sunlabel.c revision 1.3 1 /* $NetBSD: sunlabel.c,v 1.3 2002/01/10 21:43:10 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Der Mouse.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 __RCSID("$NetBSD: sunlabel.c,v 1.3 2002/01/10 21:43:10 christos Exp $");
41
42 #include <stdio.h>
43 #include <errno.h>
44 #include <ctype.h>
45 #include <stdlib.h>
46 #include <unistd.h>
47 #include <termcap.h>
48 #include <strings.h>
49 #include <inttypes.h>
50 #include <err.h>
51 #include <util.h>
52 #include <sys/file.h>
53 #include <sys/ioctl.h>
54 #include <sys/disklabel.h>
55
56 /*
57 * NPART is the total number of partitions. This must be <= 43, given the
58 * amount of space available to store extended partitions. It also must be
59 * <=26, given the use of single letters to name partitions. The 8 is the
60 * number of `standard' partitions; this arguably should be a #define, since
61 * it occurs not only here but scattered throughout the code.
62 */
63 #define NPART 16
64 #define NXPART (NPART - 8)
65 #define PARTLETTER(i) ((i) + 'a')
66 #define LETTERPART(i) ((i) - 'a')
67
68 /*
69 * A partition. We keep redundant information around, making sure
70 * that whenever we change one, we keep another constant and update
71 * the third. Which one is which depends. Arguably a partition
72 * should also know its partition number; here, if we need that we
73 * cheat, using (effectively) ptr-&label.partitions[0].
74 */
75 struct part {
76 uint32_t startcyl;
77 uint32_t nblk;
78 uint32_t endcyl;
79 };
80
81 /*
82 * A label. As the embedded comments indicate, much of this structure
83 * corresponds directly to Sun's struct dk_label. Some of the values
84 * here are historical holdovers. Apparently really old Suns did
85 * their own sparing in software, so a sector or two per cylinder,
86 * plus a whole cylinder or two at the end, got set aside as spares.
87 * acyl and apc count those spares, and this is also why ncyl and pcyl
88 * both exist. These days the spares generally are hidden from the
89 * host by the disk, and there's no reason not to set
90 * ncyl=pcyl=ceil(device size/spc) and acyl=apc=0.
91 *
92 * Note also that the geometry assumptions behind having nhead and
93 * nsect assume that the sect/trk and trk/cyl values are constant
94 * across the whole drive. The latter is still usually true; the
95 * former isn't. In my experience, you can just put fixed values
96 * here; the basis for software knowing the drive geometry is also
97 * mostly invalid these days anyway. (I just use nhead=32 nsect=64,
98 * which gives me 1M "cylinders", a convenient size.)
99 */
100 struct label {
101 /* BEGIN fields taken directly from struct dk_label */
102 char asciilabel[128];
103 uint32_t rpm; /* Spindle rotation speed - useless now */
104 uint32_t pcyl; /* Physical cylinders */
105 uint32_t apc; /* Alternative sectors per cylinder */
106 uint32_t obs1; /* Obsolete? */
107 uint32_t obs2; /* Obsolete? */
108 uint32_t intrlv; /* Interleave - never anything but 1 IME */
109 uint32_t ncyl; /* Number of usable cylinders */
110 uint32_t acyl; /* Alternative cylinders - pcyl minus ncyl */
111 uint32_t nhead; /* Tracks-per-cylinder (usually # of heads) */
112 uint32_t nsect; /* Sectors-per-track */
113 uint32_t obs3; /* Obsolete? */
114 uint32_t obs4; /* Obsolete? */
115 /* END fields taken directly from struct dk_label */
116 uint32_t spc; /* Sectors per cylinder - nhead*nsect */
117 uint32_t dirty:1;/* Modified since last read */
118 struct part partitions[NPART];/* The partitions themselves */
119 };
120
121 /*
122 * Describes a field in the label.
123 *
124 * tag is a short name for the field, like "apc" or "nsect". loc is a
125 * pointer to the place in the label where it's stored. print is a
126 * function to print the value; the second argument is the current
127 * column number, and the return value is the new current column
128 * number. (This allows print functions to do proper line wrapping.)
129 * chval is called to change a field; the first argument is the
130 * command line portion that contains the new value (in text form).
131 * The chval function is responsible for parsing and error-checking as
132 * well as doing the modification. changed is a function which does
133 * field-specific actions necessary when the field has been changed.
134 * This could be rolled into the chval function, but I believe this
135 * way provides better code sharing.
136 *
137 * Note that while the fields in the label vary in size (8, 16, or 32
138 * bits), we store everything as ints in the label struct, above, and
139 * convert when packing and unpacking. This allows us to have only
140 * one numeric chval function.
141 */
142 struct field {
143 const char *tag;
144 void *loc;
145 int (*print)(struct field *, int);
146 void (*chval)(const char *, struct field *);
147 void (*changed)(void);
148 int taglen;
149 };
150
151 /* LABEL_MAGIC was chosen by Sun and cannot be trivially changed. */
152 #define LABEL_MAGIC 0xdabe
153 /*
154 * LABEL_XMAGIC needs to agree between here and any other code that uses
155 * extended partitions (mainly the kernel).
156 */
157 #define LABEL_XMAGIC (0x199d1fe2+8)
158
159 static int diskfd; /* fd on the disk */
160 static const char *diskname; /* name of the disk, for messages */
161 static int readonly; /* true iff it's open RO */
162 static unsigned char labelbuf[512]; /* Buffer holding the label sector */
163 static struct label label; /* The label itself. */
164 static int fixmagic; /* -m, ignore bad magic #s */
165 static int fixcksum; /* -s, ignore bad cksums */
166 static int newlabel; /* -n, ignore all on-disk values */
167 static int quiet; /* -q, don't print chatter */
168
169 /*
170 * The various functions that go in the field function pointers. The
171 * _ascii functions are for 128-byte string fields (the ASCII label);
172 * the _int functions are for int-valued fields (everything else).
