vtn_glsl450.c revision b8e80941
1/*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Jason Ekstrand (jason@jlekstrand.net)
25 *
26 */
27
28#include <math.h>
29
30#include "nir/nir_builtin_builder.h"
31
32#include "vtn_private.h"
33#include "GLSL.std.450.h"
34
35#define M_PIf   ((float) M_PI)
36#define M_PI_2f ((float) M_PI_2)
37#define M_PI_4f ((float) M_PI_4)
38
39static nir_ssa_def *
40build_mat2_det(nir_builder *b, nir_ssa_def *col[2])
41{
42   unsigned swiz[2] = {1, 0 };
43   nir_ssa_def *p = nir_fmul(b, col[0], nir_swizzle(b, col[1], swiz, 2, true));
44   return nir_fsub(b, nir_channel(b, p, 0), nir_channel(b, p, 1));
45}
46
47static nir_ssa_def *
48build_mat3_det(nir_builder *b, nir_ssa_def *col[3])
49{
50   unsigned yzx[3] = {1, 2, 0 };
51   unsigned zxy[3] = {2, 0, 1 };
52
53   nir_ssa_def *prod0 =
54      nir_fmul(b, col[0],
55               nir_fmul(b, nir_swizzle(b, col[1], yzx, 3, true),
56                           nir_swizzle(b, col[2], zxy, 3, true)));
57   nir_ssa_def *prod1 =
58      nir_fmul(b, col[0],
59               nir_fmul(b, nir_swizzle(b, col[1], zxy, 3, true),
60                           nir_swizzle(b, col[2], yzx, 3, true)));
61
62   nir_ssa_def *diff = nir_fsub(b, prod0, prod1);
63
64   return nir_fadd(b, nir_channel(b, diff, 0),
65                      nir_fadd(b, nir_channel(b, diff, 1),
66                                  nir_channel(b, diff, 2)));
67}
68
69static nir_ssa_def *
70build_mat4_det(nir_builder *b, nir_ssa_def **col)
71{
72   nir_ssa_def *subdet[4];
73   for (unsigned i = 0; i < 4; i++) {
74      unsigned swiz[3];
75      for (unsigned j = 0; j < 3; j++)
76         swiz[j] = j + (j >= i);
77
78      nir_ssa_def *subcol[3];
79      subcol[0] = nir_swizzle(b, col[1], swiz, 3, true);
80      subcol[1] = nir_swizzle(b, col[2], swiz, 3, true);
81      subcol[2] = nir_swizzle(b, col[3], swiz, 3, true);
82
83      subdet[i] = build_mat3_det(b, subcol);
84   }
85
86   nir_ssa_def *prod = nir_fmul(b, col[0], nir_vec(b, subdet, 4));
87
88   return nir_fadd(b, nir_fsub(b, nir_channel(b, prod, 0),
89                                  nir_channel(b, prod, 1)),
90                      nir_fsub(b, nir_channel(b, prod, 2),
91                                  nir_channel(b, prod, 3)));
92}
93
94static nir_ssa_def *
95build_mat_det(struct vtn_builder *b, struct vtn_ssa_value *src)
96{
97   unsigned size = glsl_get_vector_elements(src->type);
98
99   nir_ssa_def *cols[4];
100   for (unsigned i = 0; i < size; i++)
101      cols[i] = src->elems[i]->def;
102
103   switch(size) {
104   case 2: return build_mat2_det(&b->nb, cols);
105   case 3: return build_mat3_det(&b->nb, cols);
106   case 4: return build_mat4_det(&b->nb, cols);
107   default:
108      vtn_fail("Invalid matrix size");
109   }
110}
111
112/* Computes the determinate of the submatrix given by taking src and
113 * removing the specified row and column.
