sunlabel.c revision 1.7 1 /* $NetBSD: sunlabel.c,v 1.7 2002/12/21 06:53:29 lukem Exp $ */
2
3 /*-
4 * Copyright (c) 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by der Mouse.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 __RCSID("$NetBSD: sunlabel.c,v 1.7 2002/12/21 06:53:29 lukem Exp $");
41
42 #include <stdio.h>
43 #include <errno.h>
44 #include <ctype.h>
45 #include <stdlib.h>
46 #include <unistd.h>
47 #include <termcap.h>
48 #include <strings.h>
49 #include <inttypes.h>
50 #include <err.h>
51
52 #include <sys/file.h>
53 #include <sys/ioctl.h>
54 #include <sys/disklabel.h>
55
56 /* If neither S_COMMAND nor NO_S_COMMAND is defined, guess. */
57 #if !defined(S_COMMAND) && !defined(NO_S_COMMAND)
58 #define S_COMMAND
59 #include <util.h>
60 #endif
61
62 /*
63 * NPART is the total number of partitions. This must be <= 43, given the
64 * amount of space available to store extended partitions. It also must be
65 * <=26, given the use of single letters to name partitions. The 8 is the
66 * number of `standard' partitions; this arguably should be a #define, since
67 * it occurs not only here but scattered throughout the code.
68 */
69 #define NPART 16
70 #define NXPART (NPART - 8)
71 #define PARTLETTER(i) ((i) + 'a')
72 #define LETTERPART(i) ((i) - 'a')
73
74 /*
75 * A partition. We keep redundant information around, making sure
76 * that whenever we change one, we keep another constant and update
77 * the third. Which one is which depends. Arguably a partition
78 * should also know its partition number; here, if we need that we
79 * cheat, using (effectively) ptr-&label.partitions[0].
80 */
81 struct part {
82 uint32_t startcyl;
83 uint32_t nblk;
84 uint32_t endcyl;
85 };
86
87 /*
88 * A label. As the embedded comments indicate, much of this structure
89 * corresponds directly to Sun's struct dk_label. Some of the values
90 * here are historical holdovers. Apparently really old Suns did
91 * their own sparing in software, so a sector or two per cylinder,
92 * plus a whole cylinder or two at the end, got set aside as spares.
93 * acyl and apc count those spares, and this is also why ncyl and pcyl
94 * both exist. These days the spares generally are hidden from the
95 * host by the disk, and there's no reason not to set
96 * ncyl=pcyl=ceil(device size/spc) and acyl=apc=0.
97 *
98 * Note also that the geometry assumptions behind having nhead and
99 * nsect assume that the sect/trk and trk/cyl values are constant
100 * across the whole drive. The latter is still usually true; the
101 * former isn't. In my experience, you can just put fixed values
102 * here; the basis for software knowing the drive geometry is also
103 * mostly invalid these days anyway. (I just use nhead=32 nsect=64,
104 * which gives me 1M "cylinders", a convenient size.)
105 */
106 struct label {
107 /* BEGIN fields taken directly from struct dk_label */
108 char asciilabel[128];
109 uint32_t rpm; /* Spindle rotation speed - useless now */
110 uint32_t pcyl; /* Physical cylinders */
111 uint32_t apc; /* Alternative sectors per cylinder */
112 uint32_t obs1; /* Obsolete? */
113 uint32_t obs2; /* Obsolete? */
114 uint32_t intrlv; /* Interleave - never anything but 1 IME */
115 uint32_t ncyl; /* Number of usable cylinders */
116 uint32_t acyl; /* Alternative cylinders - pcyl minus ncyl */
117 uint32_t nhead; /* Tracks-per-cylinder (usually # of heads) */
118 uint32_t nsect; /* Sectors-per-track */
119 uint32_t obs3; /* Obsolete? */
120 uint32_t obs4; /* Obsolete? */
121 /* END fields taken directly from struct dk_label */
122 uint32_t spc; /* Sectors per cylinder - nhead*nsect */
123 uint32_t dirty:1;/* Modified since last read */
124 struct part partitions[NPART];/* The partitions themselves */
125 };
126
127 /*
128 * Describes a field in the label.
129 *
130 * tag is a short name for the field, like "apc" or "nsect". loc is a
131 * pointer to the place in the label where it's stored. print is a
132 * function to print the value; the second argument is the current
133 * column number, and the return value is the new current column
134 * number. (This allows print functions to do proper line wrapping.)
135 * chval is called to change a field; the first argument is the
136 * command line portion that contains the new value (in text form).
137 * The chval function is responsible for parsing and error-checking as
138 * well as doing the modification. changed is a function which does
139 * field-specific actions necessary when the field has been changed.
140 * This could be rolled into the chval function, but I believe this
141 * way provides better code sharing.
142 *
143 * Note that while the fields in the label vary in size (8, 16, or 32
144 * bits), we store everything as ints in the label struct, above, and
145 * convert when packing and unpacking. This allows us to have only
146 * one numeric chval function.
147 */
148 struct field {
149 const char *tag;
150 void *loc;
151 int (*print)(struct field *, int);
152 void (*chval)(const char *, struct field *);
153 void (*changed)(void);
154 int taglen;
155 };
156
157 /* LABEL_MAGIC was chosen by Sun and cannot be trivially changed. */
158 #define LABEL_MAGIC 0xdabe
159 /*
160 * LABEL_XMAGIC needs to agree between here and any other code that uses
161 * extended partitions (mainly the kernel).
