nir_loop_analyze.c revision b8e80941
1/* 2 * Copyright © 2015 Thomas Helland 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 */ 23 24#include "nir.h" 25#include "nir_constant_expressions.h" 26#include "nir_loop_analyze.h" 27 28typedef enum { 29 undefined, 30 invariant, 31 not_invariant, 32 basic_induction 33} nir_loop_variable_type; 34 35typedef struct nir_basic_induction_var { 36 nir_alu_instr *alu; /* The def of the alu-operation */ 37 nir_ssa_def *def_outside_loop; /* The phi-src outside the loop */ 38} nir_basic_induction_var; 39 40typedef struct { 41 /* A link for the work list */ 42 struct list_head process_link; 43 44 bool in_loop; 45 46 /* The ssa_def associated with this info */ 47 nir_ssa_def *def; 48 49 /* The type of this ssa_def */ 50 nir_loop_variable_type type; 51 52 /* If this is of type basic_induction */ 53 struct nir_basic_induction_var *ind; 54 55 /* True if variable is in an if branch */ 56 bool in_if_branch; 57 58 /* True if variable is in a nested loop */ 59 bool in_nested_loop; 60 61} nir_loop_variable; 62 63typedef struct { 64 /* The loop we store information for */ 65 nir_loop *loop; 66 67 /* Loop_variable for all ssa_defs in function */ 68 nir_loop_variable *loop_vars; 69 70 /* A list of the loop_vars to analyze */ 71 struct list_head process_list; 72 73 nir_variable_mode indirect_mask; 74 75} loop_info_state; 76 77static nir_loop_variable * 78get_loop_var(nir_ssa_def *value, loop_info_state *state) 79{ 80 return &(state->loop_vars[value->index]); 81} 82 83typedef struct { 84 loop_info_state *state; 85 bool in_if_branch; 86 bool in_nested_loop; 87} init_loop_state; 88 89static bool 90init_loop_def(nir_ssa_def *def, void *void_init_loop_state) 91{ 92 init_loop_state *loop_init_state = void_init_loop_state; 93 nir_loop_variable *var = get_loop_var(def, loop_init_state->state); 94 95 if (loop_init_state->in_nested_loop) { 96 var->in_nested_loop = true; 97 } else if (loop_init_state->in_if_branch) { 98 var->in_if_branch = true; 99 } else { 100 /* Add to the tail of the list. That way we start at the beginning of 101 * the defs in the loop instead of the end when walking the list. This 102 * means less recursive calls. Only add defs that are not in nested 103 * loops or conditional blocks. 104 */ 105 list_addtail(&var->process_link, &loop_init_state->state->process_list); 106 } 107 108 var->in_loop = true; 109 110 return true; 111} 112 113/** Calculate an estimated cost in number of instructions 114 * 115 * We do this so that we don't unroll loops which will later get massively 116 * inflated due to int64 or fp64 lowering. The estimates provided here don't 117 * have to be massively accurate; they just have to be good enough that loop 118 * unrolling doesn't cause things to blow up too much. 119 */ 120static unsigned 121instr_cost(nir_instr *instr, const nir_shader_compiler_options *options) 122{ 123 if (instr->type == nir_instr_type_intrinsic || 124 instr->type == nir_instr_type_tex) 125 return 1; 126 127 if (instr->type != nir_instr_type_alu) 128 return 0; 129 130 nir_alu_instr *alu = nir_instr_as_alu(instr); 131 const nir_op_info *info = &nir_op_infos[alu->op]; 132 133 /* Assume everything 16 or 32-bit is cheap. 134 * 135 * There are no 64-bit ops that don't have a 64-bit thing as their 136 * destination or first source. 137 */ 138 if (nir_dest_bit_size(alu->dest.dest) < 64 && 139 nir_src_bit_size(alu->src[0].src) < 64) 140 return 1; 141 142 bool is_fp64 = nir_dest_bit_size(alu->dest.dest) == 64 && 143 nir_alu_type_get_base_type(info->output_type) == nir_type_float; 144 for (unsigned i = 0; i < info->num_inputs; i++) { 145 if (nir_src_bit_size(alu->src[i].src) == 64 && 146 nir_alu_type_get_base_type(info->input_types[i]) == nir_type_float) 147 is_fp64 = true; 148 } 149 150 if (is_fp64) { 151 /* If it's something lowered normally, it's expensive. */ 152 unsigned cost = 1; 153 if (options->lower_doubles_options & 154 nir_lower_doubles_op_to_options_mask(alu->op)) 155 cost *= 20; 156 157 /* If it's full software, it's even more expensive */ 158 if (options->lower_doubles_options & nir_lower_fp64_full_software) 159 cost *= 100; 160 161 return cost; 162 } else { 163 if (options->lower_int64_options & 164 nir_lower_int64_op_to_options_mask(alu->op)) { 165 /* These require a doing the division algorithm. */ 166 if (alu->op == nir_op_idiv || alu->op == nir_op_udiv || 167 alu->op == nir_op_imod || alu->op == nir_op_umod || 168 alu->op == nir_op_irem) 169 return 100; 170 171 /* Other int64 lowering isn't usually all that expensive */ 172 return 5; 173 } 174 175 return 1; 176 } 177} 178 179static bool 