114 */
115static nir_ssa_def *
116build_mat_subdet(struct nir_builder *b, struct vtn_ssa_value *src,
117                 unsigned size, unsigned row, unsigned col)
118{
119   assert(row < size && col < size);
120   if (size == 2) {
121      return nir_channel(b, src->elems[1 - col]->def, 1 - row);
122   } else {
123      /* Swizzle to get all but the specified row */
124      unsigned swiz[3];
125      for (unsigned j = 0; j < 3; j++)
126         swiz[j] = j + (j >= row);
127
128      /* Grab all but the specified column */
129      nir_ssa_def *subcol[3];
130      for (unsigned j = 0; j < size; j++) {
131         if (j != col) {
132            subcol[j - (j > col)] = nir_swizzle(b, src->elems[j]->def,
133                                                swiz, size - 1, true);
134         }
135      }
136
137      if (size == 3) {
138         return build_mat2_det(b, subcol);
139      } else {
140         assert(size == 4);
141         return build_mat3_det(b, subcol);
142      }
143   }
144}
145
146static struct vtn_ssa_value *
147matrix_inverse(struct vtn_builder *b, struct vtn_ssa_value *src)
148{
149   nir_ssa_def *adj_col[4];
150   unsigned size = glsl_get_vector_elements(src->type);
151
152   /* Build up an adjugate matrix */
153   for (unsigned c = 0; c < size; c++) {
154      nir_ssa_def *elem[4];
155      for (unsigned r = 0; r < size; r++) {
156         elem[r] = build_mat_subdet(&b->nb, src, size, c, r);
157
158         if ((r + c) % 2)
159            elem[r] = nir_fneg(&b->nb, elem[r]);
160      }
161
162      adj_col[c] = nir_vec(&b->nb, elem, size);
163   }
164
165   nir_ssa_def *det_inv = nir_frcp(&b->nb, build_mat_det(b, src));
166
167   struct vtn_ssa_value *val = vtn_create_ssa_value(b, src->type);
168   for (unsigned i = 0; i < size; i++)
169      val->elems[i]->def = nir_fmul(&b->nb, adj_col[i], det_inv);
170
171   return val;
172}
173
174/**
175 * Return e^x.
176 */
177static nir_ssa_def *
178build_exp(nir_builder *b, nir_ssa_def *x)
179{
180   return nir_fexp2(b, nir_fmul_imm(b, x, M_LOG2E));
181}
182
183/**
184 * Return ln(x) - the natural logarithm of x.
185 */
186static nir_ssa_def *
187build_log(nir_builder *b, nir_ssa_def *x)
188{
189   return nir_fmul_imm(b, nir_flog2(b, x), 1.0 / M_LOG2E);
190}
191
192/**
193 * Approximate asin(x) by the formula:
194 *    asin~(x) = sign(x) * (pi/2 - sqrt(1 - |x|) * (pi/2 + |x|(pi/4 - 1 + |x|(p0 + |x|p1))))
195 *
196 * which is correct to first order at x=0 and x=±1 regardless of the p
197 * coefficients but can be made second-order correct at both ends by selecting
198 * the fit coefficients appropriately.  Different p coefficients can be used
199 * in the asin and acos implementation to minimize some relative error metric
200 * in each case.
201 */
202static nir_ssa_def *
203build_asin(nir_builder *b, nir_ssa_def *x, float p0, float p1)
204{
205   if (x->bit_size == 16) {
206      /* The polynomial approximation isn't precise enough to meet half-float
207       * precision requirements. Alternatively, we could implement this using
208       * the formula:
209       *
210       * asin(x) = atan2(x, sqrt(1 - x*x))
211       *
212       * But that is very expensive, so instead we just do the polynomial
213       * approximation in 32-bit math and then we convert the result back to
214       * 16-bit.
215       */
216      return nir_f2f16(b, build_asin(b, nir_f2f32(b, x), p0, p1));
217   }
218
219   nir_ssa_def *one = nir_imm_floatN_t(b, 1.0f, x->bit_size);
220   nir_ssa_def *abs_x = nir_fabs(b, x);
221
222   nir_ssa_def *p0_plus_xp1 = nir_fadd_imm(b, nir_fmul_imm(b, abs_x, p1), p0);
223
224   nir_ssa_def *expr_tail =
225      nir_fadd_imm(b, nir_fmul(b, abs_x,
226                                  nir_fadd_imm(b, nir_fmul(b, abs_x,
227                                                               p0_plus_xp1),
228                                                  M_PI_4f - 1.0f)),
229                      M_PI_2f);
230
231   return nir_fmul(b, nir_fsign(b, x),
232                      nir_fsub(b, nir_imm_floatN_t(b, M_PI_2f, x->bit_size),
233                                  nir_fmul(b, nir_fsqrt(b, nir_fsub(b, one, abs_x)),
234                                                           expr_tail)));
235}
236
237/**
238 * Compute xs[0] + xs[1] + xs[2] + ... using fadd.