173 * update_spc is a `changed' function for updating the spc value when
174 * changing one of the two values that make it up.
175 */
176 static int print_ascii(struct field *, int);
177 static void chval_ascii(const char *, struct field *);
178 static int print_int(struct field *, int);
179 static void chval_int(const char *, struct field *);
180 static void update_spc(void);
181
182 int main(int, char **);
183
184 /* The fields themselves. */
185 static struct field fields[] =
186 {
187 {"ascii", &label.asciilabel[0], print_ascii, chval_ascii, 0},
188 {"rpm", &label.rpm, print_int, chval_int, 0},
189 {"pcyl", &label.pcyl, print_int, chval_int, 0},
190 {"apc", &label.apc, print_int, chval_int, 0},
191 {"obs1", &label.obs1, print_int, chval_int, 0},
192 {"obs2", &label.obs2, print_int, chval_int, 0},
193 {"intrlv", &label.intrlv, print_int, chval_int, 0},
194 {"ncyl", &label.ncyl, print_int, chval_int, 0},
195 {"acyl", &label.acyl, print_int, chval_int, 0},
196 {"nhead", &label.nhead, print_int, chval_int, update_spc},
197 {"nsect", &label.nsect, print_int, chval_int, update_spc},
198 {"obs3", &label.obs3, print_int, chval_int, 0},
199 {"obs4", &label.obs4, print_int, chval_int, 0},
200 {NULL, NULL, NULL, NULL, 0}
201 };
202 /*
203 * We'd _like_ to use howmany() from the include files, but can't count
204 * on its being present or working.
205 */
206 static __inline__ uint32_t how_many(uint32_t amt, uint32_t unit)
207 __attribute__((__const__));
208 static __inline__ uint32_t how_many(uint32_t amt, uint32_t unit)
209 {
210 return ((amt + unit - 1) / unit);
211 }
212
213 /*
214 * Try opening the disk, given a name. If mustsucceed is true, we
215 * "cannot fail"; failures produce gripe-and-exit, and if we return,
216 * our return value is 1. Otherwise, we return 1 on success and 0 on
217 * failure.
218 */
219 static int
220 trydisk(const char *s, int mustsucceed)
221 {
222 int ro = 0;
223
224 diskname = s;
225 if ((diskfd = open(s, O_RDWR)) == -1 ||
226 (diskfd = open(s, O_RDWR | O_NDELAY)) == -1) {
227 if ((diskfd = open(s, O_RDONLY)) == -1) {
228 if (mustsucceed)
229 err(1, "Cannot open `%s'", s);
230 else
231 return 0;
232 }
233 ro = 1;
234 }
235 if (ro && !quiet)
236 warnx("No write access, label is readonly");
237 readonly = ro;
238 return 1;
239 }
240
241 /*
242 * Set the disk device, given the user-supplied string. Note that even
243 * if we malloc, we never free, because either trydisk eventually
244 * succeeds, in which case the string is saved in diskname, or it
245 * fails, in which case we exit and freeing is irrelevant.
246 */
247 static void
248 setdisk(const char *s)
249 {
250 char *tmp;
251
252 if (strchr(s, '/')) {
253 trydisk(s, 1);
254 return;
255 }
256 if (trydisk(s, 0))
257 return;
258 tmp = malloc(strlen(s) + 7);
259 sprintf(tmp, "/dev/%s", s);
260 if (trydisk(tmp, 0))
261 return;
262 sprintf(tmp, "/dev/%s%c", s, getrawpartition() + 'a');
263 if (trydisk(tmp, 0))
264 return;
265 errx(1, "Can't find device for disk `%s'", s);
266 }
267
268 static void usage(void) __attribute__((__noreturn__));
269 static void
270 usage(void)
271 {
272 (void)fprintf(stderr, "Usage: %s [-mnqs] [-d disk]\n", getprogname());
273 exit(1);
274 }
275
276 /*
277 * Command-line arguments. We can have at most one non-flag
278 * argument, which is the disk name; we can also have flags
279 *
280 * -d diskdev
281 * Specifies disk device unambiguously (if it begins with
282 * a dash, it will be mistaken for a flag if simply placed
283 * on the command line).
284 *
285 * -m
286 * Turns on fixmagic, which causes bad magic numbers to be
287 * ignored (though a complaint is still printed), rather
288 * than being fatal errors.
289 *
290 * -s
291 * Turns on fixcksum, which causes bad checksums to be
292 * ignored (though a complaint is still printed), rather
293 * than being fatal errors.
294 *
295 * -n
296 * Turns on newlabel, which means we're creating a new
297 * label and anything in the label sector should be
298 * ignored. This is a bit like -fixmagic -fixsum, except
299 * that it doesn't print complaints and it ignores
300 * possible garbage on-disk.
301 *
302 * -q
303 * Turns on quiet, which suppresses printing of prompts
304 * and other irrelevant chatter. If you're trying to use
305 * sunlabel in an automated way, you probably want this.
