i915_drm.h revision b8e80941
1/*
2 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
20 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 *
25 */
26
27#ifndef _I915_DRM_H_
28#define _I915_DRM_H_
29
30#include "drm.h"
31
32#if defined(__cplusplus)
33extern "C" {
34#endif
35
36/* Please note that modifications to all structs defined here are
37 * subject to backwards-compatibility constraints.
38 */
39
40/**
41 * DOC: uevents generated by i915 on it's device node
42 *
43 * I915_L3_PARITY_UEVENT - Generated when the driver receives a parity mismatch
44 *	event from the gpu l3 cache. Additional information supplied is ROW,
45 *	BANK, SUBBANK, SLICE of the affected cacheline. Userspace should keep
46 *	track of these events and if a specific cache-line seems to have a
47 *	persistent error remap it with the l3 remapping tool supplied in
48 *	intel-gpu-tools.  The value supplied with the event is always 1.
49 *
50 * I915_ERROR_UEVENT - Generated upon error detection, currently only via
51 *	hangcheck. The error detection event is a good indicator of when things
52 *	began to go badly. The value supplied with the event is a 1 upon error
53 *	detection, and a 0 upon reset completion, signifying no more error
54 *	exists. NOTE: Disabling hangcheck or reset via module parameter will
55 *	cause the related events to not be seen.
56 *
57 * I915_RESET_UEVENT - Event is generated just before an attempt to reset the
58 *	the GPU. The value supplied with the event is always 1. NOTE: Disable
59 *	reset via module parameter will cause this event to not be seen.
60 */
61#define I915_L3_PARITY_UEVENT		"L3_PARITY_ERROR"
62#define I915_ERROR_UEVENT		"ERROR"
63#define I915_RESET_UEVENT		"RESET"
64
65/*
66 * MOCS indexes used for GPU surfaces, defining the cacheability of the
67 * surface data and the coherency for this data wrt. CPU vs. GPU accesses.
68 */
69enum i915_mocs_table_index {
70	/*
71	 * Not cached anywhere, coherency between CPU and GPU accesses is
72	 * guaranteed.
73	 */
74	I915_MOCS_UNCACHED,
75	/*
76	 * Cacheability and coherency controlled by the kernel automatically
77	 * based on the DRM_I915_GEM_SET_CACHING IOCTL setting and the current
78	 * usage of the surface (used for display scanout or not).
79	 */
80	I915_MOCS_PTE,
81	/*
82	 * Cached in all GPU caches available on the platform.
83	 * Coherency between CPU and GPU accesses to the surface is not
84	 * guaranteed without extra synchronization.
85	 */
86	I915_MOCS_CACHED,
87};
88
89/*
90 * Different engines serve different roles, and there may be more than one
91 * engine serving each role. enum drm_i915_gem_engine_class provides a
92 * classification of the role of the engine, which may be used when requesting
93 * operations to be performed on a certain subset of engines, or for providing
94 * information about that group.
95 */
96enum drm_i915_gem_engine_class {
97	I915_ENGINE_CLASS_RENDER	= 0,
98	I915_ENGINE_CLASS_COPY		= 1,
99	I915_ENGINE_CLASS_VIDEO		= 2,
100	I915_ENGINE_CLASS_VIDEO_ENHANCE	= 3,
101
102	I915_ENGINE_CLASS_INVALID	= -1
103};
104
105/**
106 * DOC: perf_events exposed by i915 through /sys/bus/event_sources/drivers/i915
107 *
108 */
109
110enum drm_i915_pmu_engine_sample {
111	I915_SAMPLE_BUSY = 0,
112	I915_SAMPLE_WAIT = 1,
113	I915_SAMPLE_SEMA = 2
114};
115
116#define I915_PMU_SAMPLE_BITS (4)
117#define I915_PMU_SAMPLE_MASK (0xf)
118#define I915_PMU_SAMPLE_INSTANCE_BITS (8)
119#define I915_PMU_CLASS_SHIFT \
120	(I915_PMU_SAMPLE_BITS + I915_PMU_SAMPLE_INSTANCE_BITS)
121
122#define __I915_PMU_ENGINE(class, instance, sample) \
123	((class) << I915_PMU_CLASS_SHIFT | \
124	(instance) << I915_PMU_SAMPLE_BITS | \
125	(sample))
126
127#define I915_PMU_ENGINE_BUSY(class, instance) \
128	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_BUSY)
129
130#define I915_PMU_ENGINE_WAIT(class, instance) \
131	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_WAIT)
132
133#define I915_PMU_ENGINE_SEMA(class, instance) \
134	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_SEMA)
135
136#define __I915_PMU_OTHER(x) (__I915_PMU_ENGINE(0xff, 0xff, 0xf) + 1 + (x))
137
138#define I915_PMU_ACTUAL_FREQUENCY	__I915_PMU_OTHER(0)
139#define I915_PMU_REQUESTED_FREQUENCY	__I915_PMU_OTHER(1)
140#define I915_PMU_INTERRUPTS		__I915_PMU_OTHER(2)
141#define I915_PMU_RC6_RESIDENCY		__I915_PMU_OTHER(3)
142
143#define I915_PMU_LAST I915_PMU_RC6_RESIDENCY
144
145/* Each region is a minimum of 16k, and there are at most 255 of them.
146 */
147#define I915_NR_TEX_REGIONS 255	/* table size 2k - maximum due to use
148				 * of chars for next/prev indices */
149#define I915_LOG_MIN_TEX_REGION_SIZE 14
150
151typedef struct _drm_i915_init {
152	enum {
153		I915_INIT_DMA = 0x01,
154		I915_CLEANUP_DMA = 0x02,
155		I915_RESUME_DMA = 0x03
156	} func;
157	unsigned int mmio_offset;
158	int sarea_priv_offset;
159	unsigned int ring_start;
160	unsigned int ring_end;
161	unsigned int ring_size;
162	unsigned int front_offset;
163	unsigned int back_offset;
164	unsigned int depth_offset;
165	unsigned int w;
166	unsigned int h;
167	unsigned int pitch;
168	unsigned int pitch_bits;
169	unsigned int back_pitch;
170	unsigned int depth_pitch;
171	unsigned int cpp;
172	unsigned int chipset;
173} drm_i915_init_t;
174
175typedef struct _drm_i915_sarea {
176	struct drm_tex_region texList[I915_NR_TEX_REGIONS + 1];
177	int last_upload;	/* last time texture was uploaded */
178	int last_enqueue;	/* last time a buffer was enqueued */
179	int last_dispatch;	/* age of the most recently dispatched buffer */
180	int ctxOwner;		/* last context to upload state */
181	int texAge;
182	int pf_enabled;		/* is pageflipping allowed? */
183	int pf_active;
184	int pf_current_page;	/* which buffer is being displayed? */
185	int perf_boxes;		/* performance boxes to be displayed */
186	int width, height;      /* screen size in pixels */
187
188	drm_handle_t front_handle;
189	int front_offset;
190	int front_size;
191
192	drm_handle_t back_handle;
193	int back_offset;
194	int back_size;
195
196	drm_handle_t depth_handle;
197	int depth_offset;
198	int depth_size;
199
200	drm_handle_t tex_handle;
201	int tex_offset;
202	int tex_size;
203	int log_tex_granularity;
204	int pitch;
205	int rotation;           /* 0, 90, 180 or 270 */
206	int rotated_offset;
207	int rotated_size;
208	int rotated_pitch;
209	int virtualX, virtualY;
210
211	unsigned int front_tiled;
212	unsigned int back_tiled;
213	unsigned int depth_tiled;
214	unsigned int rotated_tiled;
215	unsigned int rotated2_tiled;
216
217	int pipeA_x;
218	int pipeA_y;
219	int pipeA_w;
220	int pipeA_h;
221	int pipeB_x;
222	int pipeB_y;
223	int pipeB_w;
224	int pipeB_h;
225
226	/* fill out some space for old userspace triple buffer */
227	drm_handle_t unused_handle;
228	__u32 unused1, unused2, unused3;
229
230	/* buffer object handles for static buffers. May change
231	 * over the lifetime of the client.
232	 */
233	__u32 front_bo_handle;
234	__u32 back_bo_handle;
235	__u32 unused_bo_handle;
236	__u32 depth_bo_handle;
237
238} drm_i915_sarea_t;
239
240/* due to userspace building against these headers we need some compat here */
241#define planeA_x pipeA_x
242#define planeA_y pipeA_y
243#define planeA_w pipeA_w
244#define planeA_h pipeA_h
245#define planeB_x pipeB_x
246#define planeB_y pipeB_y
247#define planeB_w pipeB_w
248#define planeB_h pipeB_h
249
250/* Flags for perf_boxes
251 */
252#define I915_BOX_RING_EMPTY    0x1
253#define I915_BOX_FLIP          0x2
254#define I915_BOX_WAIT          0x4
255#define I915_BOX_TEXTURE_LOAD  0x8
256#define I915_BOX_LOST_CONTEXT  0x10
257
258/*
259 * i915 specific ioctls.
260 *
261 * The device specific ioctl range is [DRM_COMMAND_BASE, DRM_COMMAND_END) ie
262 * [0x40, 0xa0) (a0 is excluded). The numbers below are defined as offset
263 * against DRM_COMMAND_BASE and should be between [0x0, 0x60).