239 */
240static nir_ssa_def *
241build_fsum(nir_builder *b, nir_ssa_def **xs, int terms)
242{
243   nir_ssa_def *accum = xs[0];
244
245   for (int i = 1; i < terms; i++)
246      accum = nir_fadd(b, accum, xs[i]);
247
248   return accum;
249}
250
251static nir_ssa_def *
252build_atan(nir_builder *b, nir_ssa_def *y_over_x)
253{
254   const uint32_t bit_size = y_over_x->bit_size;
255
256   nir_ssa_def *abs_y_over_x = nir_fabs(b, y_over_x);
257   nir_ssa_def *one = nir_imm_floatN_t(b, 1.0f, bit_size);
258
259   /*
260    * range-reduction, first step:
261    *
262    *      / y_over_x         if |y_over_x| <= 1.0;
263    * x = <
264    *      \ 1.0 / y_over_x   otherwise
265    */
266   nir_ssa_def *x = nir_fdiv(b, nir_fmin(b, abs_y_over_x, one),
267                                nir_fmax(b, abs_y_over_x, one));
268
269   /*
270    * approximate atan by evaluating polynomial:
271    *
272    * x   * 0.9999793128310355 - x^3  * 0.3326756418091246 +
273    * x^5 * 0.1938924977115610 - x^7  * 0.1173503194786851 +
274    * x^9 * 0.0536813784310406 - x^11 * 0.0121323213173444
275    */
276   nir_ssa_def *x_2  = nir_fmul(b, x,   x);
277   nir_ssa_def *x_3  = nir_fmul(b, x_2, x);
278   nir_ssa_def *x_5  = nir_fmul(b, x_3, x_2);
279   nir_ssa_def *x_7  = nir_fmul(b, x_5, x_2);
280   nir_ssa_def *x_9  = nir_fmul(b, x_7, x_2);
281   nir_ssa_def *x_11 = nir_fmul(b, x_9, x_2);
282
283   nir_ssa_def *polynomial_terms[] = {
284      nir_fmul_imm(b, x,     0.9999793128310355f),
285      nir_fmul_imm(b, x_3,  -0.3326756418091246f),
286      nir_fmul_imm(b, x_5,   0.1938924977115610f),
287      nir_fmul_imm(b, x_7,  -0.1173503194786851f),
288      nir_fmul_imm(b, x_9,   0.0536813784310406f),
289      nir_fmul_imm(b, x_11, -0.0121323213173444f),
290   };
291
292   nir_ssa_def *tmp =
293      build_fsum(b, polynomial_terms, ARRAY_SIZE(polynomial_terms));
294
295   /* range-reduction fixup */
296   tmp = nir_fadd(b, tmp,
297                  nir_fmul(b, nir_b2f(b, nir_flt(b, one, abs_y_over_x), bit_size),
298                           nir_fadd_imm(b, nir_fmul_imm(b, tmp, -2.0f), M_PI_2f)));
299
300   /* sign fixup */
301   return nir_fmul(b, tmp, nir_fsign(b, y_over_x));
302}
303
304static nir_ssa_def *
305build_atan2(nir_builder *b, nir_ssa_def *y, nir_ssa_def *x)
306{
307   assert(y->bit_size == x->bit_size);
308   const uint32_t bit_size = x->bit_size;
309
310   nir_ssa_def *zero = nir_imm_floatN_t(b, 0, bit_size);
311   nir_ssa_def *one = nir_imm_floatN_t(b, 1, bit_size);
312
313   /* If we're on the left half-plane rotate the coordinates π/2 clock-wise
314    * for the y=0 discontinuity to end up aligned with the vertical
315    * discontinuity of atan(s/t) along t=0.  This also makes sure that we
316    * don't attempt to divide by zero along the vertical line, which may give
317    * unspecified results on non-GLSL 4.1-capable hardware.
318    */
319   nir_ssa_def *flip = nir_fge(b, zero, x);
320   nir_ssa_def *s = nir_bcsel(b, flip, nir_fabs(b, x), y);
321   nir_ssa_def *t = nir_bcsel(b, flip, y, nir_fabs(b, x));
322
323   /* If the magnitude of the denominator exceeds some huge value, scale down
324    * the arguments in order to prevent the reciprocal operation from flushing
325    * its result to zero, which would cause precision problems, and for s
326    * infinite would cause us to return a NaN instead of the correct finite
327    * value.