306 */
307 static void handleargs(int ac, char **av)
308 {
309 int c;
310
311 while ((c = getopt(ac, av, "d:mnqs")) != -1) {
312 switch (c) {
313 case 'd':
314 setdisk(optarg);
315 break;
316 case 'm':
317 fixmagic++;
318 break;
319 case 'n':
320 newlabel++;
321 break;
322 case 'q':
323 quiet++;
324 break;
325 case 's':
326 fixcksum++;
327 break;
328 case '?':
329 warnx("Illegal option `%c'", c);
330 usage();
331 }
332 }
333 }
334 /*
335 * Sets the ending cylinder for a partition. This exists mainly to
336 * centralize the check. (If spc is zero, cylinder numbers make
337 * little sense, and the code would otherwise die on divide-by-0 if we
338 * barged blindly ahead.) We need to call this on a partition
339 * whenever we change it; we need to call it on all partitions
340 * whenever we change spc.
341 */
342 static void
343 set_endcyl(struct part *p)
344 {
345 if (label.spc == 0) {
346 p->endcyl = p->startcyl;
347 } else {
348 p->endcyl = p->startcyl + how_many(p->nblk, label.spc);
349 }
350 }
351
352 /*
353 * Unpack a label from disk into the in-core label structure. If
354 * newlabel is set, we don't actually do so; we just synthesize a
355 * blank label instead. This is where knowledge of the Sun label
356 * format is kept for read; pack_label is the corresponding routine
357 * for write. We are careful to use labelbuf, l_s, or l_l as
358 * appropriate to avoid byte-sex issues, so we can work on
359 * little-endian machines.
360 *
361 * Note that a bad magic number for the extended partition information
362 * is not considered an error; it simply indicates there is no
363 * extended partition information. Arguably this is the Wrong Thing,
364 * and we should take zero as meaning no info, and anything other than
365 * zero or LABEL_XMAGIC as reason to gripe.
366 */
367 static const char *
368 unpack_label(void)
369 {
370 unsigned short int l_s[256];
371 unsigned long int l_l[128];
372 int i;
373 unsigned long int sum;
374 int have_x;
375
376 if (newlabel) {
377 bzero(&label.asciilabel[0], 128);
378 label.rpm = 0;
379 label.pcyl = 0;
380 label.apc = 0;
381 label.obs1 = 0;
382 label.obs2 = 0;
383 label.intrlv = 0;
384 label.ncyl = 0;
385 label.acyl = 0;
386 label.nhead = 0;
387 label.nsect = 0;
388 label.obs3 = 0;
389 label.obs4 = 0;
390 for (i = 0; i < NPART; i++) {
391 label.partitions[i].startcyl = 0;
392 label.partitions[i].nblk = 0;
393 set_endcyl(&label.partitions[i]);
394 }
395 label.spc = 0;
396 label.dirty = 1;
397 return (0);
398 }
399 for (i = 0; i < 256; i++)
400 l_s[i] = (labelbuf[i + i] << 8) | labelbuf[i + i + 1];
401 for (i = 0; i < 128; i++)
402 l_l[i] = (l_s[i + i] << 16) | l_s[i + i + 1];
403 if (l_s[254] != LABEL_MAGIC) {
404 if (fixmagic) {
405 label.dirty = 1;
406 warnx("ignoring incorrect magic number.");
407 } else {
408 return "bad magic number";
409 }
410 }
411 sum = 0;
412 for (i = 0; i < 256; i++)
413 sum ^= l_s[i];
414 label.dirty = 0;
415 if (sum != 0) {
416 if (fixcksum) {
417 label.dirty = 1;
418 warnx("ignoring incorrect checksum.");
419 } else {
420 return "checksum wrong";
421 }
422 }
423 (void)memcpy(&label.asciilabel[0], &labelbuf[0], 128);
424 label.rpm = l_s[210];
425 label.pcyl = l_s[211];
426 label.apc = l_s[212];
427 label.obs1 = l_s[213];
428 label.obs2 = l_s[214];
429 label.intrlv = l_s[215];
430 label.ncyl = l_s[216];
431 label.acyl = l_s[217];
432 label.nhead = l_s[218];
433 label.nsect = l_s[219];
434 label.obs3 = l_s[220];
435 label.obs4 = l_s[221];
436 label.spc = label.nhead * label.nsect;
437 for (i = 0; i < 8; i++) {
438 label.partitions[i].startcyl = (uint32_t)l_l[i + i + 111];
439 label.partitions[i].nblk = (uint32_t)l_l[i + i + 112];
440 set_endcyl(&label.partitions[i]);
441 }
442 have_x = 0;
443 if (l_l[33] == LABEL_XMAGIC) {
444 sum = 0;
445 for (i = 0; i < ((NXPART * 2) + 1); i++)
446 sum += l_l[33 + i];
447 if (sum != l_l[32]) {
448 if (fixcksum) {
449 label.dirty = 1;
450 warnx("Ignoring incorrect extended-partition checksum.");
451 have_x = 1;
452 } else {
453 warnx("Extended-partition magic right but checksum wrong.");
454 }
455 } else {
456 have_x = 1;
457 }
458 }
459 if (have_x) {
460 for (i = 0; i < NXPART; i++) {
461 int j = i + i + 34;
462 label.partitions[i + 8].startcyl = (uint32_t)l_l[j++];
463 label.partitions[i + 8].nblk = (uint32_t)l_l[j++];
464 set_endcyl(&label.partitions[i + 8]);
465 }
466 } else {
467 for (i = 0; i < NXPART; i++) {
468 label.partitions[i + 8].startcyl = 0;
469 label.partitions[i + 8].nblk = 0;
470 set_endcyl(&label.partitions[i + 8]);
471 }
472 }
473 return 0;
474 }
475
476 /*
477 * Pack a label from the in-core label structure into on-disk format.