162 */
163 #define LABEL_XMAGIC (0x199d1fe2+8)
164
165 static int diskfd; /* fd on the disk */
166 static const char *diskname; /* name of the disk, for messages */
167 static int readonly; /* true iff it's open RO */
168 static unsigned char labelbuf[512]; /* Buffer holding the label sector */
169 static struct label label; /* The label itself. */
170 static int fixmagic; /* -m, ignore bad magic #s */
171 static int fixcksum; /* -s, ignore bad cksums */
172 static int newlabel; /* -n, ignore all on-disk values */
173 static int quiet; /* -q, don't print chatter */
174
175 /*
176 * The various functions that go in the field function pointers. The
177 * _ascii functions are for 128-byte string fields (the ASCII label);
178 * the _int functions are for int-valued fields (everything else).
179 * update_spc is a `changed' function for updating the spc value when
180 * changing one of the two values that make it up.
181 */
182 static int print_ascii(struct field *, int);
183 static void chval_ascii(const char *, struct field *);
184 static int print_int(struct field *, int);
185 static void chval_int(const char *, struct field *);
186 static void update_spc(void);
187
188 int main(int, char **);
189
190 /* The fields themselves. */
191 static struct field fields[] =
192 {
193 {"ascii", &label.asciilabel[0], print_ascii, chval_ascii, 0},
194 {"rpm", &label.rpm, print_int, chval_int, 0},
195 {"pcyl", &label.pcyl, print_int, chval_int, 0},
196 {"apc", &label.apc, print_int, chval_int, 0},
197 {"obs1", &label.obs1, print_int, chval_int, 0},
198 {"obs2", &label.obs2, print_int, chval_int, 0},
199 {"intrlv", &label.intrlv, print_int, chval_int, 0},
200 {"ncyl", &label.ncyl, print_int, chval_int, 0},
201 {"acyl", &label.acyl, print_int, chval_int, 0},
202 {"nhead", &label.nhead, print_int, chval_int, update_spc},
203 {"nsect", &label.nsect, print_int, chval_int, update_spc},
204 {"obs3", &label.obs3, print_int, chval_int, 0},
205 {"obs4", &label.obs4, print_int, chval_int, 0},
206 {NULL, NULL, NULL, NULL, 0}
207 };
208
209 /*
210 * We'd _like_ to use howmany() from the include files, but can't count
211 * on its being present or working.
212 */
213 static __inline__ uint32_t how_many(uint32_t amt, uint32_t unit)
214 __attribute__((__const__));
215 static __inline__ uint32_t
216 how_many(uint32_t amt, uint32_t unit)
217 {
218 return ((amt + unit - 1) / unit);
219 }
220
221 /*
222 * Try opening the disk, given a name. If mustsucceed is true, we
223 * "cannot fail"; failures produce gripe-and-exit, and if we return,
224 * our return value is 1. Otherwise, we return 1 on success and 0 on
225 * failure.
226 */
227 static int
228 trydisk(const char *s, int mustsucceed)
229 {
230 int ro = 0;
231
232 diskname = s;
233 if ((diskfd = open(s, O_RDWR)) == -1 ||
234 (diskfd = open(s, O_RDWR | O_NDELAY)) == -1) {
235 if ((diskfd = open(s, O_RDONLY)) == -1) {
236 if (mustsucceed)
237 err(1, "Cannot open `%s'", s);
238 else
239 return 0;
240 }
241 ro = 1;
242 }
243 if (ro && !quiet)
244 warnx("No write access, label is readonly");
245 readonly = ro;
246 return 1;
247 }
248
249 /*
250 * Set the disk device, given the user-supplied string. Note that even
251 * if we malloc, we never free, because either trydisk eventually
252 * succeeds, in which case the string is saved in diskname, or it
253 * fails, in which case we exit and freeing is irrelevant.
254 */
255 static void
256 setdisk(const char *s)
257 {
258 char *tmp;
259
260 if (strchr(s, '/')) {
261 trydisk(s, 1);
262 return;
263 }
264 if (trydisk(s, 0))
265 return;
266 tmp = malloc(strlen(s) + 7);
267 sprintf(tmp, "/dev/%s", s);
268 if (trydisk(tmp, 0))
269 return;
270 sprintf(tmp, "/dev/%s%c", s, getrawpartition() + 'a');
271 if (trydisk(tmp, 0))
272 return;
273 errx(1, "Can't find device for disk `%s'", s);
274 }
275
276 static void usage(void) __attribute__((__noreturn__));
277 static void
278 usage(void)
279 {
280 (void)fprintf(stderr, "Usage: %s [-mnqs] [-d disk]\n", getprogname());
281 exit(1);
282 }
283
284 /*
285 * Command-line arguments. We can have at most one non-flag
286 * argument, which is the disk name; we can also have flags
287 *
288 * -d diskdev
289 * Specifies disk device unambiguously (if it begins with
290 * a dash, it will be mistaken for a flag if simply placed
291 * on the command line).
292 *
293 * -m
294 * Turns on fixmagic, which causes bad magic numbers to be
295 * ignored (though a complaint is still printed), rather
296 * than being fatal errors.
297 *
298 * -s
299 * Turns on fixcksum, which causes bad checksums to be
300 * ignored (though a complaint is still printed), rather
301 * than being fatal errors.
302 *
303 * -n
304 * Turns on newlabel, which means we're creating a new
305 * label and anything in the label sector should be
306 * ignored. This is a bit like -fixmagic -fixsum, except
307 * that it doesn't print complaints and it ignores
308 * possible garbage on-disk.
309 *
310 * -q
311 * Turns on quiet, which suppresses printing of prompts
312 * and other irrelevant chatter. If you're trying to use
313 * sunlabel in an automated way, you probably want this.