180init_loop_block(nir_block *block, loop_info_state *state, 181 bool in_if_branch, bool in_nested_loop, 182 const nir_shader_compiler_options *options) 183{ 184 init_loop_state init_state = {.in_if_branch = in_if_branch, 185 .in_nested_loop = in_nested_loop, 186 .state = state }; 187 188 nir_foreach_instr(instr, block) { 189 state->loop->info->instr_cost += instr_cost(instr, options); 190 nir_foreach_ssa_def(instr, init_loop_def, &init_state); 191 } 192 193 return true; 194} 195 196static inline bool 197is_var_alu(nir_loop_variable *var) 198{ 199 return var->def->parent_instr->type == nir_instr_type_alu; 200} 201 202static inline bool 203is_var_constant(nir_loop_variable *var) 204{ 205 return var->def->parent_instr->type == nir_instr_type_load_const; 206} 207 208static inline bool 209is_var_phi(nir_loop_variable *var) 210{ 211 return var->def->parent_instr->type == nir_instr_type_phi; 212} 213 214static inline bool 215mark_invariant(nir_ssa_def *def, loop_info_state *state) 216{ 217 nir_loop_variable *var = get_loop_var(def, state); 218 219 if (var->type == invariant) 220 return true; 221 222 if (!var->in_loop) { 223 var->type = invariant; 224 return true; 225 } 226 227 if (var->type == not_invariant) 228 return false; 229 230 if (is_var_alu(var)) { 231 nir_alu_instr *alu = nir_instr_as_alu(def->parent_instr); 232 233 for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++) { 234 if (!mark_invariant(alu->src[i].src.ssa, state)) { 235 var->type = not_invariant; 236 return false; 237 } 238 } 239 var->type = invariant; 240 return true; 241 } 242 243 /* Phis shouldn't be invariant except if one operand is invariant, and the 244 * other is the phi itself. These should be removed by opt_remove_phis. 245 * load_consts are already set to invariant and constant during init, 246 * and so should return earlier. Remaining op_codes are set undefined. 247 */ 248 var->type = not_invariant; 249 return false; 250} 251 252static void 253compute_invariance_information(loop_info_state *state) 254{ 255 /* An expression is invariant in a loop L if: 256 * (base cases) 257 * – it’s a constant 258 * – it’s a variable use, all of whose single defs are outside of L 259 * (inductive cases) 260 * – it’s a pure computation all of whose args are loop invariant 261 * – it’s a variable use whose single reaching def, and the 262 * rhs of that def is loop-invariant 263 */ 264 list_for_each_entry_safe(nir_loop_variable, var, &state->process_list, 265 process_link) { 266 assert(!var->in_if_branch && !var->in_nested_loop); 267 268 if (mark_invariant(var->def, state)) 269 list_del(&var->process_link); 270 } 271} 272 273/* If all of the instruction sources point to identical ALU instructions (as 274 * per nir_instrs_equal), return one of the ALU instructions. Otherwise, 275 * return NULL. 276 */ 277static nir_alu_instr * 278phi_instr_as_alu(nir_phi_instr *phi) 279{ 280 nir_alu_instr *first = NULL; 281 nir_foreach_phi_src(src, phi) { 282 assert(src->src.is_ssa); 283 if (src->src.ssa->parent_instr->type != nir_instr_type_alu) 284 return NULL; 285 286 nir_alu_instr *alu = nir_instr_as_alu(src->src.ssa->parent_instr); 287 if (first == NULL) { 288 first = alu; 289 } else { 290 if (!nir_instrs_equal(&first->instr, &alu->instr)) 291 return NULL; 292 } 293 } 294 295 return first; 296} 297 298static bool 299alu_src_has_identity_swizzle(nir_alu_instr *alu, unsigned src_idx) 300{ 301 assert(nir_op_infos[alu->op].input_sizes[src_idx] == 0); 302 assert(alu->dest.dest.is_ssa); 303 for (unsigned i = 0; i < alu->dest.dest.ssa.num_components; i++) { 304 if (alu->src[src_idx].swizzle[i] != i) 305 return false; 306 } 307 308 return true; 309} 310 311static bool 312compute_induction_information(loop_info_state *state) 313{ 314 bool found_induction_var = false; 315 list_for_each_entry_safe(nir_loop_variable, var, &state->process_list, 316 process_link) { 317 318 /* It can't be an induction variable if it is invariant. Invariants and 319 * things in nested loops or conditionals should have been removed from 320 * the list by compute_invariance_information(). 321 */ 322 assert(!var->in_if_branch && !var->in_nested_loop && 323 var->type != invariant); 324 325 /* We are only interested in checking phis for the basic induction 326 * variable case as its simple to detect. All basic induction variables 327 * have a phi node 328 */ 329 if (!is_var_phi(var)) 330 continue; 331 332 nir_phi_instr *phi = nir_instr_as_phi(var->def->parent_instr); 333 nir_basic_induction_var *biv = rzalloc(state, nir_basic_induction_var); 334 335 nir_loop_variable *alu_src_var = NULL; 336 nir_foreach_phi_src(src, phi) { 337 nir_loop_variable *src_var = get_loop_var(src->src.ssa, state); 338 339 /* If one of the sources is in an if branch or nested loop then don't 340 * attempt to go any further. 