478 * This is where knowledge of the Sun label format is kept for write;
479 * unpack_label is the corresponding routine for read. If all
480 * partitions past the first 8 are size=0 cyl=0, we store all-0s in
481 * the extended partition space, to be fully compatible with Sun
482 * labels. Since AFIAK nothing works in that case that would break if
483 * we put extended partition info there in the same format we'd use if
484 * there were real info there, this is arguably unnecessary, but it's
485 * easy to do.
486 *
487 * We are careful to avoid endianness issues by constructing everything
488 * in an array of shorts. We do this rather than using chars or longs
489 * because the checksum is defined in terms of shorts; using chars or
490 * longs would simplify small amounts of code at the price of
491 * complicating more.
492 */
493 static void
494 pack_label(void)
495 {
496 unsigned short int l_s[256];
497 int i;
498 unsigned short int sum;
499
500 memset(&l_s[0], 0, 512);
501 memcpy(&labelbuf[0], &label.asciilabel[0], 128);
502 for (i = 0; i < 64; i++)
503 l_s[i] = (labelbuf[i + i] << 8) | labelbuf[i + i + 1];
504 l_s[210] = label.rpm;
505 l_s[211] = label.pcyl;
506 l_s[212] = label.apc;
507 l_s[213] = label.obs1;
508 l_s[214] = label.obs2;
509 l_s[215] = label.intrlv;
510 l_s[216] = label.ncyl;
511 l_s[217] = label.acyl;
512 l_s[218] = label.nhead;
513 l_s[219] = label.nsect;
514 l_s[220] = label.obs3;
515 l_s[221] = label.obs4;
516 for (i = 0; i < 8; i++) {
517 l_s[(i * 4) + 222] = label.partitions[i].startcyl >> 16;
518 l_s[(i * 4) + 223] = label.partitions[i].startcyl & 0xffff;
519 l_s[(i * 4) + 224] = label.partitions[i].nblk >> 16;
520 l_s[(i * 4) + 225] = label.partitions[i].nblk & 0xffff;
521 }
522 for (i = 0; i < NXPART; i++) {
523 if (label.partitions[i + 8].startcyl ||
524 label.partitions[i + 8].nblk)
525 break;
526 }
527 if (i < NXPART) {
528 unsigned long int xsum;
529 l_s[66] = LABEL_XMAGIC >> 16;
530 l_s[67] = LABEL_XMAGIC & 0xffff;
531 for (i = 0; i < NXPART; i++) {
532 int j = (i * 4) + 68;
533 l_s[j++] = label.partitions[i + 8].startcyl >> 16;
534 l_s[j++] = label.partitions[i + 8].startcyl & 0xffff;
535 l_s[j++] = label.partitions[i + 8].nblk >> 16;
536 l_s[j++] = label.partitions[i + 8].nblk & 0xffff;
537 }
538 xsum = 0;
539 for (i = 0; i < ((NXPART * 2) + 1); i++)
540 xsum += (l_s[i + i + 66] << 16) | l_s[i + i + 67];
541 l_s[64] = (int32_t)(xsum >> 16);
542 l_s[65] = (int32_t)(xsum & 0xffff);
543 }
544 l_s[254] = LABEL_MAGIC;
545 sum = 0;
546 for (i = 0; i < 255; i++)
547 sum ^= l_s[i];
548 l_s[255] = sum;
549 for (i = 0; i < 256; i++) {
550 labelbuf[i + i] = ((uint32_t)l_s[i]) >> 8;
551 labelbuf[i + i + 1] = l_s[i] & 0xff;
552 }
553 }
554
555 /*
556 * Get the label. Read it off the disk and unpack it. This function
557 * is nothing but lseek, read, unpack_label, and error checking.
558 */
559 static void
560 getlabel(void)
561 {
562 int rv;
563 const char *lerr;
564
565 if (lseek(diskfd, (off_t)0, L_SET) == (off_t)-1)
566 err(1, "lseek to 0 on `%s' failed", diskname);
567
568 if ((rv = read(diskfd, &labelbuf[0], 512)) == -1)
569 err(1, "read label from `%s' failed", diskname);
570
571 if (rv != 512)
572 errx(1, "short read from `%s' wanted %d, got %d.", diskname,
573 512, rv);
574
575 lerr = unpack_label();
576 if (lerr)
577 errx(1, "bogus label on `%s' (%s)\n", diskname, lerr);
578 }
579
580 /*
581 * Put the label. Pack it and write it to the disk. This function is
582 * little more than pack_label, lseek, write, and error checking.
583 */
584 static void
585 putlabel(void)
586 {
587 int rv;
588
589 if (readonly) {
590 warnx("No write access to `%s'", diskname);
591 return;
592 }
593
594 if (lseek(diskfd, (off_t)0, L_SET) < (off_t)-1)
595 err(1, "lseek to 0 on `%s' failed", diskname);
596
597 pack_label();
598
599 if ((rv = write(diskfd, &labelbuf[0], 512)) == -1) {
600 err(1, "write label to `%s' failed", diskname);
601 exit(1);
602 }
603
604 if (rv != 512)
605 errx(1, "short write to `%s': wanted %d, got %d",
606 diskname, 512, rv);
607
608 label.dirty = 0;
609 }
610
611 /*
612 * Skip whitespace. Used several places in the command-line parsing
613 * code.
614 */
615 static void
616 skipspaces(const char **cpp)
617 {
618 const char *cp = *cpp;
619 while (*cp && isspace((unsigned char)*cp))
620 cp++;
621 *cpp = cp;
622 }
623
624 /*
625 * Scan a number. The first arg points to the char * that's moving
626 * along the string. The second arg points to where we should store
627 * the result. The third arg says what we're scanning, for errors.
