int sofar))
936 {
937 printf("%s: %.128s\n",f->tag,(char *)f->loc);
938 return(0);
939 }
940
941 /*
942 * Print an int-valued field. We are careful to do proper line wrap,
943 * making each value occupy 16 columns.
944 */
945 static int print_int(FIELD *f, int sofar)
946 {
947 if (sofar >= 60)
948 { printf("\n");
949 sofar = 0;
950 }
951 printf("%s: %-*u",f->tag,14-(int)strlen(f->tag),*(unsigned int *)f->loc);
952 return(sofar+16);
953 }
954
955 /*
956 * Print the whole label. Just call the print function for each field,
957 * then append a newline if necessary.
958 */
959 static void print_label(void)
960 {
961 int i;
962 int c;
963
964 c = 0;
965 for (i=0;fields[i].tag;i++) c = (*fields[i].print)(&fields[i],c);
966 if (c > 0) printf("\n");
967 }
968
969 /*
970 * Figure out how many columns wide the screen is. We impose a minimum
971 * width of 20 columns; I suspect the output code has some issues if
972 * we have fewer columns than partitions.
973 */
974 static int screen_columns(void)
975 {
976 int ncols;
977 #ifndef NO_TERMCAP_WIDTH
978 char *term;
979 char tbuf[1024];
980 #endif
981 #if defined(TIOCGWINSZ)
982 struct winsize wsz;
983 #elif defined(TIOCGSIZE)
984 struct ttysize tsz;
985 #endif
986
987 ncols = 80;
988 #ifndef NO_TERMCAP_WIDTH
989 term = getenv("TERM");
990 if (term && (tgetent(&tbuf[0],term) == 1))
991 { int n;
992 n = tgetnum("co");
993 if (n > 1) ncols = n;
994 }
995 #endif
996 #if defined(TIOCGWINSZ)
997 if ((ioctl(1,TIOCGWINSZ,&wsz) == 0) && (wsz.ws_col > 0))
998 { ncols = wsz.ws_col;
999 }
1000 #elif defined(TIOCGSIZE)
1001 if ((ioctl(1,TIOCGSIZE,&tsz) == 0) && (tsz.ts_cols > 0))
1002 { ncols = tsz.ts_cols;
1003 }
1004 #endif
1005 if (ncols < 20) ncols = 20;
1006 return(ncols);
1007 }
1008
1009 /*
1010 * Print the partitions. The argument is true iff we should print all
1011 * partitions, even those set start=0 size=0. We generate one line
1012 * per partition (or, if all==0, per `interesting' partition), plus a
1013 * visually graphic map of partition letters. Most of the hair in the
1014 * visual display lies in ensuring that nothing takes up less than one
1015 * character column, that if two boundaries appear visually identical,
1016 * they _are_ identical. Within that constraint, we try to make the
1017 * number of character columns proportional to the size....
1018 */
1019 static void print_part(int all)
1020 {
1021 int i;
1022 int j;
1023 int k;
1024 int n;
1025 int ncols;
1026 int r;
1027 int c;
1028 unsigned int edges[2*NPART];
1029 int ce[2*NPART];
1030 int row[NPART];
1031 unsigned char table[2*NPART][NPART];
1032 char *line;
1033 #define p label.partitions
1034
1035 for (i=0;i<NPART;i++)
1036 { if (all || label.partitions[i].startcyl || label.partitions[i].nblk)
1037 { printf("%c: start cyl = %6u, size = %8u (",
1038 PARTLETTER(i),
1039 label.partitions[i].startcyl, label.partitions[i].nblk );
1040 if (label.spc)
1041 { printf("%u/%u/%u - ",