341 */ 342 if (src_var->in_if_branch || src_var->in_nested_loop) 343 break; 344 345 /* Detect inductions variables that are incremented in both branches 346 * of an unnested if rather than in a loop block. 347 */ 348 if (is_var_phi(src_var)) { 349 nir_phi_instr *src_phi = 350 nir_instr_as_phi(src_var->def->parent_instr); 351 nir_alu_instr *src_phi_alu = phi_instr_as_alu(src_phi); 352 if (src_phi_alu) { 353 src_var = get_loop_var(&src_phi_alu->dest.dest.ssa, state); 354 if (!src_var->in_if_branch) 355 break; 356 } 357 } 358 359 if (!src_var->in_loop && !biv->def_outside_loop) { 360 biv->def_outside_loop = src_var->def; 361 } else if (is_var_alu(src_var) && !biv->alu) { 362 alu_src_var = src_var; 363 nir_alu_instr *alu = nir_instr_as_alu(src_var->def->parent_instr); 364 365 if (nir_op_infos[alu->op].num_inputs == 2) { 366 for (unsigned i = 0; i < 2; i++) { 367 /* Is one of the operands const, and the other the phi. The 368 * phi source can't be swizzled in any way. 369 */ 370 if (nir_src_is_const(alu->src[i].src) && 371 alu->src[1-i].src.ssa == &phi->dest.ssa && 372 alu_src_has_identity_swizzle(alu, 1 - i)) 373 biv->alu = alu; 374 } 375 } 376 377 if (!biv->alu) 378 break; 379 } else { 380 biv->alu = NULL; 381 break; 382 } 383 } 384 385 if (biv->alu && biv->def_outside_loop && 386 biv->def_outside_loop->parent_instr->type == nir_instr_type_load_const) { 387 alu_src_var->type = basic_induction; 388 alu_src_var->ind = biv; 389 var->type = basic_induction; 390 var->ind = biv; 391 392 found_induction_var = true; 393 } else { 394 ralloc_free(biv); 395 } 396 } 397 return found_induction_var; 398} 399 400static bool 401initialize_ssa_def(nir_ssa_def *def, void *void_state) 402{ 403 loop_info_state *state = void_state; 404 nir_loop_variable *var = get_loop_var(def, state); 405 406 var->in_loop = false; 407 var->def = def; 408 409 if (def->parent_instr->type == nir_instr_type_load_const) { 410 var->type = invariant; 411 } else { 412 var->type = undefined; 413 } 414 415 return true; 416} 417 418static bool 419find_loop_terminators(loop_info_state *state) 420{ 421 bool success = false; 422 foreach_list_typed_safe(nir_cf_node, node, node, &state->loop->body) { 423 if (node->type == nir_cf_node_if) { 424 nir_if *nif = nir_cf_node_as_if(node); 425 426 nir_block *break_blk = NULL; 427 nir_block *continue_from_blk = NULL; 428 bool continue_from_then = true; 429 430 nir_block *last_then = nir_if_last_then_block(nif); 431 nir_block *last_else = nir_if_last_else_block(nif); 432 if (nir_block_ends_in_break(last_then)) { 433 break_blk = last_then; 434 continue_from_blk = last_else; 435 continue_from_then = false; 436 } else if (nir_block_ends_in_break(last_else)) { 437 break_blk = last_else; 438 continue_from_blk = last_then; 439 } 440 441 /* If there is a break then we should find a terminator. If we can 442 * not find a loop terminator, but there is a break-statement then 443 * we should return false so that we do not try to find trip-count 444 */ 445 if (!nir_is_trivial_loop_if(nif, break_blk)) { 446 state->loop->info->complex_loop = true; 447 return false; 448 } 449 450 /* Continue if the if contained no jumps at all */ 451 if (!break_blk) 452 continue; 453 454 if (nif->condition.ssa->parent_instr->type == nir_instr_type_phi) { 455 state->loop->info->complex_loop = true; 456 return false; 457 } 458 459 nir_loop_terminator *terminator = 460 rzalloc(state->loop->info, nir_loop_terminator); 461 462 list_addtail(&terminator->loop_terminator_link, 463 &state->loop->info->loop_terminator_list); 464 465 terminator->nif = nif; 466 terminator->break_block = break_blk; 467 terminator->continue_from_block = continue_from_blk; 468 terminator->continue_from_then = continue_from_then; 469 terminator->conditional_instr = nif->condition.ssa->parent_instr; 470 471 success = true; 472 } 473 } 474 475 return success; 476} 477 478/* This function looks for an array access within a loop that uses an 479 * induction variable for the array index. If found it returns the size of the 480 * array, otherwise 0 is returned. If we find an induction var we pass it back 481 * to the caller via array_index_out. 482 */ 483static unsigned 484find_array_access_via_induction(loop_info_state *state, 485 nir_deref_instr *deref, 486 nir_loop_variable **array_index_out) 487{ 488 for (nir_deref_instr *d = deref; d; d = nir_deref_instr_parent(d)) { 489 if (d->deref_type != nir_deref_type_array) 490 