314 */
315 static void
316 handleargs(int ac, char **av)
317 {
318 int c;
319
320 while ((c = getopt(ac, av, "d:mnqs")) != -1) {
321 switch (c) {
322 case 'd':
323 setdisk(optarg);
324 break;
325 case 'm':
326 fixmagic++;
327 break;
328 case 'n':
329 newlabel++;
330 break;
331 case 'q':
332 quiet++;
333 break;
334 case 's':
335 fixcksum++;
336 break;
337 case '?':
338 warnx("Illegal option `%c'", c);
339 usage();
340 }
341 }
342 }
343 /*
344 * Sets the ending cylinder for a partition. This exists mainly to
345 * centralize the check. (If spc is zero, cylinder numbers make
346 * little sense, and the code would otherwise die on divide-by-0 if we
347 * barged blindly ahead.) We need to call this on a partition
348 * whenever we change it; we need to call it on all partitions
349 * whenever we change spc.
350 */
351 static void
352 set_endcyl(struct part *p)
353 {
354 if (label.spc == 0) {
355 p->endcyl = p->startcyl;
356 } else {
357 p->endcyl = p->startcyl + how_many(p->nblk, label.spc);
358 }
359 }
360
361 /*
362 * Unpack a label from disk into the in-core label structure. If
363 * newlabel is set, we don't actually do so; we just synthesize a
364 * blank label instead. This is where knowledge of the Sun label
365 * format is kept for read; pack_label is the corresponding routine
366 * for write. We are careful to use labelbuf, l_s, or l_l as
367 * appropriate to avoid byte-sex issues, so we can work on
368 * little-endian machines.
369 *
370 * Note that a bad magic number for the extended partition information
371 * is not considered an error; it simply indicates there is no
372 * extended partition information. Arguably this is the Wrong Thing,
373 * and we should take zero as meaning no info, and anything other than
374 * zero or LABEL_XMAGIC as reason to gripe.
375 */
376 static const char *
377 unpack_label(void)
378 {
379 unsigned short int l_s[256];
380 unsigned long int l_l[128];
381 int i;
382 unsigned long int sum;
383 int have_x;
384
385 if (newlabel) {
386 bzero(&label.asciilabel[0], 128);
387 label.rpm = 0;
388 label.pcyl = 0;
389 label.apc = 0;
390 label.obs1 = 0;
391 label.obs2 = 0;
392 label.intrlv = 0;
393 label.ncyl = 0;
394 label.acyl = 0;
395 label.nhead = 0;
396 label.nsect = 0;
397 label.obs3 = 0;
398 label.obs4 = 0;
399 for (i = 0; i < NPART; i++) {
400 label.partitions[i].startcyl = 0;
401 label.partitions[i].nblk = 0;
402 set_endcyl(&label.partitions[i]);
403 }
404 label.spc = 0;
405 label.dirty = 1;
406 return (0);
407 }
408 for (i = 0; i < 256; i++)
409 l_s[i] = (labelbuf[i + i] << 8) | labelbuf[i + i + 1];
410 for (i = 0; i < 128; i++)
411 l_l[i] = (l_s[i + i] << 16) | l_s[i + i + 1];
412 if (l_s[254] != LABEL_MAGIC) {
413 if (fixmagic) {
414 label.dirty = 1;
415 warnx("ignoring incorrect magic number.");
416 } else {
417 return "bad magic number";
418 }
419 }
420 sum = 0;
421 for (i = 0; i < 256; i++)
422 sum ^= l_s[i];
423 label.dirty = 0;
424 if (sum != 0) {
425 if (fixcksum) {
426 label.dirty = 1;
427 warnx("ignoring incorrect checksum.");
428 } else {
429 return "checksum wrong";
430 }
431 }
432 (void)memcpy(&label.asciilabel[0], &labelbuf[0], 128);
433 label.rpm = l_s[210];
434 label.pcyl = l_s[211];
435 label.apc = l_s[212];
436 label.obs1 = l_s[213];
437 label.obs2 = l_s[214];
438 label.intrlv = l_s[215];
439 label.ncyl = l_s[216];
440 label.acyl = l_s[217];
441 label.nhead = l_s[218];
442 label.nsect = l_s[219];
443 label.obs3 = l_s[220];
444 label.obs4 = l_s[221];
445 label.spc = label.nhead * label.nsect;
446 for (i = 0; i < 8; i++) {
447 label.partitions[i].startcyl = (uint32_t)l_l[i + i + 111];
448 label.partitions[i].nblk = (uint32_t)l_l[i + i + 112];
449 set_endcyl(&label.partitions[i]);
450 }
451 have_x = 0;
452 if (l_l[33] == LABEL_XMAGIC) {
453 sum = 0;
454 for (i = 0; i < ((NXPART * 2) + 1); i++)
455 sum += l_l[33 + i];
456 if (sum != l_l[32]) {
457 if (fixcksum) {
458 label.dirty = 1;
459 warnx("Ignoring incorrect extended-partition checksum.");
460 have_x = 1;
461 } else {
462 warnx("Extended-partition magic right but checksum wrong.");
463 }
464 } else {
465 have_x = 1;
466 }
467 }
468 if (have_x) {
469 for (i = 0; i < NXPART; i++) {
470 int j = i + i + 34;
471 label.partitions[i + 8].startcyl = (uint32_t)l_l[j++];
472 label.partitions[i + 8].nblk = (uint32_t)l_l[j++];
473 set_endcyl(&label.partitions[i + 8]);
474 }
475 } else {
476 for (i = 0; i < NXPART; i++) {
477 label.partitions[i + 8].startcyl = 0;
478 label.partitions[i + 8].nblk = 0;
479 set_endcyl(&label.partitions[i + 8]);
480 }
481 }
482 return 0;
483 }
484
485 /*
486 * Pack a label from the in-core label structure into on-disk format.