264 */
265#define DRM_I915_INIT		0x00
266#define DRM_I915_FLUSH		0x01
267#define DRM_I915_FLIP		0x02
268#define DRM_I915_BATCHBUFFER	0x03
269#define DRM_I915_IRQ_EMIT	0x04
270#define DRM_I915_IRQ_WAIT	0x05
271#define DRM_I915_GETPARAM	0x06
272#define DRM_I915_SETPARAM	0x07
273#define DRM_I915_ALLOC		0x08
274#define DRM_I915_FREE		0x09
275#define DRM_I915_INIT_HEAP	0x0a
276#define DRM_I915_CMDBUFFER	0x0b
277#define DRM_I915_DESTROY_HEAP	0x0c
278#define DRM_I915_SET_VBLANK_PIPE	0x0d
279#define DRM_I915_GET_VBLANK_PIPE	0x0e
280#define DRM_I915_VBLANK_SWAP	0x0f
281#define DRM_I915_HWS_ADDR	0x11
282#define DRM_I915_GEM_INIT	0x13
283#define DRM_I915_GEM_EXECBUFFER	0x14
284#define DRM_I915_GEM_PIN	0x15
285#define DRM_I915_GEM_UNPIN	0x16
286#define DRM_I915_GEM_BUSY	0x17
287#define DRM_I915_GEM_THROTTLE	0x18
288#define DRM_I915_GEM_ENTERVT	0x19
289#define DRM_I915_GEM_LEAVEVT	0x1a
290#define DRM_I915_GEM_CREATE	0x1b
291#define DRM_I915_GEM_PREAD	0x1c
292#define DRM_I915_GEM_PWRITE	0x1d
293#define DRM_I915_GEM_MMAP	0x1e
294#define DRM_I915_GEM_SET_DOMAIN	0x1f
295#define DRM_I915_GEM_SW_FINISH	0x20
296#define DRM_I915_GEM_SET_TILING	0x21
297#define DRM_I915_GEM_GET_TILING	0x22
298#define DRM_I915_GEM_GET_APERTURE 0x23
299#define DRM_I915_GEM_MMAP_GTT	0x24
300#define DRM_I915_GET_PIPE_FROM_CRTC_ID	0x25
301#define DRM_I915_GEM_MADVISE	0x26
302#define DRM_I915_OVERLAY_PUT_IMAGE	0x27
303#define DRM_I915_OVERLAY_ATTRS	0x28
304#define DRM_I915_GEM_EXECBUFFER2	0x29
305#define DRM_I915_GEM_EXECBUFFER2_WR	DRM_I915_GEM_EXECBUFFER2
306#define DRM_I915_GET_SPRITE_COLORKEY	0x2a
307#define DRM_I915_SET_SPRITE_COLORKEY	0x2b
308#define DRM_I915_GEM_WAIT	0x2c
309#define DRM_I915_GEM_CONTEXT_CREATE	0x2d
310#define DRM_I915_GEM_CONTEXT_DESTROY	0x2e
311#define DRM_I915_GEM_SET_CACHING	0x2f
312#define DRM_I915_GEM_GET_CACHING	0x30
313#define DRM_I915_REG_READ		0x31
314#define DRM_I915_GET_RESET_STATS	0x32
315#define DRM_I915_GEM_USERPTR		0x33
316#define DRM_I915_GEM_CONTEXT_GETPARAM	0x34
317#define DRM_I915_GEM_CONTEXT_SETPARAM	0x35
318#define DRM_I915_PERF_OPEN		0x36
319#define DRM_I915_PERF_ADD_CONFIG	0x37
320#define DRM_I915_PERF_REMOVE_CONFIG	0x38
321#define DRM_I915_QUERY			0x39
322
323#define DRM_IOCTL_I915_INIT		DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT, drm_i915_init_t)
324#define DRM_IOCTL_I915_FLUSH		DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLUSH)
325#define DRM_IOCTL_I915_FLIP		DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLIP)
326#define DRM_IOCTL_I915_BATCHBUFFER	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_BATCHBUFFER, drm_i915_batchbuffer_t)
327#define DRM_IOCTL_I915_IRQ_EMIT         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_IRQ_EMIT, drm_i915_irq_emit_t)
328#define DRM_IOCTL_I915_IRQ_WAIT         DRM_IOW( DRM_COMMAND_BASE + DRM_I915_IRQ_WAIT, drm_i915_irq_wait_t)
329#define DRM_IOCTL_I915_GETPARAM         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GETPARAM, drm_i915_getparam_t)
330#define DRM_IOCTL_I915_SETPARAM         DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SETPARAM, drm_i915_setparam_t)
331#define DRM_IOCTL_I915_ALLOC            DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_ALLOC, drm_i915_mem_alloc_t)
332#define DRM_IOCTL_I915_FREE             DRM_IOW( DRM_COMMAND_BASE + DRM_I915_FREE, drm_i915_mem_free_t)
333#define DRM_IOCTL_I915_INIT_HEAP        DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT_HEAP, drm_i915_mem_init_heap_t)
334#define DRM_IOCTL_I915_CMDBUFFER	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_CMDBUFFER, drm_i915_cmdbuffer_t)
335#define DRM_IOCTL_I915_DESTROY_HEAP	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_DESTROY_HEAP, drm_i915_mem_destroy_heap_t)
336#define DRM_IOCTL_I915_SET_VBLANK_PIPE	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
337#define DRM_IOCTL_I915_GET_VBLANK_PIPE	DRM_IOR( DRM_COMMAND_BASE + DRM_I915_GET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
338#define DRM_IOCTL_I915_VBLANK_SWAP	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_VBLANK_SWAP, drm_i915_vblank_swap_t)
339#define DRM_IOCTL_I915_HWS_ADDR		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_HWS_ADDR, struct drm_i915_gem_init)
340#define DRM_IOCTL_I915_GEM_INIT		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_INIT, struct drm_i915_gem_init)
341#define DRM_IOCTL_I915_GEM_EXECBUFFER	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER, struct drm_i915_gem_execbuffer)
342#define DRM_IOCTL_I915_GEM_EXECBUFFER2	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2, struct drm_i915_gem_execbuffer2)
343#define DRM_IOCTL_I915_GEM_EXECBUFFER2_WR	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2_WR, struct drm_i915_gem_execbuffer2)
344#define DRM_IOCTL_I915_GEM_PIN		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_PIN, struct drm_i915_gem_pin)
345#define DRM_IOCTL_I915_GEM_UNPIN	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_UNPIN, struct drm_i915_gem_unpin)
346#define DRM_IOCTL_I915_GEM_BUSY		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_BUSY, struct drm_i915_gem_busy)
347#define DRM_IOCTL_I915_GEM_SET_CACHING		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_SET_CACHING, struct drm_i915_gem_caching)
348#define DRM_IOCTL_I915_GEM_GET_CACHING		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_GET_CACHING, struct drm_i915_gem_caching)
349#define DRM_IOCTL_I915_GEM_THROTTLE	DRM_IO ( DRM_COMMAND_BASE + DRM_I915_GEM_THROTTLE)
350#define DRM_IOCTL_I915_GEM_ENTERVT	DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_ENTERVT)
351#define DRM_IOCTL_I915_GEM_LEAVEVT	DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_LEAVEVT)
352#define DRM_IOCTL_I915_GEM_CREATE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE, struct drm_i915_gem_create)
353#define DRM_IOCTL_I915_GEM_PREAD	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PREAD, struct drm_i915_gem_pread)
354#define DRM_IOCTL_I915_GEM_PWRITE	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PWRITE, struct drm_i915_gem_pwrite)
355#define DRM_IOCTL_I915_GEM_MMAP		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP, struct drm_i915_gem_mmap)
356#define DRM_IOCTL_I915_GEM_MMAP_GTT	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_gtt)
357#define DRM_IOCTL_I915_GEM_SET_DOMAIN	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SET_DOMAIN, struct drm_i915_gem_set_domain)
358#define DRM_IOCTL_I915_GEM_SW_FINISH	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SW_FINISH, struct drm_i915_gem_sw_finish)
359#define DRM_IOCTL_I915_GEM_SET_TILING	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_SET_TILING, struct drm_i915_gem_set_tiling)
360#define DRM_IOCTL_I915_GEM_GET_TILING	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_GET_TILING, struct drm_i915_gem_get_tiling)
361#define DRM_IOCTL_I915_GEM_GET_APERTURE	DRM_IOR  (DRM_COMMAND_BASE + DRM_I915_GEM_GET_APERTURE, struct drm_i915_gem_get_aperture)
362#define DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_PIPE_FROM_CRTC_ID, struct drm_i915_get_pipe_from_crtc_id)
363#define DRM_IOCTL_I915_GEM_MADVISE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MADVISE, struct drm_i915_gem_madvise)
364#define DRM_IOCTL_I915_OVERLAY_PUT_IMAGE	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_OVERLAY_PUT_IMAGE, struct drm_intel_overlay_put_image)
365#define DRM_IOCTL_I915_OVERLAY_ATTRS	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_OVERLAY_ATTRS, struct drm_intel_overlay_attrs)
366#define DRM_IOCTL_I915_SET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_SET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
367#define DRM_IOCTL_I915_GET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
368#define DRM_IOCTL_I915_GEM_WAIT		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_WAIT, struct drm_i915_gem_wait)
369#define DRM_IOCTL_I915_GEM_CONTEXT_CREATE	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create)
370#define DRM_IOCTL_I915_GEM_CONTEXT_DESTROY	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_DESTROY, struct drm_i915_gem_context_destroy)
371#define DRM_IOCTL_I915_REG_READ			DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_REG_READ, struct drm_i915_reg_read)
372#define DRM_IOCTL_I915_GET_RESET_STATS		DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GET_RESET_STATS, struct drm_i915_reset_stats)
373#define DRM_IOCTL_I915_GEM_USERPTR			DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_USERPTR, struct drm_i915_gem_userptr)
374#define DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_GETPARAM, struct drm_i915_gem_context_param)
375#define DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_SETPARAM, struct drm_i915_gem_context_param)
376#define DRM_IOCTL_I915_PERF_OPEN	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_OPEN, struct drm_i915_perf_open_param)
377#define DRM_IOCTL_I915_PERF_ADD_CONFIG	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_ADD_CONFIG, struct drm_i915_perf_oa_config)
378#define DRM_IOCTL_I915_PERF_REMOVE_CONFIG	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_REMOVE_CONFIG, __u64)
379#define DRM_IOCTL_I915_QUERY			DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_QUERY, struct drm_i915_query)
380
381/* Allow drivers to submit batchbuffers directly to hardware, relying
382 * on the security mechanisms provided by hardware.