continue; 491 492 assert(d->arr.index.is_ssa); 493 nir_loop_variable *array_index = get_loop_var(d->arr.index.ssa, state); 494 495 if (array_index->type != basic_induction) 496 continue; 497 498 if (array_index_out) 499 *array_index_out = array_index; 500 501 nir_deref_instr *parent = nir_deref_instr_parent(d); 502 if (glsl_type_is_array_or_matrix(parent->type)) { 503 return glsl_get_length(parent->type); 504 } else { 505 assert(glsl_type_is_vector(parent->type)); 506 return glsl_get_vector_elements(parent->type); 507 } 508 } 509 510 return 0; 511} 512 513static bool 514guess_loop_limit(loop_info_state *state, nir_const_value *limit_val, 515 nir_ssa_scalar basic_ind) 516{ 517 unsigned min_array_size = 0; 518 519 nir_foreach_block_in_cf_node(block, &state->loop->cf_node) { 520 nir_foreach_instr(instr, block) { 521 if (instr->type != nir_instr_type_intrinsic) 522 continue; 523 524 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); 525 526 /* Check for arrays variably-indexed by a loop induction variable. */ 527 if (intrin->intrinsic == nir_intrinsic_load_deref || 528 intrin->intrinsic == nir_intrinsic_store_deref || 529 intrin->intrinsic == nir_intrinsic_copy_deref) { 530 531 nir_loop_variable *array_idx = NULL; 532 unsigned array_size = 533 find_array_access_via_induction(state, 534 nir_src_as_deref(intrin->src[0]), 535 &array_idx); 536 if (array_idx && basic_ind.def == array_idx->def && 537 (min_array_size == 0 || min_array_size > array_size)) { 538 /* Array indices are scalars */ 539 assert(basic_ind.def->num_components == 1); 540 min_array_size = array_size; 541 } 542 543 if (intrin->intrinsic != nir_intrinsic_copy_deref) 544 continue; 545 546 array_size = 547 find_array_access_via_induction(state, 548 nir_src_as_deref(intrin->src[1]), 549 &array_idx); 550 if (array_idx && basic_ind.def == array_idx->def && 551 (min_array_size == 0 || min_array_size > array_size)) { 552 /* Array indices are scalars */ 553 assert(basic_ind.def->num_components == 1); 554 min_array_size = array_size; 555 } 556 } 557 } 558 } 559 560 if (min_array_size) { 561 *limit_val = nir_const_value_for_uint(min_array_size, 562 basic_ind.def->bit_size); 563 return true; 564 } 565 566 return false; 567} 568 569static bool 570try_find_limit_of_alu(nir_ssa_scalar limit, nir_const_value *limit_val, 571 nir_loop_terminator *terminator, loop_info_state *state) 572{ 573 if (!nir_ssa_scalar_is_alu(limit)) 574 return false; 575 576 nir_op limit_op = nir_ssa_scalar_alu_op(limit); 577 if (limit_op == nir_op_imin || limit_op == nir_op_fmin) { 578 for (unsigned i = 0; i < 2; i++) { 579 nir_ssa_scalar src = nir_ssa_scalar_chase_alu_src(limit, i); 580 if (nir_ssa_scalar_is_const(src)) { 581 *limit_val = nir_ssa_scalar_as_const_value(src); 582 terminator->exact_trip_count_unknown = true; 583 return true; 584 } 585 } 586 } 587 588 return false; 589} 590 591static nir_const_value 592eval_const_unop(nir_op op, unsigned bit_size, nir_const_value src0) 593{ 594 assert(nir_op_infos[op].num_inputs == 1); 595 nir_const_value dest; 596 nir_const_value *src[1] = { &src0 }; 597 nir_eval_const_opcode(op, &dest, 1, bit_size, src); 598 return dest; 599} 600 601static nir_const_value 602eval_const_binop(nir_op op, unsigned bit_size, 603 nir_const_value src0, nir_const_value src1) 604{ 605 assert(nir_op_infos[op].num_inputs == 2); 606 nir_const_value dest; 607 nir_const_value *src[2] = { &src0, &src1 }; 608 nir_eval_const_opcode(op, &dest, 1, bit_size, src); 609 return dest; 610} 611 612static int32_t 613get_iteration(nir_op cond_op, nir_const_value initial, nir_const_value step, 614 nir_const_value limit, unsigned bit_size) 615{ 616 nir_const_value span, iter; 617 618 switch (cond_op) { 619 case nir_op_ige: 620 case nir_op_ilt: 621 case nir_op_ieq: 622 case nir_op_ine: 623 span = eval_const_binop(nir_op_isub, bit_size, limit, initial); 624 iter = eval_const_binop(nir_op_idiv, bit_size, span, step); 625 break; 626 627 case nir_op_uge: 628 case nir_op_ult: 629 span = eval_const_binop(nir_op_isub, bit_size, limit, initial); 630 iter = eval_const_binop(nir_op_udiv, bit_size, span, step); 631 break; 632 633 case nir_op_fge: 634 case nir_op_flt: 635 case nir_op_feq: 636 case nir_op_fne: 637 span = eval_const_binop(nir_op_fsub, bit_size, limit, initial); 638 iter = eval_const_binop(nir_op_fdiv, bit_size, span, step); 639 iter = eval_const_unop(nir_op_f2i64, bit_size, iter); 640 break; 641 642 default: 643 return -1; 644 } 645 646 uint64_t iter_u64 = nir_const_value_as_uint(iter, bit_size); 647 return iter_u64 > INT_MAX ? -1 : (int)iter_u64; 648} 649 650static bool 651test_iterations(int32_t