628 * The return value is 0 on error, or nonzero if all goes well.
629 */
630 static int
631 scannum(const char **cpp, uint32_t *np, const char *tag)
632 {
633 uint32_t v;
634 int nd;
635 const char *cp;
636
637 skipspaces(cpp);
638 v = 0;
639 nd = 0;
640
641 cp = *cpp;
642 while (*cp && isdigit(*cp)) {
643 v = (10 * v) + (*cp++ - '0');
644 nd++;
645 }
646 *cpp = cp;
647
648 if (nd == 0) {
649 printf("Missing/invalid %s: %s\n", tag, cp);
650 return (0);
651 }
652 *np = v;
653 return (1);
654 }
655
656 /*
657 * Change a partition. pno is the number of the partition to change;
658 * numbers is a pointer to the string containing the specification for
659 * the new start and size. This always takes the form "start size",
660 * where start can be
661 *
662 * a number
663 * The partition starts at the beginning of that cylinder.
664 *
665 * start-X
666 * The partition starts at the same place partition X does.
667 *
668 * end-X
669 * The partition starts at the place partition X ends. If
670 * partition X does not exactly on a cylinder boundary, it
671 * is effectively rounded up.
672 *
673 * and size can be
674 *
675 * a number
676 * The partition is that many sectors long.
677 *
678 * num/num/num
679 * The three numbers are cyl/trk/sect counts. n1/n2/n3 is
680 * equivalent to specifying a single number
681 * ((n1*label.nhead)+n2)*label.nsect)+n3. In particular,
682 * if label.nhead or label.nsect is zero, this has limited
683 * usefulness.
684 *
685 * end-X
686 * The partition ends where partition X ends. It is an
687 * error for partition X to end before the specified start
688 * point. This always goes to exactly where partition X
689 * ends, even if that's partway through a cylinder.
690 *
691 * start-X
692 * The partition extends to end exactly where partition X
693 * begins. It is an error for partition X to begin before
694 * the specified start point.
695 *
696 * size-X
697 * The partition has the same size as partition X.
698 *
699 * If label.spc is nonzero but the partition size is not a multiple of
700 * it, a warning is printed, since you usually don't want this. Most
701 * often, in my experience, this comes from specifying a cylinder
702 * count as a single number N instead of N/0/0.
703 */
704 static void
705 chpart(int pno, const char *numbers)
706 {
707 uint32_t cyl0;
708 uint32_t size;
709 uint32_t sizec;
710 uint32_t sizet;
711 uint32_t sizes;
712
713 skipspaces(&numbers);
714 if (!memcmp(numbers, "end-", 4) && numbers[4]) {
715 int epno = LETTERPART(numbers[4]);
716 if ((epno >= 0) && (epno < NPART)) {
717 cyl0 = label.partitions[epno].endcyl;
718 numbers += 5;
719 } else {
720 if (!scannum(&numbers, &cyl0, "starting cylinder"))
721 return;
722 }
723 } else if (!memcmp(numbers, "start-", 6) && numbers[6]) {
724 int spno = LETTERPART(numbers[6]);
725 if ((spno >= 0) && (spno < NPART)) {
726 cyl0 = label.partitions[spno].startcyl;
727 numbers += 7;
728 } else {
729 if (!scannum(&numbers, &cyl0, "starting cylinder"))
730 return;
731 }
732 } else {
733 if (!scannum(&numbers, &cyl0, "starting cylinder"))
734 return;
735 }
736 skipspaces(&numbers);
737 if (!memcmp(numbers, "end-", 4) && numbers[4]) {
738 int epno = LETTERPART(numbers[4]);
739 if ((epno >= 0) && (epno < NPART)) {
740 if (label.partitions[epno].endcyl <= cyl0) {
741 warnx("Partition %c ends before cylinder %u",
742 PARTLETTER(epno), cyl0);
743 return;
744 }
745 size = label.partitions[epno].nblk;
746 /* Be careful of unsigned arithmetic */
747 if (cyl0 > label.partitions[epno].startcyl) {
748 size -= (cyl0 - label.partitions[epno].startcyl)
749 * label.spc;
750 } else if (cyl0 < label.partitions[epno].startcyl) {
751 size += (label.partitions[epno].startcyl - cyl0)
752 * label.spc;
753 }
754 numbers += 5;
755 } else {
756 if (!scannum(&numbers, &size, "partition size"))
757 return;
758 }
759 } else if (!memcmp(numbers, "start-", 6) && numbers[6]) {
760 int spno = LETTERPART(numbers[6]);
761 if ((spno >= 0) && (spno < NPART)) {
762 if (label.partitions[spno].startcyl <= cyl0) {
763 warnx("Partition %c starts before cylinder %u",
764 PARTLETTER(spno), cyl0);
765 return;
766 }
767 size = (label.partitions[spno].startcyl - cyl0)
768 * label.spc;
769 numbers += 7;
770 } else {
771 if (!scannum(&numbers, &size, "partition size"))
772 return;
773 }
774 } else if (!memcmp(numbers, "size-", 5) && numbers[5]) {
775 int spno = LETTERPART(numbers[5]);
776 if ((spno >= 0) && (spno < NPART)) {
777 size = label.partitions[spno].nblk;
778 numbers += 6;
779 } else {
780 if (!scannum(&numbers, &size, "partition size"))
781 return;
782 }
783 } else {
784 if (!scannum(&numbers, &size, "partition size"))
785 return;
786 skipspaces(&numbers);
787 if (*numbers == '/') {
788 sizec = size;
789 numbers++;
790 if (!scannum(&numbers, &sizet,
791 "partition size track value"))
792 return;
793 skipspaces(&numbers);
794 if (*numbers != '/') {
795 warnx("Invalid c/t/s syntax - no second slash");
796 return;
797 }
798 numbers++;
799 if (!scannum(&numbers, &sizes,
800 "partition size sector value"))
801 return;
802 size = sizes + (label.nsect * (sizet
803 + (label.nhead * sizec)));
804 }
805 }
806 if (label.spc && (size % label.spc)) {
807 warnx("Size is not a multiple of cylinder size (is %u/%u/%u)\n",
808 size / label.spc,
809 (size % label.spc) / label.nsect, size % label.nsect);
810 }
811 label.partitions[pno].startcyl = cyl0;
812 label.partitions[pno].nblk = size;
813 set_endcyl(&label.partitions[pno]);
814 if ((label.partitions[pno].startcyl * label.spc)
815 + label.partitions[pno].nblk > label.spc * label.ncyl) {
816 warnx("Partition extends beyond end of disk");
817 }
818 label.dirty = 1;
819 }
820
821 /*
822 * Change a 128-byte-string field. There's currently only one such,
823 * the ASCII label field.