383 */
384typedef struct drm_i915_batchbuffer {
385	int start;		/* agp offset */
386	int used;		/* nr bytes in use */
387	int DR1;		/* hw flags for GFX_OP_DRAWRECT_INFO */
388	int DR4;		/* window origin for GFX_OP_DRAWRECT_INFO */
389	int num_cliprects;	/* mulitpass with multiple cliprects? */
390	struct drm_clip_rect *cliprects;	/* pointer to userspace cliprects */
391} drm_i915_batchbuffer_t;
392
393/* As above, but pass a pointer to userspace buffer which can be
394 * validated by the kernel prior to sending to hardware.
395 */
396typedef struct _drm_i915_cmdbuffer {
397	char *buf;	/* pointer to userspace command buffer */
398	int sz;			/* nr bytes in buf */
399	int DR1;		/* hw flags for GFX_OP_DRAWRECT_INFO */
400	int DR4;		/* window origin for GFX_OP_DRAWRECT_INFO */
401	int num_cliprects;	/* mulitpass with multiple cliprects? */
402	struct drm_clip_rect *cliprects;	/* pointer to userspace cliprects */
403} drm_i915_cmdbuffer_t;
404
405/* Userspace can request & wait on irq's:
406 */
407typedef struct drm_i915_irq_emit {
408	int *irq_seq;
409} drm_i915_irq_emit_t;
410
411typedef struct drm_i915_irq_wait {
412	int irq_seq;
413} drm_i915_irq_wait_t;
414
415/*
416 * Different modes of per-process Graphics Translation Table,
417 * see I915_PARAM_HAS_ALIASING_PPGTT
418 */
419#define I915_GEM_PPGTT_NONE	0
420#define I915_GEM_PPGTT_ALIASING	1
421#define I915_GEM_PPGTT_FULL	2
422
423/* Ioctl to query kernel params:
424 */
425#define I915_PARAM_IRQ_ACTIVE            1
426#define I915_PARAM_ALLOW_BATCHBUFFER     2
427#define I915_PARAM_LAST_DISPATCH         3
428#define I915_PARAM_CHIPSET_ID            4
429#define I915_PARAM_HAS_GEM               5
430#define I915_PARAM_NUM_FENCES_AVAIL      6
431#define I915_PARAM_HAS_OVERLAY           7
432#define I915_PARAM_HAS_PAGEFLIPPING	 8
433#define I915_PARAM_HAS_EXECBUF2          9
434#define I915_PARAM_HAS_BSD		 10
435#define I915_PARAM_HAS_BLT		 11
436#define I915_PARAM_HAS_RELAXED_FENCING	 12
437#define I915_PARAM_HAS_COHERENT_RINGS	 13
438#define I915_PARAM_HAS_EXEC_CONSTANTS	 14
439#define I915_PARAM_HAS_RELAXED_DELTA	 15
440#define I915_PARAM_HAS_GEN7_SOL_RESET	 16
441#define I915_PARAM_HAS_LLC     	 	 17
442#define I915_PARAM_HAS_ALIASING_PPGTT	 18
443#define I915_PARAM_HAS_WAIT_TIMEOUT	 19
444#define I915_PARAM_HAS_SEMAPHORES	 20
445#define I915_PARAM_HAS_PRIME_VMAP_FLUSH	 21
446#define I915_PARAM_HAS_VEBOX		 22
447#define I915_PARAM_HAS_SECURE_BATCHES	 23
448#define I915_PARAM_HAS_PINNED_BATCHES	 24
449#define I915_PARAM_HAS_EXEC_NO_RELOC	 25
450#define I915_PARAM_HAS_EXEC_HANDLE_LUT   26
451#define I915_PARAM_HAS_WT     	 	 27
452#define I915_PARAM_CMD_PARSER_VERSION	 28
453#define I915_PARAM_HAS_COHERENT_PHYS_GTT 29
454#define I915_PARAM_MMAP_VERSION          30
455#define I915_PARAM_HAS_BSD2		 31
456#define I915_PARAM_REVISION              32
457#define I915_PARAM_SUBSLICE_TOTAL	 33
458#define I915_PARAM_EU_TOTAL		 34
459#define I915_PARAM_HAS_GPU_RESET	 35
460#define I915_PARAM_HAS_RESOURCE_STREAMER 36
461#define I915_PARAM_HAS_EXEC_SOFTPIN	 37
462#define I915_PARAM_HAS_POOLED_EU	 38
463#define I915_PARAM_MIN_EU_IN_POOL	 39
464#define I915_PARAM_MMAP_GTT_VERSION	 40
465
466/*
467 * Query whether DRM_I915_GEM_EXECBUFFER2 supports user defined execution
468 * priorities and the driver will attempt to execute batches in priority order.
469 * The param returns a capability bitmask, nonzero implies that the scheduler
470 * is enabled, with different features present according to the mask.
471 *
472 * The initial priority for each batch is supplied by the context and is
473 * controlled via I915_CONTEXT_PARAM_PRIORITY.
474 */
475#define I915_PARAM_HAS_SCHEDULER	 41
476#define   I915_SCHEDULER_CAP_ENABLED	(1ul << 0)
477#define   I915_SCHEDULER_CAP_PRIORITY	(1ul << 1)
478#define   I915_SCHEDULER_CAP_PREEMPTION	(1ul << 2)
479
480#define I915_PARAM_HUC_STATUS		 42
481
482/* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to opt-out of
483 * synchronisation with implicit fencing on individual objects.
484 * See EXEC_OBJECT_ASYNC.
485 */
486#define I915_PARAM_HAS_EXEC_ASYNC	 43
487
488/* Query whether DRM_I915_GEM_EXECBUFFER2 supports explicit fence support -
489 * both being able to pass in a sync_file fd to wait upon before executing,
490 * and being able to return a new sync_file fd that is signaled when the
491 * current request is complete. See I915_EXEC_FENCE_IN and I915_EXEC_FENCE_OUT.
492 */
493#define I915_PARAM_HAS_EXEC_FENCE	 44
494
495/* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to capture
496 * user specified bufffers for post-mortem debugging of GPU hangs. See
497 * EXEC_OBJECT_CAPTURE.
498 */
499#define I915_PARAM_HAS_EXEC_CAPTURE	 45
500
501#define I915_PARAM_SLICE_MASK		 46
502
503/* Assuming it's uniform for each slice, this queries the mask of subslices
504 * per-slice for this system.
505 */
506#define I915_PARAM_SUBSLICE_MASK	 47
507
508/*
509 * Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying the batch buffer
510 * as the first execobject as opposed to the last. See I915_EXEC_BATCH_FIRST.
511 */
512#define I915_PARAM_HAS_EXEC_BATCH_FIRST	 48
513
514/* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
515 * drm_i915_gem_exec_fence structures.  See I915_EXEC_FENCE_ARRAY.
516 */
517#define I915_PARAM_HAS_EXEC_FENCE_ARRAY  49
518
519/*
520 * Query whether every context (both per-file default and user created) is
521 * isolated (insofar as HW supports). If this parameter is not true, then
522 * freshly created contexts may inherit values from an existing context,
523 * rather than default HW values. If true, it also ensures (insofar as HW
524 * supports) that all state set by this context will not leak to any other
525 * context.
526 *
527 * As not every engine across every gen support contexts, the returned
528 * value reports the support of context isolation for individual engines by
529 * returning a bitmask of each engine class set to true if that class supports
530 * isolation.
531 */
532#define I915_PARAM_HAS_CONTEXT_ISOLATION 50
533
534/* Frequency of the command streamer timestamps given by the *_TIMESTAMP
535 * registers. This used to be fixed per platform but from CNL onwards, this
536 * might vary depending on the parts.
537 */
538#define I915_PARAM_CS_TIMESTAMP_FREQUENCY 51
539
540/*
541 * Once upon a time we supposed that writes through the GGTT would be
542 * immediately in physical memory (once flushed out of the CPU path). However,
543 * on a few different processors and chipsets, this is not necessarily the case
544 * as the writes appear to be buffered internally. Thus a read of the backing
545 * storage (physical memory) via a different path (with different physical tags
546 * to the indirect write via the GGTT) will see stale values from before
547 * the GGTT write. Inside the kernel, we can for the most part keep track of
548 * the different read/write domains in use (e.g. set-domain), but the assumption
549 * of coherency is baked into the ABI, hence reporting its true state in this
550 * parameter.