328    *
329    * If fmin and fmax are respectively the smallest and largest positive
330    * normalized floating point values representable by the implementation,
331    * the constants below should be in agreement with:
332    *
333    *    huge <= 1 / fmin
334    *    scale <= 1 / fmin / fmax (for |t| >= huge)
335    *
336    * In addition scale should be a negative power of two in order to avoid
337    * loss of precision.  The values chosen below should work for most usual
338    * floating point representations with at least the dynamic range of ATI's
339    * 24-bit representation.
340    */
341   const double huge_val = bit_size >= 32 ? 1e18 : 16384;
342   nir_ssa_def *huge = nir_imm_floatN_t(b,  huge_val, bit_size);
343   nir_ssa_def *scale = nir_bcsel(b, nir_fge(b, nir_fabs(b, t), huge),
344                                  nir_imm_floatN_t(b, 0.25, bit_size), one);
345   nir_ssa_def *rcp_scaled_t = nir_frcp(b, nir_fmul(b, t, scale));
346   nir_ssa_def *s_over_t = nir_fmul(b, nir_fmul(b, s, scale), rcp_scaled_t);
347
348   /* For |x| = |y| assume tan = 1 even if infinite (i.e. pretend momentarily
349    * that ∞/∞ = 1) in order to comply with the rather artificial rules
350    * inherited from IEEE 754-2008, namely:
351    *
352    *  "atan2(±∞, −∞) is ±3π/4
353    *   atan2(±∞, +∞) is ±π/4"
354    *
355    * Note that this is inconsistent with the rules for the neighborhood of
356    * zero that are based on iterated limits:
357    *
358    *  "atan2(±0, −0) is ±π
359    *   atan2(±0, +0) is ±0"
360    *
361    * but GLSL specifically allows implementations to deviate from IEEE rules
362    * at (0,0), so we take that license (i.e. pretend that 0/0 = 1 here as
363    * well).
364    */
365   nir_ssa_def *tan = nir_bcsel(b, nir_feq(b, nir_fabs(b, x), nir_fabs(b, y)),
366                                one, nir_fabs(b, s_over_t));
367
368   /* Calculate the arctangent and fix up the result if we had flipped the
369    * coordinate system.
370    */
371   nir_ssa_def *arc =
372      nir_fadd(b, nir_fmul_imm(b, nir_b2f(b, flip, bit_size), M_PI_2f),
373                  build_atan(b, tan));
374
375   /* Rather convoluted calculation of the sign of the result.  When x < 0 we
376    * cannot use fsign because we need to be able to distinguish between
377    * negative and positive zero.  We don't use bitwise arithmetic tricks for
378    * consistency with the GLSL front-end.  When x >= 0 rcp_scaled_t will
379    * always be non-negative so this won't be able to distinguish between
380    * negative and positive zero, but we don't care because atan2 is
381    * continuous along the whole positive y = 0 half-line, so it won't affect
382    * the result significantly.
383    */
384   return nir_bcsel(b, nir_flt(b, nir_fmin(b, y, rcp_scaled_t), zero),
385                    nir_fneg(b, arc), arc);
386}
387
388static nir_op
389vtn_nir_alu_op_for_spirv_glsl_opcode(struct vtn_builder *b,
390                                     enum GLSLstd450 opcode)
391{
392   switch (opcode) {
393   case GLSLstd450Round:         return nir_op_fround_even;
394   case GLSLstd450RoundEven:     return nir_op_fround_even;
395   case GLSLstd450Trunc:         return nir_op_ftrunc;
396   case GLSLstd450FAbs:          return nir_op_fabs;
397   case GLSLstd450SAbs:          return nir_op_iabs;
398   case GLSLstd450FSign:         return nir_op_fsign;
399   case GLSLstd450SSign:         return nir_op_isign;
400   case GLSLstd450Floor:         return nir_op_ffloor;
401   case GLSLstd450Ceil:          return nir_op_fceil;
402   case GLSLstd450Fract:         return nir_op_ffract;
403   case GLSLstd450Sin:           return nir_op_fsin;
404   case GLSLstd450Cos:           return nir_op_fcos;
405   case GLSLstd450Pow:           return nir_op_fpow;
406   case GLSLstd450Exp2:          return nir_op_fexp2;
407   case GLSLstd450Log2:          return nir_op_flog2;
408   case GLSLstd450Sqrt:          return nir_op_fsqrt;
409   case GLSLstd450InverseSqrt:   return nir_op_frsq;
410   case GLSLstd450NMin:          return nir_op_fmin;
411   case GLSLstd450FMin:          return nir_op_fmin;