487 * This is where knowledge of the Sun label format is kept for write;
488 * unpack_label is the corresponding routine for read. If all
489 * partitions past the first 8 are size=0 cyl=0, we store all-0s in
490 * the extended partition space, to be fully compatible with Sun
491 * labels. Since AFIAK nothing works in that case that would break if
492 * we put extended partition info there in the same format we'd use if
493 * there were real info there, this is arguably unnecessary, but it's
494 * easy to do.
495 *
496 * We are careful to avoid endianness issues by constructing everything
497 * in an array of shorts. We do this rather than using chars or longs
498 * because the checksum is defined in terms of shorts; using chars or
499 * longs would simplify small amounts of code at the price of
500 * complicating more.
501 */
502 static void
503 pack_label(void)
504 {
505 unsigned short int l_s[256];
506 int i;
507 unsigned short int sum;
508
509 memset(&l_s[0], 0, 512);
510 memcpy(&labelbuf[0], &label.asciilabel[0], 128);
511 for (i = 0; i < 64; i++)
512 l_s[i] = (labelbuf[i + i] << 8) | labelbuf[i + i + 1];
513 l_s[210] = label.rpm;
514 l_s[211] = label.pcyl;
515 l_s[212] = label.apc;
516 l_s[213] = label.obs1;
517 l_s[214] = label.obs2;
518 l_s[215] = label.intrlv;
519 l_s[216] = label.ncyl;
520 l_s[217] = label.acyl;
521 l_s[218] = label.nhead;
522 l_s[219] = label.nsect;
523 l_s[220] = label.obs3;
524 l_s[221] = label.obs4;
525 for (i = 0; i < 8; i++) {
526 l_s[(i * 4) + 222] = label.partitions[i].startcyl >> 16;
527 l_s[(i * 4) + 223] = label.partitions[i].startcyl & 0xffff;
528 l_s[(i * 4) + 224] = label.partitions[i].nblk >> 16;
529 l_s[(i * 4) + 225] = label.partitions[i].nblk & 0xffff;
530 }
531 for (i = 0; i < NXPART; i++) {
532 if (label.partitions[i + 8].startcyl ||
533 label.partitions[i + 8].nblk)
534 break;
535 }
536 if (i < NXPART) {
537 unsigned long int xsum;
538 l_s[66] = LABEL_XMAGIC >> 16;
539 l_s[67] = LABEL_XMAGIC & 0xffff;
540 for (i = 0; i < NXPART; i++) {
541 int j = (i * 4) + 68;
542 l_s[j++] = label.partitions[i + 8].startcyl >> 16;
543 l_s[j++] = label.partitions[i + 8].startcyl & 0xffff;
544 l_s[j++] = label.partitions[i + 8].nblk >> 16;
545 l_s[j++] = label.partitions[i + 8].nblk & 0xffff;
546 }
547 xsum = 0;
548 for (i = 0; i < ((NXPART * 2) + 1); i++)
549 xsum += (l_s[i + i + 66] << 16) | l_s[i + i + 67];
550 l_s[64] = (int32_t)(xsum >> 16);
551 l_s[65] = (int32_t)(xsum & 0xffff);
552 }
553 l_s[254] = LABEL_MAGIC;
554 sum = 0;
555 for (i = 0; i < 255; i++)
556 sum ^= l_s[i];
557 l_s[255] = sum;
558 for (i = 0; i < 256; i++) {
559 labelbuf[i + i] = ((uint32_t)l_s[i]) >> 8;
560 labelbuf[i + i + 1] = l_s[i] & 0xff;
561 }
562 }
563
564 /*
565 * Get the label. Read it off the disk and unpack it. This function
566 * is nothing but lseek, read, unpack_label, and error checking.
567 */
568 static void
569 getlabel(void)
570 {
571 int rv;
572 const char *lerr;
573
574 if (lseek(diskfd, (off_t)0, L_SET) == (off_t)-1)
575 err(1, "lseek to 0 on `%s' failed", diskname);
576
577 if ((rv = read(diskfd, &labelbuf[0], 512)) == -1)
578 err(1, "read label from `%s' failed", diskname);
579
580 if (rv != 512)
581 errx(1, "short read from `%s' wanted %d, got %d.", diskname,
582 512, rv);
583
584 lerr = unpack_label();
585 if (lerr)
586 errx(1, "bogus label on `%s' (%s)", diskname, lerr);
587 }
588
589 /*
590 * Put the label. Pack it and write it to the disk. This function is
591 * little more than pack_label, lseek, write, and error checking.
592 */
593 static void
594 putlabel(void)
595 {
596 int rv;
597
598 if (readonly) {
599 warnx("No write access to `%s'", diskname);
600 return;
601 }
602
603 if (lseek(diskfd, (off_t)0, L_SET) < (off_t)-1)
604 err(1, "lseek to 0 on `%s' failed", diskname);
605
606 pack_label();
607
608 if ((rv = write(diskfd, &labelbuf[0], 512)) == -1) {
609 err(1, "write label to `%s' failed", diskname);
610 exit(1);
611 }
612
613 if (rv != 512)
614 errx(1, "short write to `%s': wanted %d, got %d",
615 diskname, 512, rv);
616
617 label.dirty = 0;
618 }
619
620 /*
621 * Skip whitespace. Used several places in the command-line parsing
622 * code.
623 */
624 static void
625 skipspaces(const char **cpp)
626 {
627 const char *cp = *cpp;
628 while (*cp && isspace((unsigned char)*cp))
629 cp++;
630 *cpp = cp;
631 }
632
633 /*
634 * Scan a number. The first arg points to the char * that's moving
635 * along the string. The second arg points to where we should store
636 * the result. The third arg says what we're scanning, for errors.