551 *
552 * Reports true when writes via mmap_gtt are immediately visible following an
553 * lfence to flush the WCB.
554 *
555 * Reports false when writes via mmap_gtt are indeterminately delayed in an in
556 * internal buffer and are _not_ immediately visible to third parties accessing
557 * directly via mmap_cpu/mmap_wc. Use of mmap_gtt as part of an IPC
558 * communications channel when reporting false is strongly disadvised.
559 */
560#define I915_PARAM_MMAP_GTT_COHERENT	52
561
562typedef struct drm_i915_getparam {
563	__s32 param;
564	/*
565	 * WARNING: Using pointers instead of fixed-size u64 means we need to write
566	 * compat32 code. Don't repeat this mistake.
567	 */
568	int *value;
569} drm_i915_getparam_t;
570
571/* Ioctl to set kernel params:
572 */
573#define I915_SETPARAM_USE_MI_BATCHBUFFER_START            1
574#define I915_SETPARAM_TEX_LRU_LOG_GRANULARITY             2
575#define I915_SETPARAM_ALLOW_BATCHBUFFER                   3
576#define I915_SETPARAM_NUM_USED_FENCES                     4
577
578typedef struct drm_i915_setparam {
579	int param;
580	int value;
581} drm_i915_setparam_t;
582
583/* A memory manager for regions of shared memory:
584 */
585#define I915_MEM_REGION_AGP 1
586
587typedef struct drm_i915_mem_alloc {
588	int region;
589	int alignment;
590	int size;
591	int *region_offset;	/* offset from start of fb or agp */
592} drm_i915_mem_alloc_t;
593
594typedef struct drm_i915_mem_free {
595	int region;
596	int region_offset;
597} drm_i915_mem_free_t;
598
599typedef struct drm_i915_mem_init_heap {
600	int region;
601	int size;
602	int start;
603} drm_i915_mem_init_heap_t;
604
605/* Allow memory manager to be torn down and re-initialized (eg on
606 * rotate):
607 */
608typedef struct drm_i915_mem_destroy_heap {
609	int region;
610} drm_i915_mem_destroy_heap_t;
611
612/* Allow X server to configure which pipes to monitor for vblank signals
613 */
614#define	DRM_I915_VBLANK_PIPE_A	1
615#define	DRM_I915_VBLANK_PIPE_B	2
616
617typedef struct drm_i915_vblank_pipe {
618	int pipe;
619} drm_i915_vblank_pipe_t;
620
621/* Schedule buffer swap at given vertical blank:
622 */
623typedef struct drm_i915_vblank_swap {
624	drm_drawable_t drawable;
625	enum drm_vblank_seq_type seqtype;
626	unsigned int sequence;
627} drm_i915_vblank_swap_t;
628
629typedef struct drm_i915_hws_addr {
630	__u64 addr;
631} drm_i915_hws_addr_t;
632
633struct drm_i915_gem_init {
634	/**
635	 * Beginning offset in the GTT to be managed by the DRM memory
636	 * manager.
637	 */
638	__u64 gtt_start;
639	/**
640	 * Ending offset in the GTT to be managed by the DRM memory
641	 * manager.
642	 */
643	__u64 gtt_end;
644};
645
646struct drm_i915_gem_create {
647	/**
648	 * Requested size for the object.
649	 *
650	 * The (page-aligned) allocated size for the object will be returned.
651	 */
652	__u64 size;
653	/**
654	 * Returned handle for the object.
655	 *
656	 * Object handles are nonzero.
657	 */
658	__u32 handle;
659	__u32 pad;
660};
661
662struct drm_i915_gem_pread {
663	/** Handle for the object being read. */
664	__u32 handle;
665	__u32 pad;
666	/** Offset into the object to read from */
667	__u64 offset;
668	/** Length of data to read */
669	__u64 size;
670	/**
671	 * Pointer to write the data into.
672	 *
673	 * This is a fixed-size type for 32/64 compatibility.
674	 */
675	__u64 data_ptr;
676};
677
678struct drm_i915_gem_pwrite {
679	/** Handle for the object being written to. */
680	__u32 handle;
681	__u32 pad;
682	/** Offset into the object to write to */
683	__u64 offset;
684	/** Length of data to write */
685	__u64 size;
686	/**
687	 * Pointer to read the data from.
688	 *
689	 * This is a fixed-size type for 32/64 compatibility.
690	 */
691	__u64 data_ptr;
692};
693
694struct drm_i915_gem_mmap {
695	/** Handle for the object being mapped. */
696	__u32 handle;
697	__u32 pad;
698	/** Offset in the object to map. */
699	__u64 offset;
700	/**
701	 * Length of data to map.
702	 *
703	 * The value will be page-aligned.
704	 */
705	__u64 size;
706	/**
707	 * Returned pointer the data was mapped at.
708	 *
709	 * This is a fixed-size type for 32/64 compatibility.
710	 */
711	__u64 addr_ptr;
712
713	/**
714	 * Flags for extended behaviour.
715	 *
716	 * Added in version 2.
717	 */
718	__u64 flags;
719#define I915_MMAP_WC 0x1
720};
721
722struct drm_i915_gem_mmap_gtt {
723	/** Handle for the object being mapped. */
724	__u32 handle;
725	__u32 pad;
726	/**
727	 * Fake offset to use for subsequent mmap call
728	 *
729	 * This is a fixed-size type for 32/64 compatibility.
730	 */
731	__u64 offset;
732};
733
734struct drm_i915_gem_set_domain {
735	/** Handle for the object */
736	__u32 handle;
737
738	/** New read domains */
739	__u32 read_domains;
740
741	/** New write domain */
742	__u32 write_domain;
743};
744
745struct drm_i915_gem_sw_finish {
746	/** Handle for the object */
747	__u32 handle;
748};
749
750struct drm_i915_gem_relocation_entry {
751	/**
752	 * Handle of the buffer being pointed to by this relocation entry.
753	 *
754	 * It's appealing to make this be an index into the mm_validate_entry
755	 * list to refer to the buffer, but this allows the driver to create
756	 * a relocation list for state buffers and not re-write it per
757	 * exec using the buffer.
758	 */
759	__u32 target_handle;
760
761	/**
762	 * Value to be added to the offset of the target buffer to make up
763	 * the relocation entry.
764	 */
765	__u32 delta;
766
767	/** Offset in the buffer the relocation entry will be written into */
768	__u64 offset;
769
770	/**
771	 * Offset value of the target buffer that the relocation entry was last
772	 * written as.
773	 *
774	 * If the buffer has the same offset as last time, we can skip syncing
775	 * and writing the relocation.  This value is written back out by
776	 * the execbuffer ioctl when the relocation is written.
777	 */
778	__u64 presumed_offset;
779
780	/**
781	 * Target memory domains read by this operation.
782	 */
783	__u32 read_domains;
784
785	/**
786	 * Target memory domains written by this operation.
787	 *
788	 * Note that only one domain may be written by the whole
789	 * execbuffer operation, so that where there are conflicts,
790	 * the application will get -EINVAL back.
791	 */
792	__u32 write_domain;
793};
794
795/** @{
796 * Intel memory domains
797 *
798 * Most of these just align with the various caches in
799 * the system and are used to flush and invalidate as
800 * objects end up cached in different domains.
801 */
802/** CPU cache */
803#define I915_GEM_DOMAIN_CPU		0x00000001
804/** Render cache, used by 2D and 3D drawing */
805#define I915_GEM_DOMAIN_RENDER		0x00000002
806/** Sampler cache, used by texture engine */
807#define I915_GEM_DOMAIN_SAMPLER		0x00000004
808/** Command queue, used to load batch buffers */
809#define I915_GEM_DOMAIN_COMMAND		0x00000008
810/** Instruction cache, used by shader programs */
811#define I915_GEM_DOMAIN_INSTRUCTION	0x00000010
812/** Vertex address cache */
813#define I915_GEM_DOMAIN_VERTEX		0x00000020
814/** GTT domain - aperture and scanout */
815#define I915_GEM_DOMAIN_GTT		0x00000040
816/** WC domain - uncached access */
817#define I915_GEM_DOMAIN_WC		0x00000080
818/** @} */
819
820struct drm_i915_gem_exec_object {
821	/**
822	 * User's handle for a buffer to be bound into the GTT for this
823	 * operation.
824	 */
825	__u32 handle;
826
827	/** Number of relocations to be performed on this buffer */
828	__u32 relocation_count;
829	/**
830	 * Pointer to array of struct drm_i915_gem_relocation_entry containing
831	 * the relocations to be performed in this buffer.
832	 */
833	__u64 relocs_ptr;
834
835	/** Required alignment in graphics aperture */
836	__u64 alignment;
837
838	/**
839	 * Returned value of the updated offset of the object, for future
840	 * presumed_offset writes.
841	 */
842	__u64 offset;
843};
844
845struct drm_i915_gem_execbuffer {
846	/**
847	 * List of buffers to be validated with their relocations to be
848	 * performend on them.
849	 *
850	 * This is a pointer to an array of struct drm_i915_gem_validate_entry.
851	 *
852	 * These buffers must be listed in an order such that all relocations
853	 * a buffer is performing refer to buffers that have already appeared
854	 * in the validate list.
855	 */
856	__u64 buffers_ptr;
857	__u32 buffer_count;
858
859	/** Offset in the batchbuffer to start execution from. */
860	__u32 batch_start_offset;
861	/** Bytes used in batchbuffer from batch_start_offset */
862	__u32 batch_len;
863	__u32 DR1;
864	__u32 DR4;
865	__u32 num_cliprects;
866	/** This is a struct drm_clip_rect *cliprects */
867	__u64 cliprects_ptr;
868};
869
870struct drm_i915_gem_exec_object2 {
871	/**
872	 * User's handle for a buffer to be bound into the GTT for this
873	 * operation.