824 */
825 static void
826 chval_ascii(const char *cp, struct field *f)
827 {
828 const char *nl;
829
830 skipspaces(&cp);
831 if ((nl = strchr(cp, '\n')) == NULL)
832 nl = cp + strlen(cp);
833 if (nl - cp > 128) {
834 warnx("Ascii label string too long - max 128 characters");
835 } else {
836 memset(f->loc, 0, 128);
837 memcpy(f->loc, cp, (size_t)(nl - cp));
838 label.dirty = 1;
839 }
840 }
841 /*
842 * Change an int-valued field. As noted above, there's only one
843 * function, regardless of the field size in the on-disk label.
844 */
845 static void
846 chval_int(const char *cp, struct field *f)
847 {
848 uint32_t v;
849
850 if (!scannum(&cp, &v, "value"))
851 return;
852 *(uint32_t *)f->loc = v;
853 label.dirty = 1;
854 }
855 /*
856 * Change a field's value. The string argument contains the field name
857 * and the new value in text form. Look up the field and call its
858 * chval and changed functions.
859 */
860 static void
861 chvalue(const char *str)
862 {
863 const char *cp;
864 int i;
865 size_t n;
866
867 if (fields[0].taglen < 1) {
868 for (i = 0; fields[i].tag; i++)
869 fields[i].taglen = strlen(fields[i].tag);
870 }
871 skipspaces(&str);
872 cp = str;
873 while (*cp && !isspace(*cp))
874 cp++;
875 n = cp - str;
876 for (i = 0; fields[i].tag; i++) {
877 if ((n == fields[i].taglen) && !memcmp(str, fields[i].tag, n)) {
878 (*fields[i].chval) (cp, &fields[i]);
879 if (fields[i].changed)
880 (*fields[i].changed)();
881 break;
882 }
883 }
884 if (!fields[i].tag)
885 warnx("Bad name %.*s - see l output for names", (int)n, str);
886 }
887
888 /*
889 * `changed' function for the ntrack and nsect fields; update label.spc
890 * and call set_endcyl on all partitions.
891 */
892 static void
893 update_spc(void)
894 {
895 int i;
896
897 label.spc = label.nhead * label.nsect;
898 for (i = 0; i < NPART; i++)
899 set_endcyl(&label.partitions[i]);
900 }
901
902 /*
903 * Print function for 128-byte-string fields. Currently only the ASCII
904 * label, but we don't depend on that.
905 */
906 static int
907 /*ARGSUSED*/
908 print_ascii(struct field *f, int sofar __attribute__((__unused__)))
909 {
910 printf("%s: %.128s\n", f->tag, (char *)f->loc);
911 return 0;
912 }
913
914 /*
915 * Print an int-valued field. We are careful to do proper line wrap,
916 * making each value occupy 16 columns.
917 */
918 static int
919 print_int(struct field *f, int sofar)
920 {
921 if (sofar >= 60) {
922 printf("\n");
923 sofar = 0;
924 }
925 printf("%s: %-*u", f->tag, 14 - (int)strlen(f->tag),
926 *(uint32_t *)f->loc);
927 return sofar + 16;
928 }
929
930 /*
931 * Print the whole label. Just call the print function for each field,
932 * then append a newline if necessary.
933 */
934 static void
935 print_label(void)
936 {
937 int i;
938 int c;
939
940 c = 0;
941 for (i = 0; fields[i].tag; i++)
942 c = (*fields[i].print) (&fields[i], c);
943 if (c > 0)
944 printf("\n");
945 }
946
947 /*
948 * Figure out how many columns wide the screen is. We impose a minimum
949 * width of 20 columns; I suspect the output code has some issues if
950 * we have fewer columns than partitions.