637 * The return value is 0 on error, or nonzero if all goes well.
638 */
639 static int
640 scannum(const char **cpp, uint32_t *np, const char *tag)
641 {
642 uint32_t v;
643 int nd;
644 const char *cp;
645
646 skipspaces(cpp);
647 v = 0;
648 nd = 0;
649
650 cp = *cpp;
651 while (*cp && isdigit(*cp)) {
652 v = (10 * v) + (*cp++ - '0');
653 nd++;
654 }
655 *cpp = cp;
656
657 if (nd == 0) {
658 printf("Missing/invalid %s: %s\n", tag, cp);
659 return (0);
660 }
661 *np = v;
662 return (1);
663 }
664
665 /*
666 * Change a partition. pno is the number of the partition to change;
667 * numbers is a pointer to the string containing the specification for
668 * the new start and size. This always takes the form "start size",
669 * where start can be
670 *
671 * a number
672 * The partition starts at the beginning of that cylinder.
673 *
674 * start-X
675 * The partition starts at the same place partition X does.
676 *
677 * end-X
678 * The partition starts at the place partition X ends. If
679 * partition X does not exactly on a cylinder boundary, it
680 * is effectively rounded up.
681 *
682 * and size can be
683 *
684 * a number
685 * The partition is that many sectors long.
686 *
687 * num/num/num
688 * The three numbers are cyl/trk/sect counts. n1/n2/n3 is
689 * equivalent to specifying a single number
690 * ((n1*label.nhead)+n2)*label.nsect)+n3. In particular,
691 * if label.nhead or label.nsect is zero, this has limited
692 * usefulness.
693 *
694 * end-X
695 * The partition ends where partition X ends. It is an
696 * error for partition X to end before the specified start
697 * point. This always goes to exactly where partition X
698 * ends, even if that's partway through a cylinder.
699 *
700 * start-X
701 * The partition extends to end exactly where partition X
702 * begins. It is an error for partition X to begin before
703 * the specified start point.
704 *
705 * size-X
706 * The partition has the same size as partition X.
707 *
708 * If label.spc is nonzero but the partition size is not a multiple of
709 * it, a warning is printed, since you usually don't want this. Most
710 * often, in my experience, this comes from specifying a cylinder
711 * count as a single number N instead of N/0/0.
712 */
713 static void
714 chpart(int pno, const char *numbers)
715 {
716 uint32_t cyl0;
717 uint32_t size;
718 uint32_t sizec;
719 uint32_t sizet;
720 uint32_t sizes;
721
722 skipspaces(&numbers);
723 if (!memcmp(numbers, "end-", 4) && numbers[4]) {
724 int epno = LETTERPART(numbers[4]);
725 if ((epno >= 0) && (epno < NPART)) {
726 cyl0 = label.partitions[epno].endcyl;
727 numbers += 5;
728 } else {
729 if (!scannum(&numbers, &cyl0, "starting cylinder"))
730 return;
731 }
732 } else if (!memcmp(numbers, "start-", 6) && numbers[6]) {
733 int spno = LETTERPART(numbers[6]);
734 if ((spno >= 0) && (spno < NPART)) {
735 cyl0 = label.partitions[spno].startcyl;
736 numbers += 7;
737 } else {
738 if (!scannum(&numbers, &cyl0, "starting cylinder"))
739 return;
740 }
741 } else {
742 if (!scannum(&numbers, &cyl0, "starting cylinder"))
743 return;
744 }
745 skipspaces(&numbers);
746 if (!memcmp(numbers, "end-", 4) && numbers[4]) {
747 int epno = LETTERPART(numbers[4]);
748 if ((epno >= 0) && (epno < NPART)) {
749 if (label.partitions[epno].endcyl <= cyl0) {
750 warnx("Partition %c ends before cylinder %u",
751 PARTLETTER(epno), cyl0);
752 return;
753 }
754 size = label.partitions[epno].nblk;
755 /* Be careful of unsigned arithmetic */
756 if (cyl0 > label.partitions[epno].startcyl) {
757 size -= (cyl0 - label.partitions[epno].startcyl)
758 * label.spc;
759 } else if (cyl0 < label.partitions[epno].startcyl) {
760 size += (label.partitions[epno].startcyl - cyl0)
761 * label.spc;
762 }
763 numbers += 5;
764 } else {
765 if (!scannum(&numbers, &size, "partition size"))
766 return;
767 }
768 } else if (!memcmp(numbers, "start-", 6) && numbers[6]) {
769 int spno = LETTERPART(numbers[6]);
770 if ((spno >= 0) && (spno < NPART)) {
771 if (label.partitions[spno].startcyl <= cyl0) {
772 warnx("Partition %c starts before cylinder %u",
773 PARTLETTER(spno), cyl0);
774 return;
775 }
776 size = (label.partitions[spno].startcyl - cyl0)
777 * label.spc;
778 numbers += 7;
779 } else {
780 if (!scannum(&numbers, &size, "partition size"))
781 return;
782 }
783 } else if (!memcmp(numbers, "size-", 5) && numbers[5]) {
784 int spno = LETTERPART(numbers[5]);
785 if ((spno >= 0) && (spno < NPART)) {
786 size = label.partitions[spno].nblk;
787 numbers += 6;
788 } else {
789 if (!scannum(&numbers, &size, "partition size"))
790 return;
791 }
792 } else {
793 if (!scannum(&numbers, &size, "partition size"))
794 return;
795 skipspaces(&numbers);
796 if (*numbers == '/') {
797 sizec = size;
798 numbers++;
799 if (!scannum(&numbers, &sizet,
800 "partition size track value"))
801 return;
802 skipspaces(&numbers);
803 if (*numbers != '/') {
804 warnx("Invalid c/t/s syntax - no second slash");
805 return;
806 }
807 numbers++;
808 if (!scannum(&numbers, &sizes,
809 "partition size sector value"))
810 return;
811 size = sizes + (label.nsect * (sizet
812 + (label.nhead * sizec)));
813 }
814 }
815 if (label.spc && (size % label.spc)) {
816 warnx("Size is not a multiple of cylinder size (is %u/%u/%u)",
817 size / label.spc,
818 (size % label.spc) / label.nsect, size % label.nsect);
819 }
820 label.partitions[pno].startcyl = cyl0;
821 label.partitions[pno].nblk = size;
822 set_endcyl(&label.partitions[pno]);
823 if ((label.partitions[pno].startcyl * label.spc)
824 + label.partitions[pno].nblk > label.spc * label.ncyl) {
825 warnx("Partition extends beyond end of disk");
826 }
827 label.dirty = 1;
828 }
829
830 /*
831 * Change a 128-byte-string field. There's currently only one such,
832 * the ASCII label field.