874	 */
875	__u32 handle;
876
877	/** Number of relocations to be performed on this buffer */
878	__u32 relocation_count;
879	/**
880	 * Pointer to array of struct drm_i915_gem_relocation_entry containing
881	 * the relocations to be performed in this buffer.
882	 */
883	__u64 relocs_ptr;
884
885	/** Required alignment in graphics aperture */
886	__u64 alignment;
887
888	/**
889	 * When the EXEC_OBJECT_PINNED flag is specified this is populated by
890	 * the user with the GTT offset at which this object will be pinned.
891	 * When the I915_EXEC_NO_RELOC flag is specified this must contain the
892	 * presumed_offset of the object.
893	 * During execbuffer2 the kernel populates it with the value of the
894	 * current GTT offset of the object, for future presumed_offset writes.
895	 */
896	__u64 offset;
897
898#define EXEC_OBJECT_NEEDS_FENCE		 (1<<0)
899#define EXEC_OBJECT_NEEDS_GTT		 (1<<1)
900#define EXEC_OBJECT_WRITE		 (1<<2)
901#define EXEC_OBJECT_SUPPORTS_48B_ADDRESS (1<<3)
902#define EXEC_OBJECT_PINNED		 (1<<4)
903#define EXEC_OBJECT_PAD_TO_SIZE		 (1<<5)
904/* The kernel implicitly tracks GPU activity on all GEM objects, and
905 * synchronises operations with outstanding rendering. This includes
906 * rendering on other devices if exported via dma-buf. However, sometimes
907 * this tracking is too coarse and the user knows better. For example,
908 * if the object is split into non-overlapping ranges shared between different
909 * clients or engines (i.e. suballocating objects), the implicit tracking
910 * by kernel assumes that each operation affects the whole object rather
911 * than an individual range, causing needless synchronisation between clients.
912 * The kernel will also forgo any CPU cache flushes prior to rendering from
913 * the object as the client is expected to be also handling such domain
914 * tracking.
915 *
916 * The kernel maintains the implicit tracking in order to manage resources
917 * used by the GPU - this flag only disables the synchronisation prior to
918 * rendering with this object in this execbuf.
919 *
920 * Opting out of implicit synhronisation requires the user to do its own
921 * explicit tracking to avoid rendering corruption. See, for example,
922 * I915_PARAM_HAS_EXEC_FENCE to order execbufs and execute them asynchronously.
923 */
924#define EXEC_OBJECT_ASYNC		(1<<6)
925/* Request that the contents of this execobject be copied into the error
926 * state upon a GPU hang involving this batch for post-mortem debugging.
927 * These buffers are recorded in no particular order as "user" in
928 * /sys/class/drm/cardN/error. Query I915_PARAM_HAS_EXEC_CAPTURE to see
929 * if the kernel supports this flag.
930 */
931#define EXEC_OBJECT_CAPTURE		(1<<7)
932/* All remaining bits are MBZ and RESERVED FOR FUTURE USE */
933#define __EXEC_OBJECT_UNKNOWN_FLAGS -(EXEC_OBJECT_CAPTURE<<1)
934	__u64 flags;
935
936	union {
937		__u64 rsvd1;
938		__u64 pad_to_size;
939	};
940	__u64 rsvd2;
941};
942
943struct drm_i915_gem_exec_fence {
944	/**
945	 * User's handle for a drm_syncobj to wait on or signal.
946	 */
947	__u32 handle;
948
949#define I915_EXEC_FENCE_WAIT            (1<<0)
950#define I915_EXEC_FENCE_SIGNAL          (1<<1)
951#define __I915_EXEC_FENCE_UNKNOWN_FLAGS (-(I915_EXEC_FENCE_SIGNAL << 1))
952	__u32 flags;
953};
954
955struct drm_i915_gem_execbuffer2 {
956	/**
957	 * List of gem_exec_object2 structs
958	 */
959	__u64 buffers_ptr;
960	__u32 buffer_count;
961
962	/** Offset in the batchbuffer to start execution from. */
963	__u32 batch_start_offset;
964	/** Bytes used in batchbuffer from batch_start_offset */
965	__u32 batch_len;
966	__u32 DR1;
967	__u32 DR4;
968	__u32 num_cliprects;
969	/**
970	 * This is a struct drm_clip_rect *cliprects if I915_EXEC_FENCE_ARRAY
971	 * is not set.  If I915_EXEC_FENCE_ARRAY is set, then this is a
972	 * struct drm_i915_gem_exec_fence *fences.
973	 */
974	__u64 cliprects_ptr;
975#define I915_EXEC_RING_MASK              (7<<0)
976#define I915_EXEC_DEFAULT                (0<<0)
977#define I915_EXEC_RENDER                 (1<<0)
978#define I915_EXEC_BSD                    (2<<0)
979#define I915_EXEC_BLT                    (3<<0)
980#define I915_EXEC_VEBOX                  (4<<0)
981
982/* Used for switching the constants addressing mode on gen4+ RENDER ring.
983 * Gen6+ only supports relative addressing to dynamic state (default) and
984 * absolute addressing.
985 *
986 * These flags are ignored for the BSD and BLT rings.
987 */
988#define I915_EXEC_CONSTANTS_MASK 	(3<<6)
989#define I915_EXEC_CONSTANTS_REL_GENERAL (0<<6) /* default */
990#define I915_EXEC_CONSTANTS_ABSOLUTE 	(1<<6)
991#define I915_EXEC_CONSTANTS_REL_SURFACE (2<<6) /* gen4/5 only */
992	__u64 flags;
993	__u64 rsvd1; /* now used for context info */
994	__u64 rsvd2;
995};
996
997/** Resets the SO write offset registers for transform feedback on gen7. */
998#define I915_EXEC_GEN7_SOL_RESET	(1<<8)
999
1000/** Request a privileged ("secure") batch buffer. Note only available for
1001 * DRM_ROOT_ONLY | DRM_MASTER processes.
1002 */
1003#define I915_EXEC_SECURE		(1<<9)
1004
1005/** Inform the kernel that the batch is and will always be pinned. This
1006 * negates the requirement for a workaround to be performed to avoid
1007 * an incoherent CS (such as can be found on 830/845). If this flag is
1008 * not passed, the kernel will endeavour to make sure the batch is
1009 * coherent with the CS before execution. If this flag is passed,
1010 * userspace assumes the responsibility for ensuring the same.
1011 */
1012#define I915_EXEC_IS_PINNED		(1<<10)
1013
1014/** Provide a hint to the kernel that the command stream and auxiliary
1015 * state buffers already holds the correct presumed addresses and so the
1016 * relocation process may be skipped if no buffers need to be moved in
1017 * preparation for the execbuffer.
1018 */
1019#define I915_EXEC_NO_RELOC		(1<<11)
1020
1021/** Use the reloc.handle as an index into the exec object array rather
1022 * than as the per-file handle.
1023 */
1024#define I915_EXEC_HANDLE_LUT		(1<<12)
1025
1026/** Used for switching BSD rings on the platforms with two BSD rings */
1027#define I915_EXEC_BSD_SHIFT	 (13)
1028#define I915_EXEC_BSD_MASK	 (3 << I915_EXEC_BSD_SHIFT)
1029/* default ping-pong mode */
1030#define I915_EXEC_BSD_DEFAULT	 (0 << I915_EXEC_BSD_SHIFT)
1031#define I915_EXEC_BSD_RING1	 (1 << I915_EXEC_BSD_SHIFT)
1032#define I915_EXEC_BSD_RING2	 (2 << I915_EXEC_BSD_SHIFT)
1033
1034/** Tell the kernel that the batchbuffer is processed by
1035 *  the resource streamer.
1036 */
1037#define I915_EXEC_RESOURCE_STREAMER     (1<<15)
1038
1039/* Setting I915_EXEC_FENCE_IN implies that lower_32_bits(rsvd2) represent
1040 * a sync_file fd to wait upon (in a nonblocking manner) prior to executing
1041 * the batch.
1042 *
1043 * Returns -EINVAL if the sync_file fd cannot be found.
1044 */
1045#define I915_EXEC_FENCE_IN		(1<<16)
1046
1047/* Setting I915_EXEC_FENCE_OUT causes the ioctl to return a sync_file fd
1048 * in the upper_32_bits(rsvd2) upon success. Ownership of the fd is given
1049 * to the caller, and it should be close() after use. (The fd is a regular
1050 * file descriptor and will be cleaned up on process termination. It holds
1051 * a reference to the request, but nothing else.)
1052 *
1053 * The sync_file fd can be combined with other sync_file and passed either
1054 * to execbuf using I915_EXEC_FENCE_IN, to atomic KMS ioctls (so that a flip
1055 * will only occur after this request completes), or to other devices.
1056 *
1057 * Using I915_EXEC_FENCE_OUT requires use of
1058 * DRM_IOCTL_I915_GEM_EXECBUFFER2_WR ioctl so that the result is written
1059 * back to userspace. Failure to do so will cause the out-fence to always
1060 * be reported as zero, and the real fence fd to be leaked.