412   case GLSLstd450UMin:          return nir_op_umin;
413   case GLSLstd450SMin:          return nir_op_imin;
414   case GLSLstd450NMax:          return nir_op_fmax;
415   case GLSLstd450FMax:          return nir_op_fmax;
416   case GLSLstd450UMax:          return nir_op_umax;
417   case GLSLstd450SMax:          return nir_op_imax;
418   case GLSLstd450FMix:          return nir_op_flrp;
419   case GLSLstd450Fma:           return nir_op_ffma;
420   case GLSLstd450Ldexp:         return nir_op_ldexp;
421   case GLSLstd450FindILsb:      return nir_op_find_lsb;
422   case GLSLstd450FindSMsb:      return nir_op_ifind_msb;
423   case GLSLstd450FindUMsb:      return nir_op_ufind_msb;
424
425   /* Packing/Unpacking functions */
426   case GLSLstd450PackSnorm4x8:     return nir_op_pack_snorm_4x8;
427   case GLSLstd450PackUnorm4x8:     return nir_op_pack_unorm_4x8;
428   case GLSLstd450PackSnorm2x16:    return nir_op_pack_snorm_2x16;
429   case GLSLstd450PackUnorm2x16:    return nir_op_pack_unorm_2x16;
430   case GLSLstd450PackHalf2x16:     return nir_op_pack_half_2x16;
431   case GLSLstd450PackDouble2x32:   return nir_op_pack_64_2x32;
432   case GLSLstd450UnpackSnorm4x8:   return nir_op_unpack_snorm_4x8;
433   case GLSLstd450UnpackUnorm4x8:   return nir_op_unpack_unorm_4x8;
434   case GLSLstd450UnpackSnorm2x16:  return nir_op_unpack_snorm_2x16;
435   case GLSLstd450UnpackUnorm2x16:  return nir_op_unpack_unorm_2x16;
436   case GLSLstd450UnpackHalf2x16:   return nir_op_unpack_half_2x16;
437   case GLSLstd450UnpackDouble2x32: return nir_op_unpack_64_2x32;
438
439   default:
440      vtn_fail("No NIR equivalent");
441   }
442}
443
444#define NIR_IMM_FP(n, v) (nir_imm_floatN_t(n, v, src[0]->bit_size))
445
446static void
447handle_glsl450_alu(struct vtn_builder *b, enum GLSLstd450 entrypoint,
448                   const uint32_t *w, unsigned count)
449{
450   struct nir_builder *nb = &b->nb;
451   const struct glsl_type *dest_type =
452      vtn_value(b, w[1], vtn_value_type_type)->type->type;
453
454   struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
455   val->ssa = vtn_create_ssa_value(b, dest_type);
456
457   /* Collect the various SSA sources */
458   unsigned num_inputs = count - 5;
459   nir_ssa_def *src[3] = { NULL, };
460   for (unsigned i = 0; i < num_inputs; i++) {
461      /* These are handled specially below */
462      if (vtn_untyped_value(b, w[i + 5])->value_type == vtn_value_type_pointer)
463         continue;
464
465      src[i] = vtn_ssa_value(b, w[i + 5])->def;
466   }
467
468   switch (entrypoint) {
469   case GLSLstd450Radians:
470      val->ssa->def = nir_radians(nb, src[0]);
471      return;
472   case GLSLstd450Degrees:
473      val->ssa->def = nir_degrees(nb, src[0]);
474      return;
475   case GLSLstd450Tan:
476      val->ssa->def = nir_fdiv(nb, nir_fsin(nb, src[0]),
477                               nir_fcos(nb, src[0]));
478      return;
479
480   case GLSLstd450Modf: {
481      nir_ssa_def *sign = nir_fsign(nb, src[0]);
482      nir_ssa_def *abs = nir_fabs(nb, src[0]);
483      val->ssa->def = nir_fmul(nb, sign, nir_ffract(nb, abs));
484      nir_store_deref(nb, vtn_nir_deref(b, w[6]),
485                      nir_fmul(nb, sign, nir_ffloor(nb, abs)), 0xf);
486      return;
487   }
488
489   case GLSLstd450ModfStruct: {
490      nir_ssa_def *sign = nir_fsign(nb, src[0]);
491      nir_ssa_def *abs = nir_fabs(nb, src[0]);
492      vtn_assert(glsl_type_is_struct_or_ifc(val->ssa->type));
493      val->ssa->elems[0]->def = nir_fmul(nb, sign, nir_ffract(nb, abs));
494      val->ssa->elems[1]->def = nir_fmul(nb, sign, nir_ffloor(nb, abs));
495      return;
496   }
497
498   case GLSLstd450Step:
499      val->ssa->def = nir_sge(nb, src[1], src[0]);
500      return;
501
502   case GLSLstd450Length:
503      val->ssa->def = nir_fast_length(nb, src[0]);
504      return;
505   case GLSLstd450Distance:
506      val->ssa->def = nir_fast_distance(nb, src[0], src[1]);
507      return;
508   case GLSLstd450Normalize:
509      val->ssa->def = nir_fast_normalize(nb, src[0]);
510      return;
511