833 */
834 static void
835 chval_ascii(const char *cp, struct field *f)
836 {
837 const char *nl;
838
839 skipspaces(&cp);
840 if ((nl = strchr(cp, '\n')) == NULL)
841 nl = cp + strlen(cp);
842 if (nl - cp > 128) {
843 warnx("Ascii label string too long - max 128 characters");
844 } else {
845 memset(f->loc, 0, 128);
846 memcpy(f->loc, cp, (size_t)(nl - cp));
847 label.dirty = 1;
848 }
849 }
850 /*
851 * Change an int-valued field. As noted above, there's only one
852 * function, regardless of the field size in the on-disk label.
853 */
854 static void
855 chval_int(const char *cp, struct field *f)
856 {
857 uint32_t v;
858
859 if (!scannum(&cp, &v, "value"))
860 return;
861 *(uint32_t *)f->loc = v;
862 label.dirty = 1;
863 }
864 /*
865 * Change a field's value. The string argument contains the field name
866 * and the new value in text form. Look up the field and call its
867 * chval and changed functions.
868 */
869 static void
870 chvalue(const char *str)
871 {
872 const char *cp;
873 int i;
874 size_t n;
875
876 if (fields[0].taglen < 1) {
877 for (i = 0; fields[i].tag; i++)
878 fields[i].taglen = strlen(fields[i].tag);
879 }
880 skipspaces(&str);
881 cp = str;
882 while (*cp && !isspace(*cp))
883 cp++;
884 n = cp - str;
885 for (i = 0; fields[i].tag; i++) {
886 if ((n == fields[i].taglen) && !memcmp(str, fields[i].tag, n)) {
887 (*fields[i].chval) (cp, &fields[i]);
888 if (fields[i].changed)
889 (*fields[i].changed)();
890 break;
891 }
892 }
893 if (!fields[i].tag)
894 warnx("Bad name %.*s - see l output for names", (int)n, str);
895 }
896
897 /*
898 * `changed' function for the ntrack and nsect fields; update label.spc
899 * and call set_endcyl on all partitions.
900 */
901 static void
902 update_spc(void)
903 {
904 int i;
905
906 label.spc = label.nhead * label.nsect;
907 for (i = 0; i < NPART; i++)
908 set_endcyl(&label.partitions[i]);
909 }
910
911 /*
912 * Print function for 128-byte-string fields. Currently only the ASCII
913 * label, but we don't depend on that.
914 */
915 static int
916 /*ARGSUSED*/
917 print_ascii(struct field *f, int sofar __attribute__((__unused__)))
918 {
919 printf("%s: %.128s\n", f->tag, (char *)f->loc);
920 return 0;
921 }
922
923 /*
924 * Print an int-valued field. We are careful to do proper line wrap,
925 * making each value occupy 16 columns.
926 */
927 static int
928 print_int(struct field *f, int sofar)
929 {
930 if (sofar >= 60) {
931 printf("\n");
932 sofar = 0;
933 }
934 printf("%s: %-*u", f->tag, 14 - (int)strlen(f->tag),
935 *(uint32_t *)f->loc);
936 return sofar + 16;
937 }
938
939 /*
940 * Print the whole label. Just call the print function for each field,
941 * then append a newline if necessary.
942 */
943 static void
944 print_label(void)
945 {
946 int i;
947 int c;
948
949 c = 0;
950 for (i = 0; fields[i].tag; i++)
951 c = (*fields[i].print) (&fields[i], c);
952 if (c > 0)
953 printf("\n");
954 }
955
956 /*
957 * Figure out how many columns wide the screen is. We impose a minimum
958 * width of 20 columns; I suspect the output code has some issues if
959 * we have fewer columns than partitions.