1061 */
1062#define I915_EXEC_FENCE_OUT		(1<<17)
1063
1064/*
1065 * Traditionally the execbuf ioctl has only considered the final element in
1066 * the execobject[] to be the executable batch. Often though, the client
1067 * will known the batch object prior to construction and being able to place
1068 * it into the execobject[] array first can simplify the relocation tracking.
1069 * Setting I915_EXEC_BATCH_FIRST tells execbuf to use element 0 of the
1070 * execobject[] as the * batch instead (the default is to use the last
1071 * element).
1072 */
1073#define I915_EXEC_BATCH_FIRST		(1<<18)
1074
1075/* Setting I915_FENCE_ARRAY implies that num_cliprects and cliprects_ptr
1076 * define an array of i915_gem_exec_fence structures which specify a set of
1077 * dma fences to wait upon or signal.
1078 */
1079#define I915_EXEC_FENCE_ARRAY   (1<<19)
1080
1081#define __I915_EXEC_UNKNOWN_FLAGS (-(I915_EXEC_FENCE_ARRAY<<1))
1082
1083#define I915_EXEC_CONTEXT_ID_MASK	(0xffffffff)
1084#define i915_execbuffer2_set_context_id(eb2, context) \
1085	(eb2).rsvd1 = context & I915_EXEC_CONTEXT_ID_MASK
1086#define i915_execbuffer2_get_context_id(eb2) \
1087	((eb2).rsvd1 & I915_EXEC_CONTEXT_ID_MASK)
1088
1089struct drm_i915_gem_pin {
1090	/** Handle of the buffer to be pinned. */
1091	__u32 handle;
1092	__u32 pad;
1093
1094	/** alignment required within the aperture */
1095	__u64 alignment;
1096
1097	/** Returned GTT offset of the buffer. */
1098	__u64 offset;
1099};
1100
1101struct drm_i915_gem_unpin {
1102	/** Handle of the buffer to be unpinned. */
1103	__u32 handle;
1104	__u32 pad;
1105};
1106
1107struct drm_i915_gem_busy {
1108	/** Handle of the buffer to check for busy */
1109	__u32 handle;
1110
1111	/** Return busy status
1112	 *
1113	 * A return of 0 implies that the object is idle (after
1114	 * having flushed any pending activity), and a non-zero return that
1115	 * the object is still in-flight on the GPU. (The GPU has not yet
1116	 * signaled completion for all pending requests that reference the
1117	 * object.) An object is guaranteed to become idle eventually (so
1118	 * long as no new GPU commands are executed upon it). Due to the
1119	 * asynchronous nature of the hardware, an object reported
1120	 * as busy may become idle before the ioctl is completed.
1121	 *
1122	 * Furthermore, if the object is busy, which engine is busy is only
1123	 * provided as a guide. There are race conditions which prevent the
1124	 * report of which engines are busy from being always accurate.
1125	 * However, the converse is not true. If the object is idle, the
1126	 * result of the ioctl, that all engines are idle, is accurate.
1127	 *
1128	 * The returned dword is split into two fields to indicate both
1129	 * the engines on which the object is being read, and the
1130	 * engine on which it is currently being written (if any).
1131	 *
1132	 * The low word (bits 0:15) indicate if the object is being written
1133	 * to by any engine (there can only be one, as the GEM implicit
1134	 * synchronisation rules force writes to be serialised). Only the
1135	 * engine for the last write is reported.
1136	 *
1137	 * The high word (bits 16:31) are a bitmask of which engines are
1138	 * currently reading from the object. Multiple engines may be
1139	 * reading from the object simultaneously.
1140	 *
1141	 * The value of each engine is the same as specified in the
1142	 * EXECBUFFER2 ioctl, i.e. I915_EXEC_RENDER, I915_EXEC_BSD etc.
1143	 * Note I915_EXEC_DEFAULT is a symbolic value and is mapped to
1144	 * the I915_EXEC_RENDER engine for execution, and so it is never
1145	 * reported as active itself. Some hardware may have parallel
1146	 * execution engines, e.g. multiple media engines, which are
1147	 * mapped to the same identifier in the EXECBUFFER2 ioctl and
1148	 * so are not separately reported for busyness.
1149	 *
1150	 * Caveat emptor:
1151	 * Only the boolean result of this query is reliable; that is whether
1152	 * the object is idle or busy. The report of which engines are busy
1153	 * should be only used as a heuristic.
1154	 */
1155	__u32 busy;
1156};
1157
1158/**
1159 * I915_CACHING_NONE
1160 *
1161 * GPU access is not coherent with cpu caches. Default for machines without an
1162 * LLC.
1163 */
1164#define I915_CACHING_NONE		0
1165/**
1166 * I915_CACHING_CACHED
1167 *
1168 * GPU access is coherent with cpu caches and furthermore the data is cached in
1169 * last-level caches shared between cpu cores and the gpu GT. Default on
1170 * machines with HAS_LLC.
1171 */
1172#define I915_CACHING_CACHED		1
1173/**
1174 * I915_CACHING_DISPLAY
1175 *
1176 * Special GPU caching mode which is coherent with the scanout engines.
1177 * Transparently falls back to I915_CACHING_NONE on platforms where no special
1178 * cache mode (like write-through or gfdt flushing) is available. The kernel
1179 * automatically sets this mode when using a buffer as a scanout target.
1180 * Userspace can manually set this mode to avoid a costly stall and clflush in
1181 * the hotpath of drawing the first frame.
1182 */
1183#define I915_CACHING_DISPLAY		2
1184
1185struct drm_i915_gem_caching {
1186	/**
1187	 * Handle of the buffer to set/get the caching level of. */
1188	__u32 handle;
1189
1190	/**
1191	 * Cacheing level to apply or return value
1192	 *
1193	 * bits0-15 are for generic caching control (i.e. the above defined
1194	 * values). bits16-31 are reserved for platform-specific variations
1195	 * (e.g. l3$ caching on gen7). */
1196	__u32 caching;
1197};
1198
1199#define I915_TILING_NONE	0
1200#define I915_TILING_X		1
1201#define I915_TILING_Y		2
1202#define I915_TILING_LAST	I915_TILING_Y
1203
1204#define I915_BIT_6_SWIZZLE_NONE		0
1205#define I915_BIT_6_SWIZZLE_9		1
1206#define I915_BIT_6_SWIZZLE_9_10		2
1207#define I915_BIT_6_SWIZZLE_9_11		3
1208#define I915_BIT_6_SWIZZLE_9_10_11	4
1209/* Not seen by userland */
1210#define I915_BIT_6_SWIZZLE_UNKNOWN	5
1211/* Seen by userland. */
1212#define I915_BIT_6_SWIZZLE_9_17		6
1213#define I915_BIT_6_SWIZZLE_9_10_17	7
1214
1215struct drm_i915_gem_set_tiling {
1216	/** Handle of the buffer to have its tiling state updated */
1217	__u32 handle;
1218
1219	/**
1220	 * Tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1221	 * I915_TILING_Y).
1222	 *
1223	 * This value is to be set on request, and will be updated by the
1224	 * kernel on successful return with the actual chosen tiling layout.
1225	 *
1226	 * The tiling mode may be demoted to I915_TILING_NONE when the system
1227	 * has bit 6 swizzling that can't be managed correctly by GEM.
1228	 *
1229	 * Buffer contents become undefined when changing tiling_mode.
1230	 */
1231	__u32 tiling_mode;
1232
1233	/**
1234	 * Stride in bytes for the object when in I915_TILING_X or
1235	 * I915_TILING_Y.
1236	 */
1237	__u32 stride;
1238
1239	/**
1240	 * Returned address bit 6 swizzling required for CPU access through
1241	 * mmap mapping.
1242	 */
1243	__u32 swizzle_mode;
1244};
1245
1246struct drm_i915_gem_get_tiling {
1247	/** Handle of the buffer to get tiling state for. */
1248	__u32 handle;
1249
1250	/**
1251	 * Current tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1252	 * I915_TILING_Y).
1253	 */
1254	__u32 tiling_mode;
1255
1256	/**
1257	 * Returned address bit 6 swizzling required for CPU access through
1258	 * mmap mapping.
1259	 */
1260	__u32 swizzle_mode;
1261
1262	/**
1263	 * Returned address bit 6 swizzling required for CPU access through
1264	 * mmap mapping whilst bound.
1265	 */
1266	__u32 phys_swizzle_mode;
1267};
1268
1269struct drm_i915_gem_get_aperture {
1270	/** Total size of the aperture used by i915_gem_execbuffer, in bytes */
1271	__u64 aper_size;
1272
1273	/**
1274	 * Available space in the aperture used by i915_gem_execbuffer, in
1275	 * bytes
1276	 */
1277	__u64 aper_available_size;
1278};
1279
1280struct drm_i915_get_pipe_from_crtc_id {
1281	/** ID of CRTC being requested **/
1282	__u32 crtc_id;
1283
1284	/** pipe of requested CRTC **/
1285	__u32 pipe;
1286};
1287
1288#define I915_MADV_WILLNEED 0
1289#define I915_MADV_DONTNEED 1
1290#define __I915_MADV_PURGED 2 /* internal state */
1291
1292struct drm_i915_gem_madvise {
1293	/** Handle of the buffer to change the backing store advice */
1294	__u32 handle;
1295
1296	/* Advice: either the buffer will be needed again in the near future,
1297	 *         or wont be and could be discarded under memory pressure.