1042 p[i].nblk/label.spc,
1043 (p[i].nblk%label.spc)/label.nsect,
1044 p[i].nblk%label.nsect );
1045 }
1046 printf("%gMb)\n",p[i].nblk/2048.0);
1047 }
1048 }
1049 j = 0;
1050 for (i=0;i<NPART;i++)
1051 { if (p[i].nblk > 0)
1052 { edges[j++] = p[i].startcyl;
1053 edges[j++] = p[i].endcyl;
1054 }
1055 }
1056 do
1057 { n = 0;
1058 for (i=1;i<j;i++)
1059 { if (edges[i] < edges[i-1])
1060 { unsigned int t;
1061 t = edges[i];
1062 edges[i] = edges[i-1];
1063 edges[i-1] = t;
1064 n ++;
1065 }
1066 }
1067 } while (n > 0);
1068 for (i=1;i<j;i++)
1069 { if (edges[i] != edges[n])
1070 { n ++;
1071 if (n != i) edges[n] = edges[i];
1072 }
1073 }
1074 n ++;
1075 for (i=0;i<NPART;i++)
1076 { if (p[i].nblk > 0)
1077 { for (j=0;j<n;j++)
1078 { if ( (p[i].startcyl <= edges[j]) &&
1079 (p[i].endcyl > edges[j]) )
1080 { table[j][i] = 1;
1081 }
1082 else
1083 { table[j][i] = 0;
1084 }
1085 }
1086 }
1087 }
1088 ncols = screen_columns() - 2;
1089 for (i=0;i<n;i++) ce[i] = (edges[i] * ncols) / (double)edges[n-1];
1090 for (i=1;i<n;i++) if (ce[i] <= ce[i-1]) ce[i] = ce[i-1] + 1;
1091 if (ce[n-1] > ncols)
1092 { ce[n-1] = ncols;
1093 for (i=n-1;(i>0)&&(ce[i]<=ce[i-1]);i--) ce[i-1] = ce[i] - 1;
1094 if (ce[0] < 0) for (i=0;i<n;i++) ce[i] = i;
1095 }
1096 printf("\n");
1097 for (i=0;i<NPART;i++)
1098 { if (p[i].nblk > 0)
1099 { r = -1;
1100 do
1101 { r ++;
1102 for (j=i-1;j>=0;j--)
1103 { if (row[j] != r) continue;
1104 for (k=0;k<n;k++) if (table[k][i] && table[k][j]) break;
1105 if (k < n) break;
1106 }
1107 } while (j >= 0);
1108 row[i] = r;
1109 }
1110 else
1111 { row[i] = -1;
1112 }
1113 }
1114 r = row[0];
1115 for (i=1;i<NPART;i++) if (row[i] > r) r = row[i];
1116 line = malloc(ncols+1);
1117 for (i=0;i<=r;i++)
1118 { for (j=0;j<ncols;j++) line[j] = ' ';
1119 for (j=0;j<NPART;j++)
1120 { if (row[j] != i) continue;
1121 k = 0;
1122 for (k=0;k<n;k++)
1123 { if (table[k][j])
1124 { for (c=ce[k];c<ce[k+1];c++) line[c] = 'a' + j;
1125 }
1126 }
1127 }
1128 for (j=ncols-1;(j>=0)&&(line[j]==' ');j--) ;
1129 printf("%.*s\n",j+1,line);
1130 }
1131 free(line);
1132 #undef p
1133 }
1134
1135 #ifdef S_COMMAND
1136 /*
1137 * This computes an appropriate checksum for an in-core label. It's
1138 * not really related to the S command, except that it's needed only
1139 * by setlabel(), which is #ifdef S_COMMAND.
1140 */
1141 static unsigned short int dkcksum(const struct disklabel *lp)
1142 {
1143 const unsigned short int *start;
1144 const unsigned short int *end;
1145 unsigned short int sum;
1146 const unsigned short int *p;
1147
1148 start = (const void *) lp;
1149 end = (const void *) &lp->d_partitions[lp->d_npartitions];
1150 sum = 0;
1151 for (p=start;p<end;p++) sum ^= *p;
1152 return(sum);
1153 }
1154 #endif
1155
1156 #ifdef S_COMMAND
1157 /*
1158 * Set the in-core label. This is basically putlabel, except it builds
1159 * a struct disklabel instead of a Sun label buffer, and uses
1160 * DIOCSDINFO instead of lseek-and-write.