960 */
961 static int
962 screen_columns(void)
963 {
964 int ncols;
965 #ifndef NO_TERMCAP_WIDTH
966 char *term;
967 char tbuf[1024];
968 #endif
969 #if defined(TIOCGWINSZ)
970 struct winsize wsz;
971 #elif defined(TIOCGSIZE)
972 struct ttysize tsz;
973 #endif
974
975 ncols = 80;
976 #ifndef NO_TERMCAP_WIDTH
977 term = getenv("TERM");
978 if (term && (tgetent(&tbuf[0], term) == 1)) {
979 int n = tgetnum("co");
980 if (n > 1)
981 ncols = n;
982 }
983 #endif
984 #if defined(TIOCGWINSZ)
985 if ((ioctl(1, TIOCGWINSZ, &wsz) == 0) && (wsz.ws_col > 0)) {
986 ncols = wsz.ws_col;
987 }
988 #elif defined(TIOCGSIZE)
989 if ((ioctl(1, TIOCGSIZE, &tsz) == 0) && (tsz.ts_cols > 0)) {
990 ncols = tsz.ts_cols;
991 }
992 #endif
993 if (ncols < 20)
994 ncols = 20;
995 return ncols;
996 }
997
998 /*
999 * Print the partitions. The argument is true iff we should print all
1000 * partitions, even those set start=0 size=0. We generate one line
1001 * per partition (or, if all==0, per `interesting' partition), plus a
1002 * visually graphic map of partition letters. Most of the hair in the
1003 * visual display lies in ensuring that nothing takes up less than one
1004 * character column, that if two boundaries appear visually identical,
1005 * they _are_ identical. Within that constraint, we try to make the
1006 * number of character columns proportional to the size....
1007 */
1008 static void
1009 print_part(int all)
1010 {
1011 int i, j, k, n, r, c;
1012 size_t ncols;
1013 uint32_t edges[2 * NPART];
1014 int ce[2 * NPART];
1015 int row[NPART];
1016 unsigned char table[2 * NPART][NPART];
1017 char *line;
1018 struct part *p = label.partitions;
1019
1020 for (i = 0; i < NPART; i++) {
1021 if (all || p[i].startcyl || p[i].nblk) {
1022 printf("%c: start cyl = %6u, size = %8u (",
1023 PARTLETTER(i), p[i].startcyl, p[i].nblk);
1024 if (label.spc) {
1025 printf("%u/%u/%u - ", p[i].nblk / label.spc,
1026 (p[i].nblk % label.spc) / label.nsect,
1027 p[i].nblk % label.nsect);
1028 }
1029 printf("%gMb)\n", p[i].nblk / 2048.0);
1030 }
1031 }
1032
1033 j = 0;
1034 for (i = 0; i < NPART; i++) {
1035 if (p[i].nblk > 0) {
1036 edges[j++] = p[i].startcyl;
1037 edges[j++] = p[i].endcyl;
1038 }
1039 }
1040
1041 do {
1042 n = 0;
1043 for (i = 1; i < j; i++) {
1044 if (edges[i] < edges[i - 1]) {
1045 uint32_t t;
1046 t = edges[i];
1047 edges[i] = edges[i - 1];
1048 edges[i - 1] = t;
1049 n++;
1050 }
1051 }
1052 } while (n > 0);
1053
1054 for (i = 1; i < j; i++) {
1055 if (edges[i] != edges[n]) {
1056 n++;
1057 if (n != i)
1058 edges[n] = edges[i];
1059 }
1060 }
1061
1062 n++;
1063 for (i = 0; i < NPART; i++) {
1064 if (p[i].nblk > 0) {
1065 for (j = 0; j < n; j++) {
1066 if ((p[i].startcyl <= edges[j]) &&
1067 (p[i].endcyl > edges[j])) {
1068 table[j][i] = 1;
1069 } else {
1070 table[j][i] = 0;
1071 }
1072 }
1073 }
1074 }
1075
1076 ncols = screen_columns() - 2;
1077 for (i = 0; i < n; i++)
1078 ce[i] = (edges[i] * ncols) / (double) edges[n - 1];
1079
1080 for (i = 1; i < n; i++)
1081 if (ce[i] <= ce[i - 1])
1082 ce[i] = ce[i - 1] + 1;
1083
1084 if (ce[n - 1] > ncols) {
1085 ce[n - 1] = ncols;
1086 for (i = n - 1; (i > 0) && (ce[i] <= ce[i - 1]); i--)
1087 ce[i - 1] = ce[i] - 1;
1088 if (ce[0] < 0)
1089 for (i = 0; i < n; i++)
1090 ce[i] = i;
1091 }
1092
1093 printf("\n");
1094 for (i = 0; i < NPART; i++) {
1095 if (p[i].nblk > 0) {
1096 r = -1;
1097 do {
1098 r++;
1099 for (j = i - 1; j >= 0; j--) {
1100 if (row[j] != r)
1101 continue;
1102 for (k = 0; k < n; k++)
1103 if (table[k][i] && table[k][j])
1104 break;
1105 if (k < n)
1106 break;
1107 }
1108 } while (j >= 0);
1109 row[i] = r;
1110 } else {
1111 row[i] = -1;
1112 }
1113 }
1114 r = row[0];
1115 for (i = 1; i < NPART; i++)
1116 if (row[i] > r)
1117 r = row[i];
1118
1119 if ((line = malloc(ncols + 1)) == NULL)
1120 err(1, "Can't allocate memory");
1121
1122 for (i = 0; i <= r; i++) {
1123 for (j = 0; j < ncols; j++)
1124 line[j] = ' ';
1125 for (j = 0; j < NPART; j++) {
1126 if (row[j] != i)
1127 continue;
1128 k = 0;
1129 for (k = 0; k < n; k++) {
1130 if (table[k][j]) {
1131 for (c = ce[k]; c < ce[k + 1]; c++)
1132 line[c] = 'a' + j;
1133 }
1134 }
1135 }
1136 for (j = ncols - 1; (j >= 0) && (line[j] == ' '); j--);
1137 printf("%.*s\n", j + 1, line);
1138 }
1139 free(line);
1140 }
1141
1142 #ifdef S_COMMAND
1143 /*
1144 * This computes an appropriate checksum for an in-core label. It's
1145 * not really related to the S command, except that it's needed only
1146 * by setlabel(), which is #ifdef S_COMMAND.