1298	 */
1299	__u32 madv;
1300
1301	/** Whether the backing store still exists. */
1302	__u32 retained;
1303};
1304
1305/* flags */
1306#define I915_OVERLAY_TYPE_MASK 		0xff
1307#define I915_OVERLAY_YUV_PLANAR 	0x01
1308#define I915_OVERLAY_YUV_PACKED 	0x02
1309#define I915_OVERLAY_RGB		0x03
1310
1311#define I915_OVERLAY_DEPTH_MASK		0xff00
1312#define I915_OVERLAY_RGB24		0x1000
1313#define I915_OVERLAY_RGB16		0x2000
1314#define I915_OVERLAY_RGB15		0x3000
1315#define I915_OVERLAY_YUV422		0x0100
1316#define I915_OVERLAY_YUV411		0x0200
1317#define I915_OVERLAY_YUV420		0x0300
1318#define I915_OVERLAY_YUV410		0x0400
1319
1320#define I915_OVERLAY_SWAP_MASK		0xff0000
1321#define I915_OVERLAY_NO_SWAP		0x000000
1322#define I915_OVERLAY_UV_SWAP		0x010000
1323#define I915_OVERLAY_Y_SWAP		0x020000
1324#define I915_OVERLAY_Y_AND_UV_SWAP	0x030000
1325
1326#define I915_OVERLAY_FLAGS_MASK		0xff000000
1327#define I915_OVERLAY_ENABLE		0x01000000
1328
1329struct drm_intel_overlay_put_image {
1330	/* various flags and src format description */
1331	__u32 flags;
1332	/* source picture description */
1333	__u32 bo_handle;
1334	/* stride values and offsets are in bytes, buffer relative */
1335	__u16 stride_Y; /* stride for packed formats */
1336	__u16 stride_UV;
1337	__u32 offset_Y; /* offset for packet formats */
1338	__u32 offset_U;
1339	__u32 offset_V;
1340	/* in pixels */
1341	__u16 src_width;
1342	__u16 src_height;
1343	/* to compensate the scaling factors for partially covered surfaces */
1344	__u16 src_scan_width;
1345	__u16 src_scan_height;
1346	/* output crtc description */
1347	__u32 crtc_id;
1348	__u16 dst_x;
1349	__u16 dst_y;
1350	__u16 dst_width;
1351	__u16 dst_height;
1352};
1353
1354/* flags */
1355#define I915_OVERLAY_UPDATE_ATTRS	(1<<0)
1356#define I915_OVERLAY_UPDATE_GAMMA	(1<<1)
1357#define I915_OVERLAY_DISABLE_DEST_COLORKEY	(1<<2)
1358struct drm_intel_overlay_attrs {
1359	__u32 flags;
1360	__u32 color_key;
1361	__s32 brightness;
1362	__u32 contrast;
1363	__u32 saturation;
1364	__u32 gamma0;
1365	__u32 gamma1;
1366	__u32 gamma2;
1367	__u32 gamma3;
1368	__u32 gamma4;
1369	__u32 gamma5;
1370};
1371
1372/*
1373 * Intel sprite handling
1374 *
1375 * Color keying works with a min/mask/max tuple.  Both source and destination
1376 * color keying is allowed.
1377 *
1378 * Source keying:
1379 * Sprite pixels within the min & max values, masked against the color channels
1380 * specified in the mask field, will be transparent.  All other pixels will
1381 * be displayed on top of the primary plane.  For RGB surfaces, only the min
1382 * and mask fields will be used; ranged compares are not allowed.
1383 *
1384 * Destination keying:
1385 * Primary plane pixels that match the min value, masked against the color
1386 * channels specified in the mask field, will be replaced by corresponding
1387 * pixels from the sprite plane.
1388 *
1389 * Note that source & destination keying are exclusive; only one can be
1390 * active on a given plane.
1391 */
1392
1393#define I915_SET_COLORKEY_NONE		(1<<0) /* Deprecated. Instead set
1394						* flags==0 to disable colorkeying.
1395						*/
1396#define I915_SET_COLORKEY_DESTINATION	(1<<1)
1397#define I915_SET_COLORKEY_SOURCE	(1<<2)
1398struct drm_intel_sprite_colorkey {
1399	__u32 plane_id;
1400	__u32 min_value;
1401	__u32 channel_mask;
1402	__u32 max_value;
1403	__u32 flags;
1404};
1405
1406struct drm_i915_gem_wait {
1407	/** Handle of BO we shall wait on */
1408	__u32 bo_handle;
1409	__u32 flags;
1410	/** Number of nanoseconds to wait, Returns time remaining. */
1411	__s64 timeout_ns;
1412};
1413
1414struct drm_i915_gem_context_create {
1415	/*  output: id of new context*/
1416	__u32 ctx_id;
1417	__u32 pad;
1418};
1419
1420struct drm_i915_gem_context_destroy {
1421	__u32 ctx_id;
1422	__u32 pad;
1423};
1424
1425struct drm_i915_reg_read {
1426	/*
1427	 * Register offset.
1428	 * For 64bit wide registers where the upper 32bits don't immediately
1429	 * follow the lower 32bits, the offset of the lower 32bits must
1430	 * be specified
1431	 */
1432	__u64 offset;
1433#define I915_REG_READ_8B_WA (1ul << 0)
1434
1435	__u64 val; /* Return value */
1436};
1437/* Known registers:
1438 *
1439 * Render engine timestamp - 0x2358 + 64bit - gen7+
1440 * - Note this register returns an invalid value if using the default
1441 *   single instruction 8byte read, in order to workaround that pass
1442 *   flag I915_REG_READ_8B_WA in offset field.
1443 *
1444 */
1445
1446struct drm_i915_reset_stats {
1447	__u32 ctx_id;
1448	__u32 flags;
1449
1450	/* All resets since boot/module reload, for all contexts */
1451	__u32 reset_count;
1452
1453	/* Number of batches lost when active in GPU, for this context */
1454	__u32 batch_active;
1455
1456	/* Number of batches lost pending for execution, for this context */
1457	__u32 batch_pending;
1458
1459	__u32 pad;
1460};
1461
1462struct drm_i915_gem_userptr {
1463	__u64 user_ptr;
1464	__u64 user_size;
1465	__u32 flags;
1466#define I915_USERPTR_READ_ONLY 0x1
1467#define I915_USERPTR_UNSYNCHRONIZED 0x80000000
1468	/**
1469	 * Returned handle for the object.
1470	 *
1471	 * Object handles are nonzero.
1472	 */
1473	__u32 handle;
1474};
1475
1476struct drm_i915_gem_context_param {
1477	__u32 ctx_id;
1478	__u32 size;
1479	__u64 param;
1480#define I915_CONTEXT_PARAM_BAN_PERIOD	0x1
1481#define I915_CONTEXT_PARAM_NO_ZEROMAP	0x2
1482#define I915_CONTEXT_PARAM_GTT_SIZE	0x3
1483#define I915_CONTEXT_PARAM_NO_ERROR_CAPTURE	0x4
1484#define I915_CONTEXT_PARAM_BANNABLE	0x5
1485#define I915_CONTEXT_PARAM_PRIORITY	0x6
1486#define   I915_CONTEXT_MAX_USER_PRIORITY	1023 /* inclusive */
1487#define   I915_CONTEXT_DEFAULT_PRIORITY		0
1488#define   I915_CONTEXT_MIN_USER_PRIORITY	-1023 /* inclusive */
1489	/*
1490	 * When using the following param, value should be a pointer to
1491	 * drm_i915_gem_context_param_sseu.
1492	 */
1493#define I915_CONTEXT_PARAM_SSEU		0x7
1494	__u64 value;
1495};
1496
1497/**
1498 * Context SSEU programming
1499 *
1500 * It may be necessary for either functional or performance reason to configure
1501 * a context to run with a reduced number of SSEU (where SSEU stands for Slice/
1502 * Sub-slice/EU).
1503 *
1504 * This is done by configuring SSEU configuration using the below
1505 * @struct drm_i915_gem_context_param_sseu for every supported engine which
1506 * userspace intends to use.
1507 *
1508 * Not all GPUs or engines support this functionality in which case an error
1509 * code -ENODEV will be returned.
1510 *
1511 * Also, flexibility of possible SSEU configuration permutations varies between
1512 * GPU generations and software imposed limitations. Requesting such a
1513 * combination will return an error code of -EINVAL.
1514 *
1515 * NOTE: When perf/OA is active the context's SSEU configuration is ignored in
1516 * favour of a single global setting.
1517 */
1518struct drm_i915_gem_context_param_sseu {
1519	/*
1520	 * Engine class & instance to be configured or queried.
1521	 */
1522	__u16 engine_class;
1523	__u16 engine_instance;
1524
1525	/*
1526	 * Unused for now. Must be cleared to zero.
1527	 */
1528	__u32 flags;
1529
1530	/*
1531	 * Mask of slices to enable for the context. Valid values are a subset
1532	 * of the bitmask value returned for I915_PARAM_SLICE_MASK.
1533	 */
1534	__u64 slice_mask;
1535
1536	/*
1537	 * Mask of subslices to enable for the context. Valid values are a
1538	 * subset of the bitmask value return by I915_PARAM_SUBSLICE_MASK.
1539	 */
1540	__u64 subslice_mask;
1541
1542	/*
1543	 * Minimum/Maximum number of EUs to enable per subslice for the
1544	 * context. min_eus_per_subslice must be inferior or equal to
1545	 * max_eus_per_subslice.
1546	 */
1547	__u16 min_eus_per_subslice;
1548	__u16 max_eus_per_subslice;
1549
1550	/*
1551	 * Unused for now. Must be cleared to zero.