512   case GLSLstd450Exp:
513      val->ssa->def = build_exp(nb, src[0]);
514      return;
515
516   case GLSLstd450Log:
517      val->ssa->def = build_log(nb, src[0]);
518      return;
519
520   case GLSLstd450FClamp:
521   case GLSLstd450NClamp:
522      val->ssa->def = nir_fclamp(nb, src[0], src[1], src[2]);
523      return;
524   case GLSLstd450UClamp:
525      val->ssa->def = nir_uclamp(nb, src[0], src[1], src[2]);
526      return;
527   case GLSLstd450SClamp:
528      val->ssa->def = nir_iclamp(nb, src[0], src[1], src[2]);
529      return;
530
531   case GLSLstd450Cross: {
532      val->ssa->def = nir_cross3(nb, src[0], src[1]);
533      return;
534   }
535
536   case GLSLstd450SmoothStep: {
537      val->ssa->def = nir_smoothstep(nb, src[0], src[1], src[2]);
538      return;
539   }
540
541   case GLSLstd450FaceForward:
542      val->ssa->def =
543         nir_bcsel(nb, nir_flt(nb, nir_fdot(nb, src[2], src[1]),
544                                   NIR_IMM_FP(nb, 0.0)),
545                       src[0], nir_fneg(nb, src[0]));
546      return;
547
548   case GLSLstd450Reflect:
549      /* I - 2 * dot(N, I) * N */
550      val->ssa->def =
551         nir_fsub(nb, src[0], nir_fmul(nb, NIR_IMM_FP(nb, 2.0),
552                              nir_fmul(nb, nir_fdot(nb, src[0], src[1]),
553                                           src[1])));
554      return;
555
556   case GLSLstd450Refract: {
557      nir_ssa_def *I = src[0];
558      nir_ssa_def *N = src[1];
559      nir_ssa_def *eta = src[2];
560      nir_ssa_def *n_dot_i = nir_fdot(nb, N, I);
561      nir_ssa_def *one = NIR_IMM_FP(nb, 1.0);
562      nir_ssa_def *zero = NIR_IMM_FP(nb, 0.0);
563      /* According to the SPIR-V and GLSL specs, eta is always a float
564       * regardless of the type of the other operands. However in practice it
565       * seems that if you try to pass it a float then glslang will just
566       * promote it to a double and generate invalid SPIR-V. In order to
567       * support a hypothetical fixed version of glslang we’ll promote eta to
568       * double if the other operands are double also.
569       */
570      if (I->bit_size != eta->bit_size) {
571         nir_op conversion_op =
572            nir_type_conversion_op(nir_type_float | eta->bit_size,
573                                   nir_type_float | I->bit_size,
574                                   nir_rounding_mode_undef);
575         eta = nir_build_alu(nb, conversion_op, eta, NULL, NULL, NULL);
576      }
577      /* k = 1.0 - eta * eta * (1.0 - dot(N, I) * dot(N, I)) */
578      nir_ssa_def *k =
579         nir_fsub(nb, one, nir_fmul(nb, eta, nir_fmul(nb, eta,
580                      nir_fsub(nb, one, nir_fmul(nb, n_dot_i, n_dot_i)))));
581      nir_ssa_def *result =
582         nir_fsub(nb, nir_fmul(nb, eta, I),
583                      nir_fmul(nb, nir_fadd(nb, nir_fmul(nb, eta, n_dot_i),
584                                                nir_fsqrt(nb, k)), N));
585      /* XXX: bcsel, or if statement? */
586      val->ssa->def = nir_bcsel(nb, nir_flt(nb, k, zero), zero, result);
587      return;
588   }
589
590   case GLSLstd450Sinh:
591      /* 0.5 * (e^x - e^(-x)) */
592      val->ssa->def =
593         nir_fmul_imm(nb, nir_fsub(nb, build_exp(nb, src[0]),
594                                       build_exp(nb, nir_fneg(nb, src[0]))),
595                          0.5f);
596      return;
597
598   case GLSLstd450Cosh:
599      /* 0.5 * (e^x + e^(-x)) */
600      val->ssa->def =
601         nir_fmul_imm(nb, nir_fadd(nb, build_exp(nb, src[0]),
602                                       build_exp(nb, nir_fneg(nb, src[0]))),
603                          0.5f);
604      return;
605
606   case GLSLstd450Tanh: {
607      /* tanh(x) := (0.5 * (e^x - e^(-x))) / (0.5 * (e^x + e^(-x)))
608       *
609       * With a little algebra this reduces to (e^2x - 1) / (e^2x + 1)
610       *
611       * We clamp x to (-inf, +10] to avoid precision problems.  When x > 10,
612       * e^2x is so much larger than 1.0 that 1.0 gets flushed to zero in the
613       * computation e^2x +/- 1 so it can be ignored.