1147 */
1148 static unsigned short int
1149 dkcksum(const struct disklabel *lp)
1150 {
1151 const unsigned short int *start;
1152 const unsigned short int *end;
1153 unsigned short int sum;
1154 const unsigned short int *p;
1155
1156 start = (const void *)lp;
1157 end = (const void *)&lp->d_partitions[lp->d_npartitions];
1158 sum = 0;
1159 for (p = start; p < end; p++)
1160 sum ^= *p;
1161 return (sum);
1162 }
1163
1164 /*
1165 * Set the in-core label. This is basically putlabel, except it builds
1166 * a struct disklabel instead of a Sun label buffer, and uses
1167 * DIOCSDINFO instead of lseek-and-write.
1168 */
1169 static void
1170 setlabel(void)
1171 {
1172 union {
1173 struct disklabel l;
1174 char pad[sizeof(struct disklabel) -
1175 (MAXPARTITIONS * sizeof(struct partition)) +
1176 (16 * sizeof(struct partition))];
1177 } u;
1178 int i;
1179 struct part *p = label.partitions;
1180
1181 if (ioctl(diskfd, DIOCGDINFO, &u.l) == -1) {
1182 warn("ioctl DIOCGDINFO failed");
1183 return;
1184 }
1185 if (u.l.d_secsize != 512) {
1186 warnx("Disk claims %d-byte sectors", (int)u.l.d_secsize);
1187 }
1188 u.l.d_nsectors = label.nsect;
1189 u.l.d_ntracks = label.nhead;
1190 u.l.d_ncylinders = label.ncyl;
1191 u.l.d_secpercyl = label.nsect * label.nhead;
1192 u.l.d_rpm = label.rpm;
1193 u.l.d_interleave = label.intrlv;
1194 u.l.d_npartitions = getmaxpartitions();
1195 memset(&u.l.d_partitions[0], 0,
1196 u.l.d_npartitions * sizeof(struct partition));
1197 for (i = 0; i < u.l.d_npartitions; i++) {
1198 u.l.d_partitions[i].p_size = p[i].nblk;
1199 u.l.d_partitions[i].p_offset = p[i].startcyl
1200 * label.nsect * label.nhead;
1201 u.l.d_partitions[i].p_fsize = 0;
1202 u.l.d_partitions[i].p_fstype = (i == 1) ? FS_SWAP :
1203 (i == 2) ? FS_UNUSED : FS_BSDFFS;
1204 u.l.d_partitions[i].p_frag = 0;
1205 u.l.d_partitions[i].p_cpg = 0;
1206 }
1207 u.l.d_checksum = 0;
1208 u.l.d_checksum = dkcksum(&u.l);
1209 if (ioctl(diskfd, DIOCSDINFO, &u.l) == -1) {
1210 warn("ioctl DIOCSDINFO failed");
1211 return;
1212 }
1213 }
1214 #endif
1215
1216 static const char *help[] = {
1217 "?\t- print this help",
1218 "L\t- print label, except for partition table",
1219 "P\t- print partition table",
1220 "PP\t- print partition table including size=0 offset=0 entries",
1221 "[abcdefghijklmnop] <cylno> <size> - change partition",
1222 "V <name> <value> - change a non-partition label value",
1223 "W\t- write (possibly modified) label out",
1224 #ifdef S_COMMAND
1225 "S\t- set label in the kernel (orthogonal to W)",
1226 #endif
1227 "Q\t- quit program (error if no write since last change)",
1228 "Q!\t- quit program (unconditionally) [EOF also quits]",
1229 NULL
1230 };
1231
1232 /*
1233 * Read and execute one command line from the user.
1234 */
1235 static void
1236 docmd(void)
1237 {
1238 char cmdline[512];
1239 int i;
1240
1241 if (!quiet)
1242 printf("sunlabel> ");
1243 if (fgets(&cmdline[0], sizeof(cmdline), stdin) != &cmdline[0])
1244 exit(0);
1245 switch (cmdline[0]) {
1246 case '?':
1247 for (i = 0; help[i]; i++)
1248 printf("%s\n", help[i]);
1249 break;
1250 case 'L':
1251 print_label();
1252 break;
1253 case 'P':
1254 print_part(cmdline[1] == 'P');
1255 break;
1256 case 'W':
1257 putlabel();
1258 break;
1259 case 'S':
1260 #ifdef S_COMMAND
1261 setlabel();
1262 #else
1263 printf("This compilation doesn't support S.\n");
1264 #endif
1265 break;
1266 case 'Q':
1267 if ((cmdline[1] == '!') || !label.dirty)
1268 exit(0);
1269 printf("Label is dirty - use w to write it\n");
1270 printf("Use Q! to quit anyway.\n");
1271 break;
1272 case 'a':
1273 case 'b':
1274 case 'c':
1275 case 'd':
1276 case 'e':
1277 case 'f':
1278 case 'g':
1279 case 'h':
1280 case 'i':
1281 case 'j':
1282 case 'k':
1283 case 'l':
1284 case 'm':
1285 case 'n':
1286 case 'o':
1287 case 'p':
1288 chpart(LETTERPART(cmdline[0]), &cmdline[1]);
1289 break;
1290 case 'V':
1291 chvalue(&cmdline[1]);
1292 break;
1293 case '\n':
1294 break;
1295 default:
1296 printf("(Unrecognized command character %c ignored.)\n",
1297 cmdline[0]);
1298 break;
1299 }
1300 }
1301
1302 /*
1303 * main() (duh!). Pretty boring.
1304 */
1305 int
1306 main(int ac, char **av)
1307 {
1308 handleargs(ac, av);
1309 getlabel();
1310 for (;;)
1311 docmd();
1312 }
1313