1161 */
1162 static void setlabel(void)
1163 {
1164 union {
1165 struct disklabel l;
1166 char pad[ sizeof(struct disklabel) -
1167 (MAXPARTITIONS*sizeof(struct partition)) +
1168 (16*sizeof(struct partition)) ];
1169 } u;
1170 int i;
1171
1172 if (ioctl(diskfd,DIOCGDINFO,&u.l) < 0)
1173 { printf("DIOCGDINFO: %s\n",strerror(errno));
1174 return;
1175 }
1176 if (u.l.d_secsize != 512)
1177 { printf("warning, disk claims %d-byte sectors\n",(int)u.l.d_secsize);
1178 }
1179 u.l.d_nsectors = label.nsect;
1180 u.l.d_ntracks = label.nhead;
1181 u.l.d_ncylinders = label.ncyl;
1182 u.l.d_secpercyl = label.nsect * label.nhead;
1183 u.l.d_rpm = label.rpm;
1184 u.l.d_interleave = label.intrlv;
1185 u.l.d_npartitions = 16;
1186 bzero(&u.l.d_partitions[0],16*sizeof(struct partition));
1187 for (i=0;i<16;i++)
1188 { u.l.d_partitions[i].p_size = label.partitions[i].nblk;
1189 u.l.d_partitions[i].p_offset = label.partitions[i].startcyl * label.nsect * label.nhead;
1190 u.l.d_partitions[i].p_fsize = 0;
1191 u.l.d_partitions[i].p_fstype = (i == 1) ? FS_SWAP :
1192 (i == 2) ? FS_UNUSED :
1193 FS_BSDFFS;
1194 u.l.d_partitions[i].p_frag = 0;
1195 u.l.d_partitions[i].p_cpg = 0;
1196 }
1197 u.l.d_checksum = 0;
1198 u.l.d_checksum = dkcksum(&u.l);
1199 if (ioctl(diskfd,DIOCSDINFO,&u.l) < 0)
1200 { printf("DIOCSDINFO: %s\n",strerror(errno));
1201 return;
1202 }
1203 }
1204 #endif
1205
1206 /*
1207 * Read and execute one command line from the user.
1208 */
1209 static void docmd(void)
1210 {
1211 char cmdline[512];
1212
1213 if (! quiet) printf("sunlabel> ");
1214 if (fgets(&cmdline[0],sizeof(cmdline),stdin) != &cmdline[0]) exit(0);
1215 switch (cmdline[0])
1216 { case '?':
1217 printf("? - print this help\n");
1218 printf("L - print label, except for partition table\n");
1219 printf("P - print partition table\n");
1220 printf("PP - print partition table including size=0 offset=0 entries\n");
1221 printf("[abcdefghijklmnop] <cylno> <size> - change partition\n");
1222 printf("V <name> <value> - change a non-partition label value\n");
1223 printf("W - write (possibly modified) label out\n");
1224 #ifdef S_COMMAND
1225 printf("S - set label in the kernel (orthogonal to W)\n");
1226 #endif
1227 printf("Q - quit program (error if no write since last change)\n");
1228 printf("Q! - quit program (unconditionally) [EOF also quits]\n");
1229 break;
1230 case 'L':
1231 print_label();
1232 break;
1233 case 'P':
1234 print_part(cmdline[1]=='P');
1235 break;
1236 case 'W':
1237 putlabel();
1238 break;
1239 case 'S':
1240 #ifdef S_COMMAND
1241 setlabel();
1242 #else
1243 printf("This compilation doesn't support S.\n");
1244 #endif
1245 break;
1246 case 'Q':
1247 if ((cmdline[1] == '!') || !label.dirty) exit(0);
1248 printf("Label is dirty - use w to write it, or Q! to quit anyway.\n");
1249 break;
1250 case 'a': case 'b': case 'c': case 'd':
1251 case 'e': case 'f': case 'g': case 'h':
1252 case 'i': case 'j': case 'k': case 'l':
1253 case 'm': case 'n': case 'o': case 'p':
1254 chpart(LETTERPART(cmdline[0]),&cmdline[1]);
1255 break;
1256 case 'V':
1257 chvalue(&cmdline[1]);
1258 break;
1259 case '\n':
1260 break;
1261 default:
1262 printf("(Unrecognized command character %c ignored.)\n",cmdline[0]);
1263 break;
1264 }
1265 }
1266
1267 /*
1268 * main() (duh!). Pretty boring.
1269 */
1270 int main(int, char **);
1271 int main(int ac, char **av)
1272 {
1273 handleargs(ac,av);
1274 getlabel();
1275 while (1) docmd();
1276 }
1277