614       *
615       * For 16-bit precision we clamp x to (-inf, +4.2] since the maximum
616       * representable number is only 65,504 and e^(2*6) exceeds that. Also,
617       * if x > 4.2, tanh(x) will return 1.0 in fp16.
618       */
619      const uint32_t bit_size = src[0]->bit_size;
620      const double clamped_x = bit_size > 16 ? 10.0 : 4.2;
621      nir_ssa_def *x = nir_fmin(nb, src[0],
622                                    nir_imm_floatN_t(nb, clamped_x, bit_size));
623      nir_ssa_def *exp2x = build_exp(nb, nir_fmul_imm(nb, x, 2.0));
624      val->ssa->def = nir_fdiv(nb, nir_fadd_imm(nb, exp2x, -1.0),
625                                   nir_fadd_imm(nb, exp2x, 1.0));
626      return;
627   }
628
629   case GLSLstd450Asinh:
630      val->ssa->def = nir_fmul(nb, nir_fsign(nb, src[0]),
631         build_log(nb, nir_fadd(nb, nir_fabs(nb, src[0]),
632                       nir_fsqrt(nb, nir_fadd_imm(nb, nir_fmul(nb, src[0], src[0]),
633                                                      1.0f)))));
634      return;
635   case GLSLstd450Acosh:
636      val->ssa->def = build_log(nb, nir_fadd(nb, src[0],
637         nir_fsqrt(nb, nir_fadd_imm(nb, nir_fmul(nb, src[0], src[0]),
638                                        -1.0f))));
639      return;
640   case GLSLstd450Atanh: {
641      nir_ssa_def *one = nir_imm_floatN_t(nb, 1.0, src[0]->bit_size);
642      val->ssa->def =
643         nir_fmul_imm(nb, build_log(nb, nir_fdiv(nb, nir_fadd(nb, src[0], one),
644                                        nir_fsub(nb, one, src[0]))),
645                          0.5f);
646      return;
647   }
648
649   case GLSLstd450Asin:
650      val->ssa->def = build_asin(nb, src[0], 0.086566724, -0.03102955);
651      return;
652
653   case GLSLstd450Acos:
654      val->ssa->def =
655         nir_fsub(nb, nir_imm_floatN_t(nb, M_PI_2f, src[0]->bit_size),
656                      build_asin(nb, src[0], 0.08132463, -0.02363318));
657      return;
658
659   case GLSLstd450Atan:
660      val->ssa->def = build_atan(nb, src[0]);
661      return;
662
663   case GLSLstd450Atan2:
664      val->ssa->def = build_atan2(nb, src[0], src[1]);
665      return;
666
667   case GLSLstd450Frexp: {
668      nir_ssa_def *exponent = nir_frexp_exp(nb, src[0]);
669      val->ssa->def = nir_frexp_sig(nb, src[0]);
670      nir_store_deref(nb, vtn_nir_deref(b, w[6]), exponent, 0xf);
671      return;
672   }
673
674   case GLSLstd450FrexpStruct: {
675      vtn_assert(glsl_type_is_struct_or_ifc(val->ssa->type));
676      val->ssa->elems[0]->def = nir_frexp_sig(nb, src[0]);
677      val->ssa->elems[1]->def = nir_frexp_exp(nb, src[0]);
678      return;
679   }
680
681   default:
682      val->ssa->def =
683         nir_build_alu(&b->nb,
684                       vtn_nir_alu_op_for_spirv_glsl_opcode(b, entrypoint),
685                       src[0], src[1], src[2], NULL);
686      return;
687   }
688}
689
690static void
691handle_glsl450_interpolation(struct vtn_builder *b, enum GLSLstd450 opcode,
692                             const uint32_t *w, unsigned count)
693{
694   const struct glsl_type *dest_type =
695      vtn_value(b, w[1], vtn_value_type_type)->type->type;
696
697   struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
698   val->ssa = vtn_create_ssa_value(b, dest_type);
699
700   nir_intrinsic_op op;
701   switch (opcode) {
702   case GLSLstd450InterpolateAtCentroid:
703      op = nir_intrinsic_interp_deref_at_centroid;