1552	 */
1553	__u32 rsvd;
1554};
1555
1556enum drm_i915_oa_format {
1557	I915_OA_FORMAT_A13 = 1,	    /* HSW only */
1558	I915_OA_FORMAT_A29,	    /* HSW only */
1559	I915_OA_FORMAT_A13_B8_C8,   /* HSW only */
1560	I915_OA_FORMAT_B4_C8,	    /* HSW only */
1561	I915_OA_FORMAT_A45_B8_C8,   /* HSW only */
1562	I915_OA_FORMAT_B4_C8_A16,   /* HSW only */
1563	I915_OA_FORMAT_C4_B8,	    /* HSW+ */
1564
1565	/* Gen8+ */
1566	I915_OA_FORMAT_A12,
1567	I915_OA_FORMAT_A12_B8_C8,
1568	I915_OA_FORMAT_A32u40_A4u32_B8_C8,
1569
1570	I915_OA_FORMAT_MAX	    /* non-ABI */
1571};
1572
1573enum drm_i915_perf_property_id {
1574	/**
1575	 * Open the stream for a specific context handle (as used with
1576	 * execbuffer2). A stream opened for a specific context this way
1577	 * won't typically require root privileges.
1578	 */
1579	DRM_I915_PERF_PROP_CTX_HANDLE = 1,
1580
1581	/**
1582	 * A value of 1 requests the inclusion of raw OA unit reports as
1583	 * part of stream samples.
1584	 */
1585	DRM_I915_PERF_PROP_SAMPLE_OA,
1586
1587	/**
1588	 * The value specifies which set of OA unit metrics should be
1589	 * be configured, defining the contents of any OA unit reports.
1590	 */
1591	DRM_I915_PERF_PROP_OA_METRICS_SET,
1592
1593	/**
1594	 * The value specifies the size and layout of OA unit reports.
1595	 */
1596	DRM_I915_PERF_PROP_OA_FORMAT,
1597
1598	/**
1599	 * Specifying this property implicitly requests periodic OA unit
1600	 * sampling and (at least on Haswell) the sampling frequency is derived
1601	 * from this exponent as follows:
1602	 *
1603	 *   80ns * 2^(period_exponent + 1)
1604	 */
1605	DRM_I915_PERF_PROP_OA_EXPONENT,
1606
1607	DRM_I915_PERF_PROP_MAX /* non-ABI */
1608};
1609
1610struct drm_i915_perf_open_param {
1611	__u32 flags;
1612#define I915_PERF_FLAG_FD_CLOEXEC	(1<<0)
1613#define I915_PERF_FLAG_FD_NONBLOCK	(1<<1)
1614#define I915_PERF_FLAG_DISABLED		(1<<2)
1615
1616	/** The number of u64 (id, value) pairs */
1617	__u32 num_properties;
1618
1619	/**
1620	 * Pointer to array of u64 (id, value) pairs configuring the stream
1621	 * to open.
1622	 */
1623	__u64 properties_ptr;
1624};
1625
1626/**
1627 * Enable data capture for a stream that was either opened in a disabled state
1628 * via I915_PERF_FLAG_DISABLED or was later disabled via
1629 * I915_PERF_IOCTL_DISABLE.
1630 *
1631 * It is intended to be cheaper to disable and enable a stream than it may be
1632 * to close and re-open a stream with the same configuration.
1633 *
1634 * It's undefined whether any pending data for the stream will be lost.
1635 */
1636#define I915_PERF_IOCTL_ENABLE	_IO('i', 0x0)
1637
1638/**
1639 * Disable data capture for a stream.
1640 *
1641 * It is an error to try and read a stream that is disabled.
1642 */
1643#define I915_PERF_IOCTL_DISABLE	_IO('i', 0x1)
1644
1645/**
1646 * Common to all i915 perf records
1647 */
1648struct drm_i915_perf_record_header {
1649	__u32 type;
1650	__u16 pad;
1651	__u16 size;
1652};
1653
1654enum drm_i915_perf_record_type {
1655
1656	/**
1657	 * Samples are the work horse record type whose contents are extensible
1658	 * and defined when opening an i915 perf stream based on the given
1659	 * properties.
1660	 *
1661	 * Boolean properties following the naming convention
1662	 * DRM_I915_PERF_SAMPLE_xyz_PROP request the inclusion of 'xyz' data in
1663	 * every sample.
1664	 *
1665	 * The order of these sample properties given by userspace has no
1666	 * affect on the ordering of data within a sample. The order is
1667	 * documented here.
1668	 *
1669	 * struct {
1670	 *     struct drm_i915_perf_record_header header;
1671	 *
1672	 *     { u32 oa_report[]; } && DRM_I915_PERF_PROP_SAMPLE_OA
1673	 * };
1674	 */
1675	DRM_I915_PERF_RECORD_SAMPLE = 1,
1676
1677	/*
1678	 * Indicates that one or more OA reports were not written by the
1679	 * hardware. This can happen for example if an MI_REPORT_PERF_COUNT
1680	 * command collides with periodic sampling - which would be more likely
1681	 * at higher sampling frequencies.
1682	 */
1683	DRM_I915_PERF_RECORD_OA_REPORT_LOST = 2,
1684
1685	/**
1686	 * An error occurred that resulted in all pending OA reports being lost.
1687	 */
1688	DRM_I915_PERF_RECORD_OA_BUFFER_LOST = 3,
1689
1690	DRM_I915_PERF_RECORD_MAX /* non-ABI */
1691};
1692
1693/**
1694 * Structure to upload perf dynamic configuration into the kernel.
1695 */
1696struct drm_i915_perf_oa_config {
1697	/** String formatted like "%08x-%04x-%04x-%04x-%012x" */
1698	char uuid[36];
1699
1700	__u32 n_mux_regs;
1701	__u32 n_boolean_regs;
1702	__u32 n_flex_regs;
1703
1704	/*
1705	 * These fields are pointers to tuples of u32 values (register address,
1706	 * value). For example the expected length of the buffer pointed by
1707	 * mux_regs_ptr is (2 * sizeof(u32) * n_mux_regs).
1708	 */
1709	__u64 mux_regs_ptr;
1710	__u64 boolean_regs_ptr;
1711	__u64 flex_regs_ptr;
1712};
1713
1714struct drm_i915_query_item {
1715	__u64 query_id;
1716#define DRM_I915_QUERY_TOPOLOGY_INFO    1
1717
1718	/*
1719	 * When set to zero by userspace, this is filled with the size of the
1720	 * data to be written at the data_ptr pointer. The kernel sets this
1721	 * value to a negative value to signal an error on a particular query
1722	 * item.
1723	 */
1724	__s32 length;
1725
1726	/*
1727	 * Unused for now. Must be cleared to zero.
1728	 */
1729	__u32 flags;
1730
1731	/*
1732	 * Data will be written at the location pointed by data_ptr when the
1733	 * value of length matches the length of the data to be written by the
1734	 * kernel.
1735	 */
1736	__u64 data_ptr;
1737};
1738
1739struct drm_i915_query {
1740	__u32 num_items;
1741
1742	/*
1743	 * Unused for now. Must be cleared to zero.
1744	 */
1745	__u32 flags;
1746
1747	/*
1748	 * This points to an array of num_items drm_i915_query_item structures.
1749	 */
1750	__u64 items_ptr;
1751};
1752
1753/*
1754 * Data written by the kernel with query DRM_I915_QUERY_TOPOLOGY_INFO :
1755 *
1756 * data: contains the 3 pieces of information :
1757 *
1758 * - the slice mask with one bit per slice telling whether a slice is
1759 *   available. The availability of slice X can be queried with the following
1760 *   formula :
1761 *
1762 *           (data[X / 8] >> (X % 8)) & 1
1763 *
1764 * - the subslice mask for each slice with one bit per subslice telling
1765 *   whether a subslice is available. The availability of subslice Y in slice
1766 *   X can be queried with the following formula :
1767 *
1768 *           (data[subslice_offset +
1769 *                 X * subslice_stride +
1770 *                 Y / 8] >> (Y % 8)) & 1
1771 *
1772 * - the EU mask for each subslice in each slice with one bit per EU telling
1773 *   whether an EU is available. The availability of EU Z in subslice Y in
1774 *   slice X can be queried with the following formula :
1775 *
1776 *           (data[eu_offset +
1777 *                 (X * max_subslices + Y) * eu_stride +
1778 *                 Z / 8] >> (Z % 8)) & 1
1779 */
1780struct drm_i915_query_topology_info {
1781	/*
1782	 * Unused for now. Must be cleared to zero.
1783	 */
1784	__u16 flags;
1785
1786	__u16 max_slices;
1787	__u16 max_subslices;
1788	__u16 max_eus_per_subslice;
1789
1790	/*
1791	 * Offset in data[] at which the subslice masks are stored.
1792	 */
1793	__u16 subslice_offset;
1794
1795	/*
1796	 * Stride at which each of the subslice masks for each slice are
1797	 * stored.
1798	 */
1799	__u16 subslice_stride;
1800
1801	/*
1802	 * Offset in data[] at which the EU masks are stored.
1803	 */
1804	__u16 eu_offset;
1805
1806	/*
1807	 * Stride at which each of the EU masks for each subslice are stored.
1808	 */
1809	__u16 eu_stride;
1810
1811	__u8 data[];
1812};
1813
1814#if defined(__cplusplus)
1815}
1816#endif
1817
1818#endif /* _I915_DRM_H_ */
1819