iter_int, nir_const_value *step, 652 nir_const_value *limit, nir_op cond_op, unsigned bit_size, 653 nir_alu_type induction_base_type, 654 nir_const_value *initial, bool limit_rhs, bool invert_cond) 655{ 656 assert(nir_op_infos[cond_op].num_inputs == 2); 657 658 nir_const_value iter_src; 659 nir_op mul_op; 660 nir_op add_op; 661 switch (induction_base_type) { 662 case nir_type_float: 663 iter_src = nir_const_value_for_float(iter_int, bit_size); 664 mul_op = nir_op_fmul; 665 add_op = nir_op_fadd; 666 break; 667 case nir_type_int: 668 case nir_type_uint: 669 iter_src = nir_const_value_for_int(iter_int, bit_size); 670 mul_op = nir_op_imul; 671 add_op = nir_op_iadd; 672 break; 673 default: 674 unreachable("Unhandled induction variable base type!"); 675 } 676 677 /* Multiple the iteration count we are testing by the number of times we 678 * step the induction variable each iteration. 679 */ 680 nir_const_value *mul_src[2] = { &iter_src, step }; 681 nir_const_value mul_result; 682 nir_eval_const_opcode(mul_op, &mul_result, 1, bit_size, mul_src); 683 684 /* Add the initial value to the accumulated induction variable total */ 685 nir_const_value *add_src[2] = { &mul_result, initial }; 686 nir_const_value add_result; 687 nir_eval_const_opcode(add_op, &add_result, 1, bit_size, add_src); 688 689 nir_const_value *src[2]; 690 src[limit_rhs ? 0 : 1] = &add_result; 691 src[limit_rhs ? 1 : 0] = limit; 692 693 /* Evaluate the loop exit condition */ 694 nir_const_value result; 695 nir_eval_const_opcode(cond_op, &result, 1, bit_size, src); 696 697 return invert_cond ? !result.b : result.b; 698} 699 700static int 701calculate_iterations(nir_const_value *initial, nir_const_value *step, 702 nir_const_value *limit, nir_alu_instr *alu, 703 nir_ssa_scalar cond, nir_op alu_op, bool limit_rhs, 704 bool invert_cond) 705{ 706 assert(initial != NULL && step != NULL && limit != NULL); 707 708 /* nir_op_isub should have been lowered away by this point */ 709 assert(alu->op != nir_op_isub); 710 711 /* Make sure the alu type for our induction variable is compatible with the 712 * conditional alus input type. If its not something has gone really wrong. 713 */ 714 nir_alu_type induction_base_type = 715 nir_alu_type_get_base_type(nir_op_infos[alu->op].output_type); 716 if (induction_base_type == nir_type_int || induction_base_type == nir_type_uint) { 717 assert(nir_alu_type_get_base_type(nir_op_infos[alu_op].input_types[1]) == nir_type_int || 718 nir_alu_type_get_base_type(nir_op_infos[alu_op].input_types[1]) == nir_type_uint); 719 } else { 720 assert(nir_alu_type_get_base_type(nir_op_infos[alu_op].input_types[0]) == 721 induction_base_type); 722 } 723 724 /* Check for nsupported alu operations */ 725 if (alu->op != nir_op_iadd && alu->op != nir_op_fadd) 726 return -1; 727 728 /* do-while loops can increment the starting value before the condition is 729 * checked. e.g. 730 * 731 * do { 732 * ndx++; 733 * } while (ndx < 3); 734 * 735 * Here we check if the induction variable is used directly by the loop 736 * condition and if so we assume we need to step the initial value. 737 */ 738 unsigned trip_offset = 0; 739 nir_alu_instr *cond_alu = nir_instr_as_alu(cond.def->parent_instr); 740 if (cond_alu->src[0].src.ssa == &alu->dest.dest.ssa || 741 cond_alu->src[1].src.ssa == &alu->dest.dest.ssa) { 742 trip_offset = 1; 743 } 744 745 assert(nir_src_bit_size(alu->src[0].src) == 746 nir_src_bit_size(alu->src[1].src)); 747 unsigned bit_size = nir_src_bit_size(alu->src[0].src); 748 int iter_int = get_iteration(alu_op, *initial, *step, *limit, bit_size); 749 750 /* If iter_int is negative the loop is ill-formed or is the conditional is 751 * unsigned with a huge iteration count so don't bother going any further. 752 */ 753 if (iter_int < 0) 754 return -1; 755 756 /* An explanation from the GLSL unrolling pass: 757 * 758 * Make sure that the calculated number of iterations satisfies the exit 759 * condition. This is needed to catch off-by-one errors and some types of 760 * ill-formed loops. For example, we need to detect that the following 761 * loop does not have a maximum iteration count. 