704      break;
705   case GLSLstd450InterpolateAtSample:
706      op = nir_intrinsic_interp_deref_at_sample;
707      break;
708   case GLSLstd450InterpolateAtOffset:
709      op = nir_intrinsic_interp_deref_at_offset;
710      break;
711   default:
712      vtn_fail("Invalid opcode");
713   }
714
715   nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->nb.shader, op);
716
717   struct vtn_pointer *ptr =
718      vtn_value(b, w[5], vtn_value_type_pointer)->pointer;
719   nir_deref_instr *deref = vtn_pointer_to_deref(b, ptr);
720
721   /* If the value we are interpolating has an index into a vector then
722    * interpolate the vector and index the result of that instead. This is
723    * necessary because the index will get generated as a series of nir_bcsel
724    * instructions so it would no longer be an input variable.
725    */
726   const bool vec_array_deref = deref->deref_type == nir_deref_type_array &&
727      glsl_type_is_vector(nir_deref_instr_parent(deref)->type);
728
729   nir_deref_instr *vec_deref = NULL;
730   if (vec_array_deref) {
731      vec_deref = deref;
732      deref = nir_deref_instr_parent(deref);
733   }
734   intrin->src[0] = nir_src_for_ssa(&deref->dest.ssa);
735
736   switch (opcode) {
737   case GLSLstd450InterpolateAtCentroid:
738      break;
739   case GLSLstd450InterpolateAtSample:
740   case GLSLstd450InterpolateAtOffset:
741      intrin->src[1] = nir_src_for_ssa(vtn_ssa_value(b, w[6])->def);
742      break;
743   default:
744      vtn_fail("Invalid opcode");
745   }
746
747   intrin->num_components = glsl_get_vector_elements(deref->type);
748   nir_ssa_dest_init(&intrin->instr, &intrin->dest,
749                     glsl_get_vector_elements(deref->type),
750                     glsl_get_bit_size(deref->type), NULL);
751
752   nir_builder_instr_insert(&b->nb, &intrin->instr);
753
754   if (vec_array_deref) {
755      assert(vec_deref);
756      if (nir_src_is_const(vec_deref->arr.index)) {
757         val->ssa->def = vtn_vector_extract(b, &intrin->dest.ssa,
758                                            nir_src_as_uint(vec_deref->arr.index));
759      } else {
760         val->ssa->def = vtn_vector_extract_dynamic(b, &intrin->dest.ssa,
761                                                    vec_deref->arr.index.ssa);
762      }
763   } else {
764      val->ssa->def = &intrin->dest.ssa;
765   }
766}
767
768bool
769vtn_handle_glsl450_instruction(struct vtn_builder *b, SpvOp ext_opcode,
770                               const uint32_t *w, unsigned count)
771{
772   switch ((enum GLSLstd450)ext_opcode) {
773   case GLSLstd450Determinant: {
774      struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
775      val->ssa = rzalloc(b, struct vtn_ssa_value);
776      val->ssa->type = vtn_value(b, w[1], vtn_value_type_type)->type->type;
777      val->ssa->def = build_mat_det(b, vtn_ssa_value(b, w[5]));
778      break;
779   }
780
781   case GLSLstd450MatrixInverse: {
782      struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
783      val->ssa = matrix_inverse(b, vtn_ssa_value(b, w[5]));
784      break;
785   }
786
787   case GLSLstd450InterpolateAtCentroid:
788   case GLSLstd450InterpolateAtSample:
789   case GLSLstd450InterpolateAtOffset:
790      handle_glsl450_interpolation(b, (enum GLSLstd450)ext_opcode, w, count);
791      break;
792
793   default:
794      handle_glsl450_alu(b, (enum GLSLstd450)ext_opcode, w, count);
795   }
796
797   return true;
798}
799