951 */
952 static int
953 screen_columns(void)
954 {
955 int ncols;
956 #ifndef NO_TERMCAP_WIDTH
957 char *term;
958 char tbuf[1024];
959 #endif
960 #if defined(TIOCGWINSZ)
961 struct winsize wsz;
962 #elif defined(TIOCGSIZE)
963 struct ttysize tsz;
964 #endif
965
966 ncols = 80;
967 #ifndef NO_TERMCAP_WIDTH
968 term = getenv("TERM");
969 if (term && (tgetent(&tbuf[0], term) == 1)) {
970 int n = tgetnum("co");
971 if (n > 1)
972 ncols = n;
973 }
974 #endif
975 #if defined(TIOCGWINSZ)
976 if ((ioctl(1, TIOCGWINSZ, &wsz) == 0) && (wsz.ws_col > 0)) {
977 ncols = wsz.ws_col;
978 }
979 #elif defined(TIOCGSIZE)
980 if ((ioctl(1, TIOCGSIZE, &tsz) == 0) && (tsz.ts_cols > 0)) {
981 ncols = tsz.ts_cols;
982 }
983 #endif
984 if (ncols < 20)
985 ncols = 20;
986 return ncols;
987 }
988
989 /*
990 * Print the partitions. The argument is true iff we should print all
991 * partitions, even those set start=0 size=0. We generate one line
992 * per partition (or, if all==0, per `interesting' partition), plus a
993 * visually graphic map of partition letters. Most of the hair in the
994 * visual display lies in ensuring that nothing takes up less than one
995 * character column, that if two boundaries appear visually identical,
996 * they _are_ identical. Within that constraint, we try to make the
997 * number of character columns proportional to the size....
998 */
999 static void
1000 print_part(int all)
1001 {
1002 int i, j, k, n, r, c;
1003 size_t ncols;
1004 uint32_t edges[2 * NPART];
1005 int ce[2 * NPART];
1006 int row[NPART];
1007 unsigned char table[2 * NPART][NPART];
1008 char *line;
1009 struct part *p = label.partitions;
1010
1011 for (i = 0; i < NPART; i++) {
1012 if (all || p[i].startcyl || p[i].nblk) {
1013 printf("%c: start cyl = %6u, size = %8u (",
1014 PARTLETTER(i), p[i].startcyl, p[i].nblk);
1015 if (label.spc) {
1016 printf("%u/%u/%u - ", p[i].nblk / label.spc,
1017 (p[i].nblk % label.spc) / label.nsect,
1018 p[i].nblk % label.nsect);
1019 }
1020 printf("%gMb)\n", p[i].nblk / 2048.0);
1021 }
1022 }
1023
1024 j = 0;
1025 for (i = 0; i < NPART; i++) {
1026 if (p[i].nblk > 0) {
1027 edges[j++] = p[i].startcyl;
1028 edges[j++] = p[i].endcyl;
1029 }
1030 }
1031
1032 do {
1033 n = 0;
1034 for (i = 1; i < j; i++) {
1035 if (edges[i] < edges[i - 1]) {
1036 uint32_t t;
1037 t = edges[i];
1038 edges[i] = edges[i - 1];
1039 edges[i - 1] = t;
1040 n++;
1041 }
1042 }
1043 } while (n > 0);
1044
1045 for (i = 1; i < j; i++) {
1046 if (edges[i] != edges[n]) {
1047 n++;
1048 if (n != i)
1049 edges[n] = edges[i];
1050 }
1051 }
1052
1053 n++;
1054 for (i = 0; i < NPART; i++) {
1055 if (p[i].nblk > 0) {
1056 for (j = 0; j < n; j++) {
1057 if ((p[i].startcyl <= edges[j]) &&
1058 (p[i].endcyl > edges[j])) {
1059 table[j][i] = 1;
1060 } else {
1061 table[j][i] = 0;
1062 }
1063 }
1064 }
1065 }
1066
1067 ncols = screen_columns() - 2;
1068 for (i = 0; i < n; i++)
1069 ce[i] = (edges[i] * ncols) / (double) edges[n - 1];
1070
1071 for (i = 1; i < n; i++)
1072 if (ce[i] <= ce[i - 1])
1073 ce[i] = ce[i - 1] + 1;
1074
1075 if (ce[n - 1] > ncols) {
1076 ce[n - 1] = ncols;
1077 for (i = n - 1; (i > 0) && (ce[i] <= ce[i - 1]); i--)
1078 ce[i - 1] = ce[i] - 1;
1079 if (ce[0] < 0)
1080 for (i = 0; i < n; i++)
1081 ce[i] = i;
1082 }
1083
1084 printf("\n");
1085 for (i = 0; i < NPART; i++) {
1086 if (p[i].nblk > 0) {
1087 r = -1;
1088 do {
1089 r++;
1090 for (j = i - 1; j >= 0; j--) {
1091 if (row[j] != r)
1092 continue;
1093 for (k = 0; k < n; k++)
1094 if (table[k][i] && table[k][j])
1095 break;
1096 if (k < n)
1097 break;
1098 }
1099 } while (j >= 0);
1100 row[i] = r;
1101 } else {
1102 row[i] = -1;
1103 }
1104 }
1105 r = row[0];
1106 for (i = 1; i < NPART; i++)
1107 if (row[i] > r)
1108 r = row[i];
1109
1110 if ((line = malloc(ncols + 1)) == NULL)
1111 err(1, "Can't allocate memory");
1112
1113 for (i = 0; i <= r; i++) {
1114 for (j = 0; j < ncols; j++)
1115 line[j] = ' ';
1116 for (j = 0; j < NPART; j++) {
1117 if (row[j] != i)
1118 continue;
1119 k = 0;
1120 for (k = 0; k < n; k++) {
1121 if (table[k][j]) {
1122 for (c = ce[k]; c < ce[k + 1]; c++)
1123 line[c] = 'a' + j;
1124 }
1125 }
1126 }
1127 for (j = ncols - 1; (j >= 0) && (line[j] == ' '); j--);
1128 printf("%.*s\n", j + 1, line);
1129 }
1130 free(line);
1131 }
1132
1133 #ifdef S_COMMAND
1134 /*
1135 * This computes an appropriate checksum for an in-core label. It's
1136 * not really related to the S command, except that it's needed only
1137 * by setlabel(), which is #ifdef S_COMMAND.