762 * 763 * for (float x = 0.0; x != 0.9; x += 0.2); 764 */ 765 for (int bias = -1; bias <= 1; bias++) { 766 const int iter_bias = iter_int + bias; 767 768 if (test_iterations(iter_bias, step, limit, alu_op, bit_size, 769 induction_base_type, initial, 770 limit_rhs, invert_cond)) { 771 return iter_bias > 0 ? iter_bias - trip_offset : iter_bias; 772 } 773 } 774 775 return -1; 776} 777 778static nir_op 779inverse_comparison(nir_op alu_op) 780{ 781 switch (alu_op) { 782 case nir_op_fge: 783 return nir_op_flt; 784 case nir_op_ige: 785 return nir_op_ilt; 786 case nir_op_uge: 787 return nir_op_ult; 788 case nir_op_flt: 789 return nir_op_fge; 790 case nir_op_ilt: 791 return nir_op_ige; 792 case nir_op_ult: 793 return nir_op_uge; 794 case nir_op_feq: 795 return nir_op_fne; 796 case nir_op_ieq: 797 return nir_op_ine; 798 case nir_op_fne: 799 return nir_op_feq; 800 case nir_op_ine: 801 return nir_op_ieq; 802 default: 803 unreachable("Unsuported comparison!"); 804 } 805} 806 807static bool 808is_supported_terminator_condition(nir_ssa_scalar cond) 809{ 810 if (!nir_ssa_scalar_is_alu(cond)) 811 return false; 812 813 nir_alu_instr *alu = nir_instr_as_alu(cond.def->parent_instr); 814 return nir_alu_instr_is_comparison(alu) && 815 nir_op_infos[alu->op].num_inputs == 2; 816} 817 818static bool 819get_induction_and_limit_vars(nir_ssa_scalar cond, 820 nir_ssa_scalar *ind, 821 nir_ssa_scalar *limit, 822 bool *limit_rhs, 823 loop_info_state *state) 824{ 825 nir_ssa_scalar rhs, lhs; 826 lhs = nir_ssa_scalar_chase_alu_src(cond, 0); 827 rhs = nir_ssa_scalar_chase_alu_src(cond, 1); 828 829 if (get_loop_var(lhs.def, state)->type == basic_induction) { 830 *ind = lhs; 831 *limit = rhs; 832 *limit_rhs = true; 833 return true; 834 } else if (get_loop_var(rhs.def, state)->type == basic_induction) { 835 *ind = rhs; 836 *limit = lhs; 837 *limit_rhs = false; 838 return true; 839 } else { 840 return false; 841 } 842} 843 844static bool 845try_find_trip_count_vars_in_iand(nir_ssa_scalar *cond, 846 nir_ssa_scalar *ind, 847 nir_ssa_scalar *limit, 848 bool *limit_rhs, 849 loop_info_state *state) 850{ 851 const nir_op alu_op = nir_ssa_scalar_alu_op(*cond); 852 assert(alu_op == nir_op_ieq || alu_op == nir_op_inot); 853 854 nir_ssa_scalar iand = nir_ssa_scalar_chase_alu_src(*cond, 0); 855 856 if (alu_op == nir_op_ieq) { 857 nir_ssa_scalar zero = nir_ssa_scalar_chase_alu_src(*cond, 1); 858 859 if (!nir_ssa_scalar_is_alu(iand) || !nir_ssa_scalar_is_const(zero)) { 860 /* Maybe we had it the wrong way, flip things around */ 861 nir_ssa_scalar tmp = zero; 862 zero = iand; 863 iand = tmp; 864 865 /* If we still didn't find what we need then return */ 866 if (!nir_ssa_scalar_is_const(zero)) 867 return false; 868 } 869 870 /* If the loop is not breaking on (x && y) == 0 then return */ 871 if (nir_ssa_scalar_as_uint(zero) != 0) 872 return false; 873 } 874 875 if (!nir_ssa_scalar_is_alu(iand)) 876 return false; 877 878 if (nir_ssa_scalar_alu_op(iand) != nir_op_iand) 879 return false; 880 881 /* Check if iand src is a terminator condition and try get induction var 882 * and trip limit var. 883 */ 884 bool found_induction_var = false; 885 for (unsigned i = 0; i < 2; i++) { 886 nir_ssa_scalar src = nir_ssa_scalar_chase_alu_src(iand, i); 887 if (is_supported_terminator_condition(src) && 888 get_induction_and_limit_vars(src, ind, limit, limit_rhs, state)) { 889 *cond = src; 890 found_induction_var = true; 891 892 /* If we've found one with a constant limit, stop. */ 893 if (nir_ssa_scalar_is_const(*limit)) 894 return true; 895 } 896 } 897 898 return found_induction_var; 899} 900 901/* Run through each of the terminators of the loop and try to infer a possible 902 * trip-count. We need to check them all, and set the lowest trip-count as the 903 * trip-count of our loop. If one of the terminators has an undecidable 904 * trip-count we can not safely assume anything about the duration of the 905 * loop. 906 */ 907static void 908find_trip_count(loop_info_state *state) 909{ 910 bool trip_count_known = true; 911 bool guessed_trip_count = false; 912 nir_loop_terminator *limiting_terminator = NULL; 913 int max_trip_count = -1; 914 915 list_for_each_entry(nir_loop_terminator, terminator, 916 &state->loop->info->loop_terminator_list, 917 loop_terminator_link) { 918 assert(terminator->nif->condition.is_ssa); 919 nir_ssa_scalar cond = { terminator->nif->condition.ssa, 0 }; 920 921 if (!nir_ssa_scalar_is_alu(cond)) { 922 /* If we get here the loop is dead and will get cleaned up by the 923 * nir_opt_dead_cf pass. 924 */ 925 trip_count_known = false; 926 continue; 927 } 928 929 nir_op alu_op = nir_ssa_scalar_alu_op(cond); 930 931 bool limit_rhs; 932 nir_ssa_scalar basic_ind = { NULL, 0 }; 933 nir_ssa_scalar limit; 934 if ((alu_op == nir_op_inot || alu_op == nir_op_ieq) && 935 try_find_trip_count_vars_in_iand(&cond, &basic_ind, &limit, 936 &limit_rhs, state)) { 937 938 /* The loop is exiting on (x && y) == 0 so we need to get the 939 * inverse of x or y (i.e. which ever contained the induction var) in 940 * order to compute the trip count. 941 */ 942 alu_op = inverse_comparison(nir_ssa_scalar_alu_op(cond)); 943 trip_count_known = false; 944 terminator->exact_trip_count_unknown = true; 945 } 946 947 if (!basic_ind.def) { 948 if (is_supported_terminator_condition(cond)) { 949 get_induction_and_limit_vars(cond, &basic_ind, 950 &limit, &limit_rhs, state); 951 } 952 } 953 954 /* The comparison has to have a basic induction variable for us to be 955 * able to find trip counts. 956 */ 957 if (!basic_ind.def) { 958 trip_count_known = false; 959 continue; 960 } 961 962 terminator->induction_rhs = !limit_rhs; 963 964 /* Attempt to find a constant limit for the loop */ 965 nir_const_value limit_val; 966 if (nir_ssa_scalar_is_const(limit)) { 967 limit_val = nir_ssa_scalar_as_const_value(limit); 968 } else { 969 trip_count_known = false; 970 971 if (!try_find_limit_of_alu(limit, &limit_val, terminator, state)) { 972 /* Guess loop limit based on array access */ 973 if (!guess_loop_limit(state, &limit_val, basic_ind)) { 974 continue; 975 } 976 977 guessed_trip_count = true; 978 } 979 } 980 981 /* We have determined that we have the following constants: 982 * (With the typical int i = 0; i < x; i++; as an example) 983 * - Upper limit. 984 * - Starting value 985 * - Step / iteration size 986 * Thats all thats needed to calculate the trip-count 987 */ 988 989 nir_basic_induction_var *ind_var = 990 get_loop_var(basic_ind.def, state)->ind; 991 992 /* The basic induction var might be a vector but, because we guarantee 993 * earlier that the phi source has a scalar swizzle, we can take the 994 * component from basic_ind. 995 */ 996 nir_ssa_scalar initial_s = { ind_var->def_outside_loop, basic_ind.comp }; 997 nir_ssa_scalar alu_s = { &ind_var->alu->dest.dest.ssa, basic_ind.comp }; 998 999 nir_const_value initial_val = nir_ssa_scalar_as_const_value(initial_s); 1000 1001 /* We are guaranteed by earlier code that at least one of these sources 1002 * is a constant but we don't know which. 1003 */ 1004 nir_const_value step_val; 1005 memset(&step_val, 0, sizeof(step_val)); 1006 UNUSED bool found_step_value = false; 1007 assert(nir_op_infos[ind_var->alu->op].num_inputs == 2); 1008 for (unsigned i = 0; i < 2; i++) { 1009 nir_ssa_scalar alu_src = nir_ssa_scalar_chase_alu_src(alu_s, i); 1010 if (nir_ssa_scalar_is_const(alu_src)) { 1011 found_step_value = true; 1012 step_val = nir_ssa_scalar_as_const_value(alu_src); 1013 break; 1014 } 1015 } 1016 assert(found_step_value); 1017 1018 int iterations = calculate_iterations(&initial_val, &step_val, 1019 &limit_val, 1020 ind_var->alu, cond, 1021 alu_op, limit_rhs, 1022 terminator->continue_from_then); 1023 1024 /* Where we not able to calculate the iteration count */ 1025 if (iterations == -1) { 1026 trip_count_known = false; 1027 guessed_trip_count = false; 1028 continue; 1029 } 1030 1031 if (guessed_trip_count) { 1032 guessed_trip_count = false; 1033 if (state->loop->info->guessed_trip_count == 0 || 1034 state->loop->info->guessed_trip_count > iterations) 1035 state->loop->info->guessed_trip_count = iterations; 1036 1037 continue; 1038 } 1039 1040 /* If this is the first run or we have found a smaller amount of 1041 * iterations than previously (we have identified a more limiting 1042 * terminator) set the trip count and limiting terminator. 1043 */ 1044 if (max_trip_count == -1 || iterations < max_trip_count) { 1045 max_trip_count = iterations; 1046 limiting_terminator = terminator; 1047 } 1048 } 1049 1050 state->loop->info->exact_trip_count_known = trip_count_known; 1051 if (max_trip_count > -1) 1052 state->loop->info->max_trip_count = max_trip_count; 1053 state->loop->info->limiting_terminator = limiting_terminator; 1054} 1055 1056static bool 1057force_unroll_array_access(loop_info_state *state, nir_deref_instr *deref) 1058{ 1059 unsigned array_size = find_array_access_via_induction(state, deref, NULL); 1060 if (array_size) { 1061 if (array_size == state->loop->info->max_trip_count) 1062 return true; 1063 1064 if (deref->mode & state->indirect_mask) 1065 return true; 1066 } 1067 1068 return false; 1069} 1070 1071static bool 1072force_unroll_heuristics(loop_info_state *state, nir_block *block) 1073{ 1074 nir_foreach_instr(instr, block) { 1075 if (instr->type != nir_instr_type_intrinsic) 1076 continue; 1077 1078 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); 1079 1080 /* Check for arrays variably-indexed by a loop induction variable. 1081 * Unrolling the loop may convert that access into constant-indexing. 