1138 */
1139 static unsigned short int
1140 dkcksum(const struct disklabel *lp)
1141 {
1142 const unsigned short int *start;
1143 const unsigned short int *end;
1144 unsigned short int sum;
1145 const unsigned short int *p;
1146
1147 start = (const void *)lp;
1148 end = (const void *)&lp->d_partitions[lp->d_npartitions];
1149 sum = 0;
1150 for (p = start; p < end; p++)
1151 sum ^= *p;
1152 return (sum);
1153 }
1154
1155 /*
1156 * Set the in-core label. This is basically putlabel, except it builds
1157 * a struct disklabel instead of a Sun label buffer, and uses
1158 * DIOCSDINFO instead of lseek-and-write.
1159 */
1160 static void
1161 setlabel(void)
1162 {
1163 union {
1164 struct disklabel l;
1165 char pad[sizeof(struct disklabel) -
1166 (MAXPARTITIONS * sizeof(struct partition)) +
1167 (16 * sizeof(struct partition))];
1168 } u;
1169 int i;
1170 struct part *p = label.partitions;
1171
1172 if (ioctl(diskfd, DIOCGDINFO, &u.l) == -1) {
1173 warn("ioctl DIOCGDINFO failed");
1174 return;
1175 }
1176 if (u.l.d_secsize != 512) {
1177 warnx("Disk claims %d-byte sectors\n", (int)u.l.d_secsize);
1178 }
1179 u.l.d_nsectors = label.nsect;
1180 u.l.d_ntracks = label.nhead;
1181 u.l.d_ncylinders = label.ncyl;
1182 u.l.d_secpercyl = label.nsect * label.nhead;
1183 u.l.d_rpm = label.rpm;
1184 u.l.d_interleave = label.intrlv;
1185 u.l.d_npartitions = getmaxpartitions();
1186 memset(&u.l.d_partitions[0], 0,
1187 u.l.d_npartitions * sizeof(struct partition));
1188 for (i = 0; i < u.l.d_npartitions; i++) {
1189 u.l.d_partitions[i].p_size = p[i].nblk;
1190 u.l.d_partitions[i].p_offset = p[i].startcyl
1191 * label.nsect * label.nhead;
1192 u.l.d_partitions[i].p_fsize = 0;
1193 u.l.d_partitions[i].p_fstype = (i == 1) ? FS_SWAP :
1194 (i == 2) ? FS_UNUSED : FS_BSDFFS;
1195 u.l.d_partitions[i].p_frag = 0;
1196 u.l.d_partitions[i].p_cpg = 0;
1197 }
1198 u.l.d_checksum = 0;
1199 u.l.d_checksum = dkcksum(&u.l);
1200 if (ioctl(diskfd, DIOCSDINFO, &u.l) == -1) {
1201 warn("ioctl DIOCSDINFO failed");
1202 return;
1203 }
1204 }
1205 #endif
1206
1207 static const char *help[] = {
1208 "? - print this help",
1209 "L - print label, except for partition table",
1210 "P - print partition table",
1211 "PP - print partition table including size=0 offset=0 entries",
1212 "[abcdefghijklmnop] <cylno> <size> - change partition",
1213 "V <name> <value> - change a non-partition label value",
1214 "W - write (possibly modified) label out",
1215 #ifdef S_COMMAND
1216 "S - set label in the kernel (orthogonal to W)",
1217 #endif
1218 "Q - quit program (error if no write since last change)",
1219 "Q! - quit program (unconditionally) [EOF also quits]",
1220 NULL
1221 };
1222
1223 /*
1224 * Read and execute one command line from the user.
1225 */
1226 static void
1227 docmd(void)
1228 {
1229 char cmdline[512];
1230 int i;
1231
1232 if (!quiet)
1233 printf("sunlabel> ");
1234 if (fgets(&cmdline[0], sizeof(cmdline), stdin) != &cmdline[0])
1235 exit(0);
1236 switch (cmdline[0]) {
1237 case '?':
1238 for (i = 0; help[i]; i++)
1239 printf("%s\n", help[i]);
1240 break;
1241 case 'L':
1242 print_label();
1243 break;
1244 case 'P':
1245 print_part(cmdline[1] == 'P');
1246 break;
1247 case 'W':
1248 putlabel();
1249 break;
1250 case 'S':
1251 #ifdef S_COMMAND
1252 setlabel();
1253 #else
1254 printf("This compilation doesn't support S.\n");
1255 #endif
1256 break;
1257 case 'Q':
1258 if ((cmdline[1] == '!') || !label.dirty)
1259 exit(0);
1260 printf("Label is dirty - use w to write it\n");
1261 printf("Use Q! to quit anyway.\n");
1262 break;
1263 case 'a':
1264 case 'b':
1265 case 'c':
1266 case 'd':
1267 case 'e':
1268 case 'f':
1269 case 'g':
1270 case 'h':
1271 case 'i':
1272 case 'j':
1273 case 'k':
1274 case 'l':
1275 case 'm':
1276 case 'n':
1277 case 'o':
1278 case 'p':
1279 chpart(LETTERPART(cmdline[0]), &cmdline[1]);
1280 break;
1281 case 'V':
1282 chvalue(&cmdline[1]);
1283 break;
1284 case '\n':
1285 break;
1286 default:
1287 printf("(Unrecognized command character %c ignored.)\n",
1288 cmdline[0]);
1289 break;
1290 }
1291 }
1292 /*
1293 * main() (duh!). Pretty boring.
1294 */
1295 int
1296 main(int ac, char **av)
1297 {
1298 handleargs(ac, av);
1299 getlabel();
1300 for (;;)
1301 docmd();
1302 }
1303