1082 */ 1083 if (intrin->intrinsic == nir_intrinsic_load_deref || 1084 intrin->intrinsic == nir_intrinsic_store_deref || 1085 intrin->intrinsic == nir_intrinsic_copy_deref) { 1086 if (force_unroll_array_access(state, 1087 nir_src_as_deref(intrin->src[0]))) 1088 return true; 1089 1090 if (intrin->intrinsic == nir_intrinsic_copy_deref && 1091 force_unroll_array_access(state, 1092 nir_src_as_deref(intrin->src[1]))) 1093 return true; 1094 } 1095 } 1096 1097 return false; 1098} 1099 1100static void 1101get_loop_info(loop_info_state *state, nir_function_impl *impl) 1102{ 1103 nir_shader *shader = impl->function->shader; 1104 const nir_shader_compiler_options *options = shader->options; 1105 1106 /* Initialize all variables to "outside_loop". This also marks defs 1107 * invariant and constant if they are nir_instr_type_load_consts 1108 */ 1109 nir_foreach_block(block, impl) { 1110 nir_foreach_instr(instr, block) 1111 nir_foreach_ssa_def(instr, initialize_ssa_def, state); 1112 } 1113 1114 /* Add all entries in the outermost part of the loop to the processing list 1115 * Mark the entries in conditionals or in nested loops accordingly 1116 */ 1117 foreach_list_typed_safe(nir_cf_node, node, node, &state->loop->body) { 1118 switch (node->type) { 1119 1120 case nir_cf_node_block: 1121 init_loop_block(nir_cf_node_as_block(node), state, 1122 false, false, options); 1123 break; 1124 1125 case nir_cf_node_if: 1126 nir_foreach_block_in_cf_node(block, node) 1127 init_loop_block(block, state, true, false, options); 1128 break; 1129 1130 case nir_cf_node_loop: 1131 nir_foreach_block_in_cf_node(block, node) { 1132 init_loop_block(block, state, false, true, options); 1133 } 1134 break; 1135 1136 case nir_cf_node_function: 1137 break; 1138 } 1139 } 1140 1141 /* Try to find all simple terminators of the loop. If we can't find any, 1142 * or we find possible terminators that have side effects then bail. 1143 */ 1144 if (!find_loop_terminators(state)) { 1145 list_for_each_entry_safe(nir_loop_terminator, terminator, 1146 &state->loop->info->loop_terminator_list, 1147 loop_terminator_link) { 1148 list_del(&terminator->loop_terminator_link); 1149 ralloc_free(terminator); 1150 } 1151 return; 1152 } 1153 1154 /* Induction analysis needs invariance information so get that first */ 1155 compute_invariance_information(state); 1156 1157 /* We have invariance information so try to find induction variables */ 1158 if (!compute_induction_information(state)) 1159 return; 1160 1161 /* Run through each of the terminators and try to compute a trip-count */ 1162 find_trip_count(state); 1163 1164 nir_foreach_block_in_cf_node(block, &state->loop->cf_node) { 1165 if (force_unroll_heuristics(state, block)) { 1166 state->loop->info->force_unroll = true; 1167 break; 1168 } 1169 } 1170} 1171 1172static loop_info_state * 1173initialize_loop_info_state(nir_loop *loop, void *mem_ctx, 1174 nir_function_impl *impl) 1175{ 1176 loop_info_state *state = rzalloc(mem_ctx, loop_info_state); 1177 state->loop_vars = rzalloc_array(mem_ctx, nir_loop_variable, 1178 impl->ssa_alloc); 1179 state->loop = loop; 1180 1181 list_inithead(&state->process_list); 1182 1183 if (loop->info) 1184 ralloc_free(loop->info); 1185 1186 loop->info = rzalloc(loop, nir_loop_info); 1187 1188 list_inithead(&loop->info->loop_terminator_list); 1189 1190 return state; 1191} 1192 1193static void 1194process_loops(nir_cf_node *cf_node, nir_variable_mode indirect_mask) 1195{ 1196 switch (cf_node->type) { 1197 case nir_cf_node_block: 1198 return; 1199 case nir_cf_node_if: { 1200 nir_if *if_stmt = nir_cf_node_as_if(cf_node); 1201 foreach_list_typed(nir_cf_node, nested_node, node, &if_stmt->then_list) 1202 process_loops(nested_node, indirect_mask); 1203 foreach_list_typed(nir_cf_node, nested_node, node, &if_stmt->else_list) 1204 process_loops(nested_node, indirect_mask); 1205 return; 1206 } 1207 case nir_cf_node_loop: { 1208 nir_loop *loop = nir_cf_node_as_loop(cf_node); 1209 foreach_list_typed(nir_cf_node, nested_node, node, &loop->body) 1210 process_loops(nested_node, indirect_mask); 1211 break; 1212 } 1213 default: 1214 unreachable("unknown cf node type"); 1215 } 1216 1217 nir_loop *loop = nir_cf_node_as_loop(cf_node); 1218 nir_function_impl *impl = nir_cf_node_get_function(cf_node); 1219 void *mem_ctx = ralloc_context(NULL); 1220 1221 loop_info_state *state = initialize_loop_info_state(loop, mem_ctx, impl); 1222 state->indirect_mask = indirect_mask; 1223 1224 get_loop_info(state, impl); 1225 1226 ralloc_free(mem_ctx); 1227} 1228 1229void 1230nir_loop_analyze_impl(nir_function_impl *impl, 1231 nir_variable_mode indirect_mask) 1232{ 1233 nir_index_ssa_defs(impl); 1234 foreach_list_typed(nir_cf_node, node, node, &impl->body) 1235 process_loops(node, indirect_mask); 1236} 1237